

Note that

$$N = N_{..} = \sum_{i=1}^a n_i = \sum_{j=1}^b N_{.j} = \sum_{i=1}^b \sum_{j=1}^a N_{ij} \dots \dots \dots (5)$$

And

Therefore the overall unadjusted crude rate of occurrence of event D as a function of event C for all levels of factors A and B is

$$r_{unadj} = r = \frac{n}{N} \dots \dots \dots (7)$$

As noted above research interest is to obtain standardized or adjusted crude rate specific to each level of factor A for all levels of factor B and also specific to each level of factor B for all levels of factor A as well as the overall adjusted or standardized crude rate. To obtain estimates of adjusted or standardized crude rates specific to each level of factor B for all levels of factor A we use the proportionate distribution of total number of observations \pm across the 'a' levels or groups of factor A, namely P_{is} the waiting factor, for $i=1,2,\dots,a$.

Thus

$$P_{is} = \frac{N_i}{N} \dots \dots \dots (8)$$

Similarly to obtain estimates of adjusted or standardized crude rate specific to each level of factor A for all levels of factor B we use the proportionate distributions $N_{..}$ across the 'b' levels or groups of factor

Table 1 Data format for Estimation of Unadjusted and Adjusted Rates in two Factor Standardization by Direct method

Table Continued

Factor A	1	2	b	Total	Proportion	Un adjust	Adjust
$r_{.j;adj}$	r_{a1}	r_{a2}	r_{ab}	$r_{a.}$			
Total	$n_{.1}(N_{.1})$	$n_{.2}(N_{.2})$			$n_{.b}(N_{.b})$			
$(n_{.j}(N_{.j}))$	$r_{.1}$	$r_{.2}$		$r_{.b}$				
proportion								
(p_{sj})	p_{s1}	p_{s2}	p_{sb}
Un adjust								
$(r_{.j;adj})$	$\frac{n_{.1}}{N_{.1}}$	$\frac{n_{.1}}{N_{.1}}$	$\frac{n_{.b}}{N_{.b}}$	$r_{.unadj} = \frac{n_{..}}{N_{..}}$	
Adjust								
$(r_{.j;unadj})$	$r_{.1;adj.}$	$r_{.2;adj.}$	$r_{.b;adj}$				$r_{..;adj}$

Illustrative Example

We now illustrate the proposed method with the sample data of

Table 2 on premature and live births by birth order and age of mother in a certain population.

Table 2 Sample Data on Premature and Live births by Birth order and Maternal age in a population

Birth Order						Total	Proportion of total births
Maternal Age	1	2	3	4	5+	$(n_{i.}(N_{1.}))$	(p_{is})
Under 20	11(23)	3(72)	3(32)	1(43)	0(33)	18(203)	
	0.478	0.042	0.094	0.023	0.000	0.089	0.066
20-24	14(329)	15(327)	7(176)	3(69)	8(67)	47(968)	
	0.043	0.046	0.040	0.043	0.119	0.049	0.012
25-29	6(115)	11(209)	11(207)	6(132)	6(123)	40(786)	
	0.052	0.053	0.053	0.045	0.049	0.051	0.254
30-34	4(78)	8(83)	10(117)	9(98)	12(150)	43(526)	
	0.051	0.096	0.085	0.092	0.080	0.082	0.170
35-39	4(42)	8(56)	11(90)	14(56)	3(104)	40(348)	
	0.095	0.143	0.122	0.050	0.029	0.115	0.112
40 and above	3(34)	4(457)	8(72)	10(48)	4(68)	29(267)	
	0.088	0.089	0.111	0.208	0.059	0.109	0.086
Total	$(n_{.j}(N_{.j}))$	42(621)	49(792)	47(694)	45(446)	33(545)	217(3098)
		0.068	0.010	0.068	0.096	0.060	0.070
Proportion of total births	(p_{sj})	0.200	0.256	0.256	0.224	0.144	0.176

The data of Table 2 is used to obtain estimates of the unadjusted and adjusted crude rate specific to each of the levels or groups of the two factors of classification.

Specifically to estimate adjusted or standardized crude rates specific to birth order, we apply the proportionate distribution of the total life births across maternal age as the standard population, namely p_{is} in the

last column of Table 2 to each of the columns of rates, r_{ij} of the Table, for $j=1,2,3,4,5$. Similarly to estimate adjusted or standardize crude rate specific to Maternal age we apply the proportionate distribution of total life births across birth order as the standard population, namely p_{sj} in the last row of Table 2 to each of the rows of rates, r_{is} of the Table, for $i=1,2,3,4,5,6$. The results are presented in Table 3.

Table 3 Simultaneous Estimates of Unadjusted Adjusted Premature Birth rates by maternal age and Birth order: Direct Standardization

Birth order													
Maternal Age	Proportion of total birth (p_{is})	r_{i1}	1	r_{i2}	2	r_{i3}	3	r_{i4}	4	r_{i5}	5+	Unadjusted crude rate ($r_{1,unadj}$)	Adjusted crude rate ($r_{1,adj}$)
less than 20	0.066	0.478		0.042		0.094		0.023		0.000		0.089	0.131
20-24	0.312	0.042		0.046		0.040		0.043		0.119		0.049	0.057
25-29	0.254	0.052		0.052		0.053		0.045		0.049		0.050	0.051
30-34	0.170	0.051		0.096		0.085		0.092		0.080		0.082	0.081
35-39	0.112	0.095		0.143		0.122		0.250		0.029		0.115	0.157
40 and over	0.086	0.088		0.008		0.111		0.208		0.059		0.109	0.594
Proportion of total birth (p_{sj})													
Unadjusted crude rate ($r_{j,unadj}$)		0.068		0.062		0.068		0.096		0.061		0.070	
Adjusted crude rate ($r_{j,adj}$)			0.086		0.070		0.069		0.088		0.068		0.070

Summary and conclusion

The adjusted crude rate of premature births specific to birth order for all age groups shown in the last row of Table 3 are estimated using equation 10, while the corresponding adjusted crude rate specific to maternal age for all birth orders shown in the last column of Table 3 are estimated using equation 11. Thus the last two rows of Table 3 show rates specific for birth order and directly adjusted for maternal age, with the standard maternal age distribution of births being that of the total sample of births. The last two columns of the Table show rates specific for maternal age and directly adjusted for birth order, with the standard birth order distribution of birth being that of total sample of births.

The estimated adjusted specific premature birth rate of Table 3 seem to indicate that incidence of premature births may not be strongly associated with birth order, but may probably be some how associated with increasing maternal age, especially from age 25 years. The

overall adjusted crude premature birth rate is estimated to be severally 70 per 1000 live births whether the standard population distribution is either the proportionate distribution of total birth by birth order or by maternal age. The unadjusted crude rate is also here estimated to be 70 per 1000 live births. These results are usually the case whenever the two standard distributions are those of the total sample. In these cases the overall adjusted crude rates based on the two sets of directly adjusted rates would be equal to each other, although not necessarily always equal to the overall unadjusted crude rate as is found to be the case here. However, if the standard population distribution chosen for population A (here maternal age) is different from that chosen for factor B (here birth order), then the two resulting estimated adjusted or standardized crude rates would most likely not be equal to each other.

Acknowledgement

None.

Conflict of interest

None.

References

1. Fleiss JL. Statistical Method for Rates and proportions. 2nd edn. New York. John Wiley & Sons; 1981.
2. Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford statistical series 28, Oxford. UK. University Press; 2003.
3. Greenberg RS, Daniels SR, Flanders WD, et al. Medical Epidemiology. London. Lange-McGraw-Hill; 2001.
4. Cochran WG. The comparison of percentages in matched samples. *Biometrika*. 1950;37:256-266.
5. Gibbon JD. Non Parametric Statistical Inference. McGraw Hill Inc; 1971.