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Abbreviations: FN, fieller-type intervals applied on the 
observed proportions; BM, binomial MOVER-R-Wilson method after 
summing-up observed counts across replications; LOD, asymptotic 
method on the log-scale; accounting for overdispersion via residual 
variation; FOD, fieller-bailey-type interval accounting for over 
dispersion via residual variance; LBB, delta method on the log-scale 
under the beta-binomial assumption; FBB, fieller-bailey-type interval 
under beta-binomial assumption; QBM, MOVER-R for quasibinomial 
profile deviance intervals

Introduction
Various bioassays give rise to replicated binomial count data. For 

example, in ecotoxicological assays, fish larvae or daphnids in several 
tanks are exposed to different dosages of a substance and the number of 
dead or immobile animals per tank is used to assess the hazardousness 
of the substance. Usually, a small number of replicated tanks are used 
for each dosage under consideration. If some experimental conditions 
differ between tanks such that the proportion of dead or immobile 
daphnids is effected, counted numbers may show higher variance than 
expected under the binomial assumption, i.e., extra-binomial variability 
or overdispersion. Similar situations arise in the in-vivo micronucleus 
assay: the number of cells showing micronuclei is counted for a given 
number of exposed cells for each (randomized) animal, with the 
aim to assess the substances’ potential to cause cytogenetic damage. 
Also here, a limited number of replications per dosage is performed, 
such that differences between animals in the in-vivo micronucleus 
animals may cause overdispersion. In summary, bioassays that lead 
to binomial data, often contain clustered replication, and thus make 
it possible to account for overdispersion in the data. However, the 

number of replications or clusters per treatment group that allows to 
assess the extend of overdispersion, is rather limited.

In the statistical analysis of such bioassays, major interest is 
usually in comparisons to the untreated control group. While a test 
on significance for the overall effect of dosage of the substance may 
be of preliminary interest, usually more detailed interpretation for 
the single dosages is required: Confidence intervals for the effect of 
given dosages compared to the untreated control or a positive control 
are required to interpret the toxicological relevance of the observed 
effect size. Tests of non-inferiority (or equivalence) for given dosages 
compared to an untreated control1 may be more important than an 
overall test on significant change in the event rates: In toxicological 
assessment, confidence is needed primarily when claiming no effect. 
Both approaches require an interpretable definition of the change of 
the rate of the detrimental event (death or immobility, presence of 
micronculei, malformations, etc.) compared to the control treatment: 
for judging relevance of an effect size or for the definition of a 
particular non-inferiority margin.1 

For this reason, this paper is focused on the ratio of proportions 
(risk ratio). Compared to the plenty of publications considering the 
construction of confidence intervals for a single binomial proportion, 
as well as for differences, ratios or odds-ratios of binomial proportions, 
the construction confidence intervals for risk ratios of overdispersed 
binomial data has received only little attention.2,3 The available 
methods are all asymptotic methods. Their construction and their 
evaluation is usually motivated by their application to epidemiological 
studies, where the absence or presence of a disease is counted for 
a given number of individuals in clusters. In this context, clustering 
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Abstract

Many bioassays that assess toxicity or mutagenicity give rise to clustered binomial 
data with relatively few replicated experimental units per treatment group. Confidence 
intervals for the risk ratio to control can then be used to interpret the relevance of 
effect size or test hypotheses of superiority, non-inferiority or equivalence. A 
frequently observed property of clustered binomial data is overdispersion. So far, 
the available large-sample confidence interval methods for ratios of proportions in 
presence of overdispersion have been validated for use in epidemiological settings 
with high numbers of clusters per exposure group.

In this paper, the coverage probability and symmetry of non-coverage of several 
available methods is investigated in an extensive Monte-Carlo simulation study, 
for the small number of replications that are typical for a number of bioassays. An 
additional method is proposed that combines profile deviance intervals with the 
method of variance recovery. So far available confidence intervals have far too low 
coverage probabilities in the simulated settings. Their performance can be improved 
by restricting estimators of dispersion not to fall below the binomial variance and by 
using pooled dispersion estimators. The newly proposed method outperforms the so 
far available methods by showing coverage probabilities closest to the nominal level. 
All discussed methods are made available in an add-on package for the R software.
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of individuals may arise from humans being clustered in families or 
locations or from repeated measurements within a given animal, or 
repeated animals within a given farm when veterinary epidemiology 
is concerned. In these settings, there is usually a relatively large 
number of clusters available (many families or locations, many 
farms or animals), such that simple asymptotic methods work well 
and the estimation of the overdispersion parameters is rather precise. 
This is not the case in bioassays that are the focus of this paper. In 
epidemiological settings it is also rather improbable to observe 
no single disease case across all clusters in one of the groups to be 
compared, or, conversely, to observe only disease cases across all 
clusters in one group. Such outcomes, however, plausibly occur in 
the untreated control groups of bioassays and may cause problems 
with Wald-type test and related confidence intervals.4 Finally, in 
epidemiological studies, major interest is usually in estimation, such 
that the statistical evaluation of confidence interval methods for the 
risk ratio does plausibly focus on (two-sided) coverage probability and 
interval width. In the case of bioassays, estimation as well as related 
hypothesis tests are of interest. In testing, one-sided hypotheses are 
most relevant and may involve margins of non-inferiority.

In consequence, previous recommendations of confidence 
intervals methods for risk ratios of overdispersed data, motivated 
by epidemiological applications, cannot directly transferred to their 
application to bioassays. In this paper, previously proposed confidence 
intervals are thus investigated with special focus on small to very 
small number of clusters (i.e. replications) and the possibility that all 
observations in one group may show the same event. Due to the need 
of estimation as well as one-sided non-inferiority tests, two-sided as 
well as one-sided coverage probabilities are investigated for a wide 
range of parameter combinations. Further, a new method based on a 
straightforward combination of profile deviance intervals, e.g. 5,6 and 
the method of variance recovery7 is proposed and is shown to clearly 
outperform existing approaches under the assumption of a common 
level of overdispersion.

Material and methods
Parameter and hypotheses of interest

Assume an experimental setup, where for each treatment i, there 
are Ji replicated experimental units (tanks, cages, animals, petri 
dishes, etc.) with index j = 1, …, Ji. In each experimental unit there 
is a number of nij biological units under observation, and the number 
of events of interest, xij, is counted in unit ij. These counted events 
may be death (or survival) of animals, mobility (or immobility) of 
daphnids, presence or absence of micronuclei, etc. Consider the 
comparison of one dose group, i = 1, to the untreated control, i = 
0. Denote the unknown probability of events in the two groups by 
i, and parameter of interest is the risk ratio 1

0

π
ρ

π
= . Beside estimating 

ρ and displaying the uncertainty of this estimate in terms of a 95% 
confidence interval, decisions concerning one-sided hypotheses on 
tests on non-inferiority or superiority may be of interest. The particular 
choice of non-inferiority margins, ρ0, may be fixed by convention, 
compare1 suggesting ρ0 = 0.75 or ρ0 = 0.8 for certain applications. 
In other situations, it might be a matter of debate. Although general 
focus is in valid two-sided confidence intervals (i.e., with coverage 
probability close to the nominal level), it will be further investigated 
whether confidence intervals do also provide valid upper and lower 
confidence limits and can thus be used to perform (approximate) level 
α test for one-sided hypotheses.

Overdispersed binomial data

There are two well-known approaches to model overdispersion in 
binomial data.8 The quasibinomial approach models overdispersion 
by assuming the variance-mean-dependency 

                           
( ) ( )1QB

ij ij ij ijV X nφ π π= − ,

where ϕ is the overdispersion parameter that inflates the binomial 
variance term by a common fold, independent of the sample size nij. 
In this parameterization, the binomial assumption, 

                    
( ) ( )1B

ij ij ij ijV X n π π= − , is met for ϕ = 1.

The beta-binomial distribution derives from a beta mixture of 
binomial distributions, i.e.,

       
(a , b )ij i iBetaπ  , and (n , )ij ij ijx Binomial π            (1)	
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+ .9 Denote the sum of the 
two parameters of the beta-parameters by *

i i ia a b= +  The variance of 
beta-binomial counts, (X )BB

ij
V  is a function of nij, πij, *

ia .5,9 When *
ia  

approaches∞ , the variance of the beta-binomial counts approaches 
that of binomial counts. Here, the overdispersion relative to the 

binomial variance, (X )BB

ij
v  , is denoted by (X )

(X )

BB
BB ij

B
ij

V
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φ =  and is 

a function of nij and 
*
ia  . This 
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ia  given nij such that the over dispersion BBφ   is 

a constant factor, namely *

(1 )

BB
i ij

i BB
i

n
a

φ

φ

−
=

−
 .

Main interest here is in the performance of confidence interval 
methods in highly controlled laboratory settings. Under such 
conditions it can be assumed that nij is equal for all experimental 
units, ij. Under such conditions, the quasibinomial assumption on 
the variance mean dependency coincides with the variance-mean-
dependency under the beta-binomial distribution.5,9 Hence, methods 
are considered that are explicitly constructed for the beta-binomial 
distribution, as well as methods that account for overdispersion under 
the quasibinomial assumption.

Confidence interval methods

Fieller-type intervals applied on the observed proportions (FN): 
Naively, the t-test for ratios, with a common variance estimator and 
the assumption of normal distributed residuals, may be used to test the 
above hypotheses, treating the observed proportions as the variable of 
interest, ˆ

ij ij
y π= . The corresponding Fieller-type confidence interval 

can be obtained by analytically inverting the t-test statistic for ratios.10 
The method assumes normal distribution and variance homogeneity 
for the observed proportions, which is clearly not the case in this 
application. This interval is referred to as FN.

Binomial MOVER-R-Wilson method after summing-up observed 
counts across replications (BM): It may be tempting to sum up 
the counts over experimental units within each treatment group, 

1 1. .
,J Ji i

j ji ij i ij
x x n n= =∑ ∑= = and apply a confidence interval for risk 
ratios under the assumption of binomial distribution, i.e., ignoring 
possible extra-binomial variation. As a place holder for the many 
available options, here the MOVER-R method proposed by7 is used; 
this is computationally simple and was among the best methods in a 
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recent comparative study under the binomial assumption by.11 It is 
referred to as BM.

The two above methods are merely included here to illustrate the 
effects of either ignoring the mean-variance-relation and skewness 
implied by binomial distribution (FN) or the effect of applying 
binomial methods (BM) when data are indeed overdispersed binomial.

Asymptotic method on the log-scale, accounting for overdispersion 
via residual variation (LOD): Among other methods,3 investigate 
and recommend a method based on the delta method applied for the 
log risk ratios (called MR1 therein). It can be computed from: 

           
1

. 01 1
.

ˆ0.5. ˆˆ, , , ˆ1.

J Ji i
ij ij ii

j j
i

xin n x x
ni

π
π ρ
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+
∑ ∑= = = =

+					         ,			 

                          
2

1 2
.

ˆ(x n )
ˆ

1
J ij i ijii
ji

i i

Jv
J n

π
=

  −
∑=   − 

                        (2)

Where the variance is estimated from the residuals on the scale of 
the original observations. The interval is then given by:

                         

1
2

1 0
2

ˆˆ exp z
ˆ

( )I

i i

v
α

ρ
π− =

± ∑ 	                       

  

(3)

				                                                          	
   By plugging-in the observed residual variance per treatment group 
i, this method does not assume a particular mean-variance relation 
and accounts for overdispersion in a more general way. However, if 
the number of replications per treatment, Ji, is small, these variance 
estimates might be unstable. Zaihra and Paul3 additionally consider 
a closely related method with a sandwich-type variance estimator, 
which performs worse in their simulation study, and is thus ignored 
here.

Fieller-Bailey-type interval accounting for overdispersion via 
residual variance (FOD): Using the estimators above,3 follow the 
approach of10 and12 that accounts for the skewed distribution of the 
original Fieller statistic

			 

1 0

2
1 0

ˆ ˆ

ˆ ˆ

p
Z

v v

π π

ρ

−
=

+  
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The interval (referred to as MR4 by [3]) can then be computed by

	

3 3
2 2

max ,0 ;B B AC B B AC
A A

      − − − −                 

If A > 0 and B2 - AC > 0. If these two restrictions are not met, 
the interval has unbounded or disjoint solutions which do not provide 
meaningful interpretations of ρ. In the simulation study below, the 
interval [ ]0,∞ is returned in such cases. Zaihra and Paul3 again 
consider a closely related method that uses sandwich estimator for the 
variance of ˆ

i
π  instead. It is not considered here.

Delta method on the log-scale under the beta-binomial assumption 
(LBB): Lui et al.,2 propose methods that are constructed under the 
assumption of the beta-binomial distribution. Theoretically, the 

variance of ˆ
i

π under this assumption is ( ) ( )ˆ 1 /,
BB

i i ii i
c nπ π φ− n where 

( ),
BB

i icφ n  is the beta-binomial overdispersion factor, expressed as a 
function of the number under risk in each replication ij of treatment 
i, 1 2( , , ... )i i iJin n ni =n and of ci, the intraclass correlation coefficient. 
Under beta-binomial sampling, the intraclass correlation depends on 

*

i
a  via *

1
1 / (a 1)

i
c = + .2

Lui et al.,2 estimate the intraclass correlation using
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2 2
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Based on the between and within mean squared error of the 
observations,
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This leads to estimators for the beta-binomial overdispersion 
factor, and the related variance of the proportion estimator under the 
beta-binomial assumption, for each treatment group i separately:2

               ( ) ( )( )1 .
ˆ1 1 ˆ ˆ, /BB i

ji i ij ij i i

Jc n n c nφ =∑= + −n 			 
					                             (5)
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ˆ
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ˆ
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BB i
i i i

ci iv
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π φ
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−
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n
	                         (6)

The asymptotic interval relying on the delta method applied for the 
log risk ratio2 can be constructed by:

		     
1

1 /2 0ˆ ˆexp BB
iiz vαρ − =

 ± ∑ 
  	                        

(7)

Fieller-Bailey-type interval under beta-binomial assumption: 
FBB: Lui et al.,2 consider a Fieller-type interval and its modification 
according to12 under the beta-binomial distribution:

( ) ( ) ( ) ( )1/32/3 2 1/3
0 0 0 0. 0 1 00 /2

ˆ ˆ ˆ ˆ ˆ ˆ1 , / 9 ,BBA z c n B
α

π π φ π π π= − − =n and

( ) ( ) ( )2/3 2 1/3
1 1 1 1. 11 /2

ˆ ˆ ˆ ˆ1 , / 9BBC z c n
α

π π φ π= − − n

As in Eq. (4), a meaningful interval can be calculated if A > 0 and 
B2 - AC > 0:

          

3 3
2 2

max ,0 ;B B AC B B AC
A A

       − − − −                 

			 
				                                              (8)

In the simulation study below, the interval [0, ]∞  is returned if A > 

0 and 2B -AC > 0. Following,2 in case of the extreme events ˆ 0
i

π =  

or ˆ 1
i

π =  , is replaced by 0.5.
1i

i

xi
n

π +
=

+



 in the LBB and FBB method and 
their subsequent modifications.

Modifications of LOD, FOD, LBB, FBB by pooling and restricting 
the variance estimates: Lui et al.,2 state, based on theoretical 
considerations and in the context of estimation problems that the 
intraclass correlation ci and the overdispersion ( ),BB

i icφ n  cannot fall 
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below 0 and 1, respectively. However, their estimates may fall below 
the boundaries imposed by the binomial assumption. For example, 
the event 

1 2
....

i i iJi
x x x= = =  may lead to the unreasonable estimates 

ˆ 0
i

c <  and ( )ˆ ˆ, 0i iBB
cφ =n  . Moreover, interest here is in small sample 

laboratory experiments and estimating ci and ( ),BB
i in cφ  separately for 

each treatment from very few replications Ji may result in over fitting. 
Then, the assumption of a common beta-binomial overdispersion 
parameter ( )ˆ,BB

i icφ n  may lead to a more stable estimation with 
small sample sizes. Therefore, the methods LBB and FBB as well as 
LOD an FOD are simulated with the following additional restrictions 
and pooling of variance estimates:

I  LBB1, FBB1 refer to methods LBB, FBB with the beta-binomial 
overdispersion factor restricted to be at least 1, i.e., using 

( )( )ˆmax 1, ,BB
i icφ n  instead of ( )ˆ,BB

i icφ n  in the equations (5,6)
ff.

II  LBBp, FBBp refer to methods LBB, FBB with the intraclass 
correlation estimator using pooled observations across the groups, 

2
0

2
0

ˆˆ
.

i ii

ii

c n
C

n
=

=

∑
=

∑
and ( ).ˆ,BB

i cφ n  , instead of ( ).ˆ,BB
i cφ n  in 

     equations (5, 6)ff.

III LBB1p, FBB1p combine the two approaches by using the group 
wise variance estimators with the pooled intraclass correlation 
estimator and restriction of the over dispersion parameter to be

1≥  , that is, using ( )( )ˆmax 1, ,BB
i icφ n instead of ( )ˆ,BB

i icφ n  in 
equations (5,6)ff. This procedure has been already suggested in 
the example evaluation of.2

IV LOD1, FOD1: refer to methods LOD, FOD, but the 
group wise variance estimators are restricted to be greater 
than or equal to the binomial variance estimate: using 

2
.

1 2. .

ˆ(x n )ˆ ˆ(1 )ˆ max ,
1

J ij i iji i i i
ji

i i i

Jv
n J n

ππ π
=

 − − = ∑  −  

 in Eq.(2)

MOVER-R for quasibinomial profile deviance intervals 
(QBM): An alternative option to obtain intervals for the risk 
ratio would be to fit a generalized linear model (GLM) under the 

quasibinomial assumption ( ) ( )1ij ijQB ij ij
V X nφ π π= −  , using a logit-

link, ( )log ,ijij ij i
η π η β= =  . Then the risk ratio can be estimated via 

1 0
exp( )β β−  and intervals for the difference 

1 0
( )β β−  can be 

computed by the signed root profile deviance method [6,5]. However, 
with the current user-level implementations in R, fitting this model 
(glm, stats) and obtaining profile-deviance intervals (profile, confint, 
package MASS) suffers from numerical difficulties if at least one of 
the groups shows estimated success probabilities close or equal to 1 
or equal to 0.

As a numerically stable work-around, the QBM method is proposed: 
A GLM with the quasibinomial assumption and logit link is fitted

log( / (1 ))
ij ij ij i

η π π β= − = . If the estimated dispersion parameter in 
the model fit falls below (QB)ˆ1, 1φ < , a binomial model is used instead 
(i.e., assuming 1φ =  ). For the βi, (1-α)--signed root profile deviance 
intervals can be computed, with limits denoted ˆ ˆ ˆ ˆ0 0 1 1, , ,l u l uβ β β β

        
and estimates denoted ˆ

i
β  . In R, these computations can be done 

in several packages, e.g. package MASS,5 or the add-on package 

mcprofile [13]. Again, in extreme cases, the automatic search of 
values for the grid of parameter values for the deviance profile may 
fail in both packages. The signed root deviance is then computed over 
a pre-specified grid of parameter values,	

      ( )* 10, 9.5,..., 5, 4.8, 4.6,....,4.8,5,5.5,....,10iβ = − − − − −

with elements *

ik
β  , k = 1,…, K. For each i and each k,

' '
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ˆ
ik i i i

ik ik i QB

d dt sign ββ ββ β
φ

β−
= −
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* ˆ
ik i
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* ˆ
ik i

β β− , *

'
( , ˆ )

ik i
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i
β  by *
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leaving all other parameters at their ML estimates, 
'i

β , 
'

ˆ( , ˆ )
i i
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deviance at the ML estimates, and φ̂  is the dispersion estimate with all 
parameters at their ML estimates. For each parameter i, a cubic spline 
is fitted for tik depending on *

ik
β  and the cut points of the spline with 

quantiles of the t-distribution, ( )1/2, 1 /2,
, 1,

I
i idf dfr df dfr

t t dfr J
α α == − =

∑= − is 
determined by linear interpolation between fitted values. When the 
binomial model is used, tik is replaced by 

( ) ' '
* ˆ ˆ ˆ( )ˆ ( , ) ( , )ˆ

ik i i iik
z sign d dik iβ β ββ β β= − −

 And the quantiles of the standard normal distribution 
/2 1 /2

,z z
α α−

 , 
are used instead.

The interval bounds and ML estimates are 
transformed to the proportion scale using the inverse link,             

( )
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. 

These estimators and confidence limits are then used to compute 
intervals for ρ by the MOVER-R method.7 Eq. (9) of7 is recalled in 
the following as:

( ) ( )( )
( )

( ) ( )( )
( )

2 2
1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0

0 0 0 0 0 0
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π π
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 

+



 Like the FOD and the FBB method, this method may yield 
(partially) unbounded intervals, particularly when ˆ 0π = , the upper 
limit for the risk ratio is naturally∞ .

Simulation study

The beta-binomial distribution is chosen to simulate overdispersed 
data such that the resulting data are in line with the quasibinomial 
assumption, i.e., the assumption of the QBM method is met. 

In the simulation, the number of experimental units per treatment 
group, Ji is chosen balanced, (J0, J1) = (3, 3), (5, 5) and (10, 10). 
The number of biological units under risk in each unit, nij , is chosen 
balanced nij = 10 or 20 for all i, j. Overdispersion is set at levels 

1.25BBφ =  or 2BBφ =  , that is, for given nij , 
*

i
a is chosen according 

to Section 4.2 to achieve the specified overdispersion: for each set 
of 

0 1
,π π  , *

i i i
a a π=  and ( )* 1i i

b a iπ−=  in the beta distribution. 
The distribution of the counts xij, as well as that of the estimators 
of the proportions are skewed to different extent, depending on πi, 
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especially if πi is close to the border of the parameter space. Thus, 
also the distribution of the estimator of ρ or log (ρ) can be skewed if 
π1 and π0 differ. Thus, the performance of large sample methods may 
severely depend on particular choices of π0, π1. To investigate these 
potential dependencies, the simulations have been run for a grid of all 
combinations of π0 = (0.02, 0.04, …, 0.96, 0.98) and π1 = (0.02, 0.04, 
…, 0.96, 0.98) that imply odds-ratio between 0.1 and 10.

Simulations have been performed with 10000 runs for all methods 
except the QBM method. Due to high computation times, only 5000 
simulation runs are used for QBM, such that the standard error of 
the estimated coverage probabilities for QBM is by factor 2  higher 
than for the remaining methods. The simulation study has been 
performed in R 3.1.2,14 the implementation of all confidence interval 
methods is available in the R-package pairwiseCI, version > 0.1-25 
[15] FBB, LBB and related methods are implemented in the function 
Betabin.ratio, FOD, LOD and related methods are implemented in 
the function ODbin.ratio, and the QBM method is implemented in 
function Quasibin.ratio.

Results and discussion
Coverage probability of two-sided 95% confidence 
intervals

Figure 1 shows the simulated coverage probabilities of all 13 
methods under comparison: the NF method can either show too low 
or too high coverage probability, irrespective of increasing sample 
size, because the relation of mean and variance in the binomial data 
is ignored. However, its average coverage probability is closer to the 
nominal level than some of those methods which explicitly account 
for over dispersed binomial data (LBB, FBB, LBBp, FBBp, LOD and 
FOD). Simply ignoring the possibility of overdispersion and assuming 
the binomial distribution results in too low coverage probability even 
for moderate (1.25-fold) overdispersion: BM method has too low 

coverage probabilities in nearly all settings. For very small numbers 
of replications (Ji=3, 5), the far too low coverage probability of the 
asymptotic methods for overdispersed binomial data (LBB, FBB, 
LOD, FBB) can be improved slightly by using a pooled variance 
estimator (LBBp, FBBp) and can be largely improved by setting 
a lower limit to their variance estimators: If we replace variance 
estimates suggesting under dispersion by the corresponding estimates 
under the binomial assumptions, the coverage probabilities of these 
methods are much closer to the nominal level. The QBM method 
is always very close to nominal coverage probability but can have 
slightly too high average coverage probability when overdispersion is 
moderate and the number of replications is small.

Figures 2 and Figure 3 shows a detailed view on the coverage 
probabilities in dependence on the true underlying proportions, π0 and 
π1. This detailed view is restricted to those 6 methods which have an 
average coverage probability close to 0.95. Figure 2 shows the more 
difficult case with substantial overdispersion (ϕ = 2), and only nij = 
10 biological units in each replication. The QBM methods is close to 
the nominal confidence levels for a wide range of proportions, but can 
have too low coverage probabilities if at least one of the proportions is 
close to 0 or 1. The LBB1p and LOD1 methods need more replications 
to have coverage probabilities close to 0.95 for a similar range of 
πi, and still are slightly liberal for almost all πi. LBB1p and LOD1 
booth have too high coverage probability for πi close to 0 and too 
low coverage probabilities when πi close to 1. That is test decisions 
based on these two methods may be conservative if hypotheses are 
formulated in terms of mortalities which should be low in the control 
group, but will be liberal when a similar hypothesis is formulated in 
terms of the proportion of survivors. In this simulation setting, the 
Fieller-Bailey-type intervals FBB1p and FOD1 have lower coverage 
probabilities for almost all parameter combinations considered as 
compared to the LBB1p and LOD1 method, respectively. 

Figure 1 Boxplots of simulated coverage probabilities of nominal two-sided 95% intervals, for different numbers of replications (no.rep) and two different 
levels of overdispersion.
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Figure 2 Simulated coverage probabilities (color scale) of nominal two-sided 95% intervals over a grid of true proportions π0, π1, for two-fold overdispersion (ϕ 
= 2) and nij = 10 biological units in each experimental unit.

Figure 3 Simulated coverage probabilities (color scale) of nominal two-sided 95% intervals over a grid of true proportions π0, π1, for moderate overdispersion 
(ϕ = 1.25) and nij = 20 biological units in each experimental unit.

Figure 3 shows results for the less problematic case of moderate 
over dispersion (ϕ = 1.25) and nij = 20 biological units in each 
experimental unit. The coverage probability of QBM rarely falls 
below 0.94, but is slightly too large (between 0.96 and 0.97) if there 
are only 3 or 5 experimental units per treatment. The LBB1p and 
FOD1 method have again slightly too low coverage probability if any 
πi is close to 1, and slightly too high coverage probability if any πi is 
close to 0. The two Fieller-Bailey-type intervals have slightly lower 
coverage probabilities than their counterparts based on the log-delta-
method.

Symmetry of non-coverage

Figure 4 shows the simulated proportion of cases, where the true 
parameter was excluded by the lower bound, relative to all cases 
where the parameter was excluded by the interval. For valid one-sided 
decisions, methods are preferable that exclude the true parameter 
equally likely by the lower and upper bound, i.e., with probability 
α/2 for each limit. For brevity, only the challenging setting with nij = 
10 and marked over dispersion (ϕ = 2) is shown, while conclusions 
for the remaining simulation settings are similar: The Fieller-Bailey-
type methods (FBB1p and FOD1) show a wider range of parameter 
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settings where probability of parameter exclusion is equal between 
lower and upper bounds, as compared to the corresponding methods 
based on the delta methods on the log scale, LBB1p and LOD1. The 
QBM method shows asymmetric non-coverage for similar parameter 

settings as do the Fieller-Bailey-type intervals, i.e. when any of the 
true proportions is close to 0, but is clearly more symmetric than the 
FBB1p and FOD1 for a wide range of parameter settings where at 
least one πi is close to 1.

Figure 4 Asymmetry of non-coverage: color scale shows the proportion of cases where the true parameter is excluded by the lower limit, relative to all cas-
eswhere the parameter is excluded by nominal two-sided 95% intervals over a grid of true prop proportions π0, π1, for clear overdispersion (ϕ = 2) and nij = 10 
biological units in each experimental unit.

Figure 5 Boxplots and observed proportions of surviving fathead minnow larvae per tank, for the untreated control group and 5 concentrations (left), and 95% 
confidence intervals of the proportions of surviving larvae in the treatment groups relative to the control group (right).

Examples

Extreme cases: Table 1 shows four extreme cases: Cases 1 and 2 
represent cases where proportions are close to 0 in the control 
treatment as could result from testing the ratio of mortality or 

immobility proportions. Cases 3 and 4 show data that could arise 
from test systems that assume proportions close to 1 in the control, for 
example, survival proportions as in the fathead minnow data below.
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Table 1 95% confidence intervals of selected methods for four extreme cases, assuming all nij = 10, and Ji = 4 for two treatment groups, i = 0, 1

Case 1 Case 2 Case 3 Case 4

Method
x0j = (0,0,0,2)
x1j = (1,2,5,6)
  =0.35/0.05=7

x0j = (0,0,1,1)
x1j = (1,2,2,4)

 =0.225/0.05=4.5

x0j = (8,10,10,10)
x1j = (6,7,9,9)
 =0.775/0.95=0.816

x0j=(10,10,10,10)
x1j = (9,9,9,10)

 =0.925/1=0.925

BM (1.909, 26.2) (1.15, 17.5) (0.656, 0.975) (0.801, 1.028)

FBB (1.331, 151.9) (1.45, 19.8) (0.657, 1.005) (0.879, 0.997)

FOD (1.269, 182.6) (1.41, 21.0) (0.654, 1.009) (0.885, 0.990)

FBB1p (1.290, 190.0) (1.24, 28.9) (0.643, 1.022) (0.851, 1.028)

FOD1 (1.269, 182.6) (1.14, 36.8) (0.654, 1.009) (0.846, 1.033)

QBM (0.902, 574.1) (1.24, 27.6) (0.558, 1.083) (0.817, 0.998)

In cases 1 and 3, data lead to variance estimates exceeding that 
of the binomial distribution. Then, the BM method leads to shorter 
intervals than all other methods. In both cases, the QBM as at least 
slightly wider confidence intervals than the FBB1p and FOD1 
method, which might correspond to the observation that these two 
have too low coverage probability for small samples. In cases 2 and 
4, data show a variance below that of the binomial variance. Then 
the methods without restriction of variance estimates to that assumed 
by the binomial distribution (FOD and FBB) yield considerably 
shorter intervals, than methods which assume that under dispersion is 
implausible like BM, FBB1p, FOD1 and QBM.

Fathead minnow data: The toxicity of a compound to fathead 
minnow larvae was investigated using an untreated control group 
and 5 concentrations of a compound.16 The experiment comprised 
24 tanks, 4 tanks in each treatment group, each tank contained 10 
larvae. The observed proportions of surviving larvae are shown in 
(Figure 5, left side). Analyzing the data in a generalized linear model 
with quasibinomial assumption, logit link shows that there are highly 
significant differences between the mean proportion of surviving 
larvae between the treatments (p < 0.0001; F-test in analysis of 
deviance). An estimated dispersion parameter of 1.082 suggests that 
the observations are at most slightly overdispersed, i.e., the data are 
at least roughly in line with the binomial assumption. The right side 
of Figure 5 shows two-sided 95% confidence intervals for ratios of 
the proportion of surviving larvae in the treatment groups relative to 
that in concentration 0. In this case, confidence limits based on the 
quasibinomial assumption (QBM) based on the full data including 
all 6 treatment groups and confidence intervals under the binomial 
assumption (MOVER-R method for Wilson-Score intervals, BM) do 
hardly differ.

Conclusion
Asymptotic methods based on the delta method applied on the 

log-scale or Fieller-Bailey type intervals have too low coverage 
probabilities when applied in small sample settings that are typical 
for many bioassays, i.e., they cover the true ratio of proportions less 
often than claimed by their nominal confidence level. Violation of 
the nominal level is most severe for small numbers of replications, 
low number of biological units in each replications and extreme 
proportions. Even for as much as 10 replications (i.e., clusters), 
coverage probabilities are considerably below the nominal level 

for wide ranges of proportions. When these intervals are then used 
for decisions in hypothesis tests for equivalence or non-inferiority, 
erroneous conclusions of equivalence or non-inferiority will occur 
more often than claimed by the nominal level α of such tests.

For the small number of replications and the small number of 
biological units per replication that are typical for some bioassays, 
restricting the variance estimates to that of the binomial variance (i.e., 
setting the dispersion parameter to 1 if under dispersion is estimated) 
leads to major improvements of the coverage probabilities. Further 
improvements can be achieved by combining the MOVER-R method 
with a profile deviance approach leads to intervals with better coverage 
probabilities for low sample sizes. However, this approach also shows 
too low coverage probabilities for small sample sizes and cases 
where one proportion is very close to 0 or 1. However, the simulation 
results shown here rely on the simplifying assumption, that there is a 
common overdispersion factor for the treatments in the experiments. 
Based on single data sets with few replications per treatment it will 
be hard to assess whether this assumption is appropriate, or whether 
different overdispersion factors per treatment group (as are used in 
the FBB, LBB method, for example) would be more appropriate. For 
given, highly standardized bioassay, however, available collections 
of historical data sets could be used to assess the plausibility of the 
different assumptions concerning distribution and mean-variance 
dependency and homogeneity or heterogeneity of overdispersion 
factors among treatment groups. 

Bioassays usually involve several dosages. Depending on the 
global hypotheses to be tested, adjustments for multiple comparisons 
may be needed, see, e.g.17 The methods for confidence intervals 
discussed here can be extended to construct approximate simultaneous 
confidence intervals, using approaches as described in.17-20 However, 
such extensions require additional investigation as some approaches 
involve additional approximations. This is subject to further research.
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