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Mini review
Reconstruction of musculoskeletal tissues requires innovative 

strategies, which need to be developed by experimental research. As 
much as possible the application of tailored and optimized in vitro 
models based on human-derived cell sources should be expanded 
to substitute and scale down animal experiments and to collect 
sufficient information for the concerted selection of the most suitable 
and meaningful in vivo model. Three-dimensional (3D) culturing 
models are the only advisable systems for long-term culture of 
primary cells such as ligamentocytes. Complex direct or indirect 
3D co-cultures allow studying the interaction between two or more 
cell types and present the basis for establishing miniaturized tissue-
like in vitro models,1 including the ligament enthesis. Sophisticated 
bioreactors create an in vivo like micromilieu for 3D culturing and 
should be further developed to achieve much more inartificial culture 
conditions. In addition, some of them allow natural-like biomechanical 
training of the constructs supporting ligamento- or tenogenic cell 
differentiation.2–4

In regard to rebuilding mechano-sensitive and ECM-rich tissues 
such as bone, cartilage, tendon or ligament, biomaterial-based tissue 
engineering approaches are promising for tissue reconstruction:5 
biomimetic biomaterials could transiently sustain biomechanic 
requirements of the natural tissue until the implanted cells have 
produced sufficient amounts of their own ECM. However, the 
biomaterial substituting a ligament should degrade very slowly, should 
not produce wear debris and has to maintain its stability for several 
months. To fulfil these and all other demands, developing biomaterial-
based tissue engineering strategies for ligament reconstruction 
requires an intimate interaction between experts of material sciences, 
cell biology, engineers of biomechanics, orthopedists and several other 
disciplines to design, develop and approve suitable cell/biomaterial 
combinations. Unfortunately, until now no polymer system for 
ligament reconstruction entered the human clinic.5

Through this, various biomaterials have been selected and applied 
for ligament tissue engineering such as synthetic such as poly lactic 
acid (PLA) or polyurethan, as well as natural polymers such as collagen 
or silk and composites of both.6,7 Decellularized ECMs from allogenic 
or xenogenic donor-derived ligaments or tendons provide nearly 
natural tissue composition and biomechanics and therefore, present 
a promising approach for ligament tissue engineering.8,9 In addition, 
the ECMs promote differentiation of precursor cells.10,11 Scaffolds for 
ligament tissue engineering can be produced by various techniques 
such as braiding, embroidering, 3D printing, electrospinning, electro 
hydrodynamic jet printing and combinations of them.6,10,12–15 Aligned, 
interwoven and multilayered composite structures most likely reflect 
the natural aligned ligament ultrastructure and biomechanics.10

Subsequently, an extensive biomaterial testing is necessary 
starting with the pure material to evaluate crucial parameters 
such as hydrophobicity/hydrophilicity, degradation, permeability, 
porosity, interconnectivity, surface texture and biomechanics. Later, 
in combination with a model cell line and then, with the respective 
ligamentogenic primary cell types, cellular parameters should be 
assessed such as cytocompatibility, cell adherence, distribution, 
morphology, cytoskeletal architecture, gene and protein expression 
profiles including established ligament and fibroblast markers such 
as scleraxis, tenomodulin and tenascin C.16 Unfortunately, many 
synthetic polymers such as PLA or natural polymers such as silk with 
promising mechanical properties allow only limited cell adherence 
and growth.6,7 

Therefore, functionalization of synthetic polymers is 
demanded.12,13,17 Biomaterial functionalization should increase 
cell adherence, survival, spreading and migration, proliferation or 
differentiation and at least ligamentogenesis. It could also be applied 
to adapt biomechanical properties.18 For this purposes, various 
strategies have been undertaken to optimize polymer surfaces e.g., 
the supplementation of the material with natural ECM molecules such 
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Abstract

Ligament reconstruction remains challenging, since ligaments represent heavily 
loaded tissues with high extracellular matrix (ECM) content, very low cell numbers, 
limited blood supply and as a consequence, restricted repair capacity. To circumvent 
limited auto graft availability and donor site morbidity, tissue engineered biological 
grafts could present benefit for ligament reconstruction in future. Valuable tissue 
engineered approaches can be developed based on small-scale in vitro models.

This mini review was prepared to draw attention to some experimental key problems 
and to illustrate approaches to establish tissue engineered ligament substitutes 
including appropriate scaffolds, functionalization of them, applicable cell sources, 
three-dimensional (3D) cell culturing and seeding strategies. It opens also the view 
on novel perspectives, which could move ligament tissue engineering forward such as 
utilization of various natural allogenic and xengenic ligament-derived ECMs and first 
attempts in ligament bioprinting.
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as biopolymers, which are characteristic for the respective tissue. 
In the case of tendons and ligaments collagen, prepared in various 
formulations (such as hydrogels, coatings, foams, sponges, films) led 
to promising results.6,19 Other functionalization strategies included 
the integration of motifs for fibronectin16 or RGD peptides into the 
scaffolds to improve integrin receptor-mediated cell adherence or 
the addition other functional groups.16,20 Several approaches used 
the slow release of stimulatory growth factors (GFs) attached to 
the scaffolds.14,17,21 All these modifications require many testing 
experiments under highly standardized conditions. The presence of 
stimulatory GFs or natural ligament ECM is especially advantageous 
if precursor cells are used to produce a tissue engineered neotendon 
or-ligament.11

Multipotent stromal cells (MSCs) are highly attractive for 
musculoskeletal tissue reconstruction due to their favorable properties 
such as high proliferative capacity, plasticity, differentiation potential, 
low immunogenicity, immunomodulatory capacity, trophic effects 
and higher availability.22 Harvesting MSCs presents lower donor site 
morbidity than harvesting primary tissue-specific resident cells such as 
ligamentocytes.16,23,24 Therefore, various types of stem cells including 
MSCs, induced pluripotent stem cells (iPSC), parthogenetic stem 
cells or embryonic stem cells have been explored for experimental 
tissue reconstruction and also for ligament reconstruction.3,25–28 
However, embryonic stem cells can be excluded for ethical concerns 
and iPSC present still several risks and so far, do not reliably and fully 
reflect all properties of ESCs.25 Despite tenocytes or ligamentocytes 
are the predominant cell types in tendons and ligaments, arranged 
in longitudinal rows within the tissue, both tissues contain also 
some other cell types such as endothelial cells, synoviocytes, 
fibrochondrocytes and tendon stem cells. In this context, the enthesis 
zones of tendons and ligaments present a particular challenge for 
biological reconstruction.14,29 

The question arises how to place the cells in an optimal position 
to allow functional neotissue formation as well as to guarantee 
the maintenance of a particular cell distribution and prospective 
tissue functionality. In ligaments and tendon, cells are aligned in 
rows. Bioprinting could be a strategy to place cells in a matrix in 
a defined position in rows and to combine them with vasculogenic 
cell types, since, vascularization of implants is necessary. A recent 
study described an ectopic in vivo incubation in the rabbit model 
to achieve vascularization before using the silk-collagen construct 
for anterior cruciate ligament (ACL) reconstruction.30 Strategies 
for vascularization can be explored in vitro using co-cultures.31–33 
and further developed by bioprinting, which is an emerging field in 
tissue engineering. Attempts have already been undertaken to print 
a muscle-tendon unit.34 However, purely bioprinted scaffolds are 
usually hydrogel-based, because a defined rheology is required for the 
printing process and therefore, normally too weak to sustain natural 
ligament biomechanics. Bioprinting can be also used to print GFs into 
ligament scaffolds.35 Nevertheless, combining bioprinting technique 
with elastically extendable polymer scaffolds using a collagen-based 
bioink might be a versatile strategy in future to embed the cells or 
aggregates of them in a defined order into the scaffold structure to 
produce a composite ligament implant.

“Tissue on chip” based approaches allow miniatur-scaled 
experiments.36,37 Only a small amount of expensive biomaterials or 
GFs is necessary e.g. to test the effects of GFs or other mediators 
on tenogenesis by precursor cells or tenocytes. Following this 

approach, animal experiments can be reduced.38 Furthermore, testing 
of a large range of variations is possible under exactly adapted 
similar environmental conditions. However, except for an approach 
to establish fascicles in miniaturized size39 there are up to now no 
published models for tendon or ligament on chip available.

Numerous ligament injuries such as ACL ruptures happen yearly 
with increasing incidence. Ligament healing remains very time 
consuming and often incomplete or, in the case of ACL ruptures, 
mostly fails. Ligament healing can lead to scar formation with impaired 
functionality and the risk of re-rupturing. At many locations autografts 
represent the gold standard of ligament reconstruction, associated with 
limited availability and donor site morbidity.40 Therefore, biological 
tissue engineered constructs would be appreciated as a novel 
approach. So far no tissue engineering-based ligament reconstruction 
strategy is available for clinical application. Meanwhile, there exist 
novel perspectives since innovative biomimetic composite scaffolds 
and biocompatible natural ligament ECM based scaffolds have been 
developed. However, functionalization and automatized seeding 
strategies of scaffolds which possess appropriate biomechanic 
properties have to be further elaborated to facilitate functional neo-
ligament formation and to acquire implants that fully fulfill clinical 
requirements. Whether proprioceptive capabilities of ligaments can 
be reestablished in implanted neo-ligaments in future presents also an 
unsolved question.
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