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Short Communication

Overview on Stochastic Epidemic and Endemic 
Models

In the last years, deterministic and stochastic epidemic mod-
els, in both discrete and continuous time, have been studied [1-
3]. Both model types are needed, and both have their advantages 
and weaknesses [4-5]. The deterministic models lead to power 
full qualitative results with important threshold behavior [6]. 
They can serve as a useful inside into the stochastic models as 
well.

Some recent publications have shown the importance of sto-
chastic epidemiological models, their approximations and sta-
bility [7].

Stochastic epidemiological models can be constructed in two 
ways: 1) as a system of stochastic differential equations (e.g.,ma-
rine bacteriophaque population), and 2) as a system of differ-
ential equation with coefficients depending on some stochastic 
process (e.g., semi-Markov process, in general case), switching 
the modes/states of the system under consideration (e.g., sto-
chastic SIR models in random media). Stochastic stability of 
vector stochastic differential equations and its application to a 
stochastic epidemic model are considered in Swishchuk, Svish-
chuk and Limnios [8]. Stochastic SARS model and its approxi-
mations and stability are considered in Swishchuk, Limnios and 
Svishchuk [8]. Stochastic endemic SIR model in random media 
is considered in Svishchuk [9]. Approximations of stochastic 
models (that can be complicated and have a complex structure) 
are based on general limit theory for vector differential equa-
tions with random coefficients [7]. Stability of stochastic models 

is based on general stability theory for vector stochastic differ-
ential equations [10]. In the section below we give two specific 
examples of stochastic epidemiological models.

Stochastic SARS Models: In Semi-Markov Random 
Media and with 'Noise' 

Deterministic SARS Model 

We suppose that the SARS outbreak in GTA has the pre-quar-
antine Model I (compare with another Model II-intra-quaran-
tine) [1]. This Model I consist of the following compartments: 

1. Susceptible S (individuals not yet infected).

2. Exposed E (susceptible who have become infected and 
are not yet infectious); 

3. Infective I (exposed individuals who have become infect-
ed and can spread the SARS corona virus); 

4. Hospitalized U (infective who are in the immediate en-
vironment of HCWP (health care workers and patients); these 
individuals are not considered to pose any risk to the general 
public, but may infect HCWP). 

5. Removed R (individuals who have been either exposed 
or infective, and who are considered to no longer be suscepti-
ble). 

Thus, the Model I consists of 8 coupled nonlinear differential 
equations describing the transfer of individuals from one com-
partment to another. 
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The deterministic SARS Model I have the following look:
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Here: a_g, a_h, a_u, are the transmission coefficients for the general public and HCWP infectives, and of hospitalized infective for 
HCWP, respectively; b_g and b_h are the transmission coefficients of exposed individuals to the infective class; c_g and c_h are the 
transmission coefficients of infective individuals to the removed class; r_g and r_h are the transmission coefficients of infectives to 
hospitalization; e_g and e_h are the transmission coefficients to the removed class, reflecting the effectiveness of treatments. The 
second equation in Model I describes the additional risk of HCWP resulting from their direct contact with SARS patients in the 
health-care setting [1].

Stochastic SARS Model

The stochastic SARS Model I in semi-Markov random media has the following look:
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where functions ag(y); ah(y); au(y); bg(y); bh(y); cg(y); ch(y); rg(y); 
rh(y); eg(y); eh(y) are continuous and bounded on Y: Therefore, 
we suppose that our coefficients are random, not constants, and, 

in general, are functions of some random parameter, in our case, 
semi-Markov random process.

Stochastic SARS Model with Noise 

The stochastic SARS Model II with 'noise' has the following look:

  
( ) ( ) ( ) ( ) ( )8

1 1( ) ( ) , , , , , , ,g
ig h i g h g h g h g hg g i

dS t
a S t I t I t S S E E I I U U dw t

dt
σ=∑= − + +                                      

   
  ( ) ( ) ( ) ( ) ( ) ( ) ( )8

1 2( ) ( ) ( ) ( ) , , , , , , ,h
ig h h g i g h g h g h g hh h u h i

dS t
a S t I t I t a S t U t U t S S E E I I U U dw t

dt
σ=∑= − + − + +

  ( ) ( ) ( ) ( ) ( )8
1 3( ) ( ) , , , , , , ,g

ig h i g h g h g h g hg g g g i

dE t
a S t I t I t b E S S E E I I U U dw t

dt
σ=∑= + − +

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )8

1 4( ) ( ) ( ) ( ) , , , , , , ,h
ig h h g i g h g h g h g hh h u h h h i

dE t
a S t I t I t a S t U t U t b E t S S E E I I U U dw t

dt
σ=∑= + + + −

  

  

( ) ( ) ( ) ( ) ( ) ( )8
1 5 , , , , , , ,g

i i g h g h g h g hg g g g g g i

dI t
b E t c I t r I t S S E E I I U U dw t

dt
σ=∑= − − +

  ( ) ( ) ( ) ( ) ( ) ( )8
1 6 , , , , , , ,h

i i g h g h g h g hh h h h h h i

dI t
b E t c I t r I t S S E E I I U U dw t

dt
σ=∑= − − +

  
( ) ( ) ( ) ( ) ( )8

1 7 , , , , , , ,g
i i g h g h g h g hg g g g i

dU t
r I t e U t S S E E I I U U dw t

dt
σ=∑= − +

  

  

( ) ( ) ( ) ( ) ( )8
1 8 , , , , , , ,h

i i g h g h g h g hh h h h i

dU t
r I t e U t S S E E I I U U dw t

dt
σ=∑= − +

  
(0) , (0) , (0) , (0)g g h h g g h hS S S S E E E E= = = =

  (0) , (0) , (0) , (0)g g h g g h hh
I I I I U U U U= = = =

Here: wi(t), i = 1; 2; 3; :::; 8; are independent Wiener process-
es, σij(Sg; Sh;Eg;Eh; Ig; Ih; Ug; Uh); i, j= 1,2,...,8; are entries of diffusion 
matrix.
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