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Introduction
The present review was undertaken with an aim to appraise the 

physiological and biochemical factors (i.e. metabolites, enzymes, 
membrane integrity and levels of growth hormones) that lead to 
loss of seed viability during storage. The knowledge so generated 
would be helpful in devising techniques for enhancement of vigour 
and viability of ageing bamboo seeds. Because, most of the bamboos 
flower at long intervals of 7-20 years. Bamboos comprise the most 
diverse group of plants in the grass family. They are distinguished 
from other members of the family by having woody culms, complex 
branching, a complex and generally robust rhizome system, and 
infrequent flowering. Bamboos are plants of global interest because of 
their distinctive life form, ecological importance and the wide range 
of uses and values they have for humans.1 They have been variously 
called as ‘The Cradle to Coffin Plant’, ‘The Poor man’s Timber’, 
‘Friend of the People’, ‘Green Gasoline’, ‘The Plant with Thousand 
Faces’ and ‘ The Green Gold’. There are more than 1500 different 
documented traditional uses of bamboo.2 The seeds in bamboos are 
therefore scarcely available. This cyclic flowering in bamboos is 
gregarious and produces huge quantities of viable seeds. Bamboo 
seeds have very short viability of 1-3 months and are therefore useful 
as propagules for only a short period of time. Several studies on 
tropical bamboo seeds have reported prompt and high germination 
rates upon hydration (often around 80%) and/or marked declines in 
seed viability within a matter of 1-2 months.3–7 

Seed viability and longevity

Seeds, like any other plant organ, age with time and consequently 
die. However, the rate at which seeds age depends upon their 
physiological status, their genetic constitution, and the storage 
conditions. The availability of an adequate supply of seeds of a 
uniform high quality is essential for a successful seed industry and 
the maintenance of a viable and productive agriculture.8,9 Recognized 
two types of seeds on the basis of their storage behavior viz., orthodox 
and recalcitrant. More recently, a third category (still undefined), 

intermediate between the orthodox and recalcitrant categories, has 
also been identified.10 Orthodox seeds are characterized by their ability 
to tolerate desiccation and to retain their viability for a long time in the 
dry state. However, these seeds age during storage and eventually lose 
their ability to germinate. Lipid peroxidation and the loss of membrane 
phospholipids are major causes of seed ageing under natural ageing 
conditions11,12 several studies of long-term storage detected little or 
no lipid peroxidation and loss of phospholipids from seeds of rice13 
soybean,14 and wheat.15 Under the long-term storage conditions, seeds 
are likely to be in the glassy state (A glass is an amorphous, non-
equilibrium solid and is characterized by its extremely high viscosity. 
High levels of sugars and other biopolymers in seeds result in a rapid 
increase in cytoplasmic viscosity during drying, which prevents 
the cellular biological system from reaching physical and chemical 
equilibrium in a measurable time frame16 because of the cool storage 
environment and low seed water content. The extremely high viscosity 
and low molecular mobility of the seed cytoplasm could prevent or 
inhibit many deleterious processes.17–20

Physiology of seed germination

The seed is a propagated by which a seed-bearing plant is dispersed 
and propagated.21 The seed also provides protection and nutrition for 
the quiescent22,23 described seed as a critical phase in the life of plants, 
as the time, place, and nutrient reserves available upon germination 
mainly determine the successful establishment of plant. According 
to,24 germination is traditionally divided into three basic phases: 

a)	 Imbibition, the absorption of water needed for hydration of proteins 
and cell organelles, as well as a substrate for hydrolytic reactions. 

b)	 Activation of metabolism, involving synthesis of nucleic acids 
and proteins, increase in enzyme and respiratory activities and 
initial reserve breakdown (this step was called “germination 
sensustricto” by.25

c)	 Visible growth, usually in the form of root protrusion.21 
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Abstract

Seeds in general play a vital role in man’s life since they serve as a source of food, 
fibre, spices, beverages, oils and drugs. Seeds of cereals contribute about 90% of all 
the cultivated plants, as the source of up to half of global per capita energy. Bamboo 
seeds have very short viability of 1-3 months and are therefore useful as propagates 
for only a short period of time. Seed deterioration is inevitable and the best that can be 
done is to control its rate. Seed ageing is affected by a number of factors during seed 
storage. However, there is very little information on the physiology and biochemistry 
of seed viability with ageing of bamboo seeds. The speed at which the seed ageing 
process undergoes depends on the seeds’ ability to counter attack the break down 
changes as well as on species-specific protection mechanisms. In seed ageing, damage 
to cellular membranes, decrease in sugar, lipid, amino acid, proteins and hormonal 
contents’ activities. Aged seeds show decreased vigour and produce weak seedlings 
that are unable to survive. Sometimes, non-availability of quality seed is also one of 
the major snag in enhancing the productivity. 
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Mobilization of reserves during germination is a catabolic process 
in which the reserve food material is broken down with the help 
of enzymes and utilized for repair and growth mechanisms by the 
seed.21,26,27 Following imbibition and under the control of signals, 
particularly GA (Gibberellic acid) from the embryo and scutellum, 
the cells of aleurone layer synthesize an array of hydrolytic enzymes 
that are transported into the endosperm. These hydrolytic enzymes 
include α-amylase, β-amylase and de-branching enzymes. α-amylase 
is synthesized de novo,28 probably from amino acids released by 
proteolysis of storage proteins in the aleurone grains. This enzyme 
cleaves the internal α-1, 4-linked bonds of the glycan chains, releasing 
shorter amylose chains that are then further hydrolyzed to maltose 
(a disaccharide) by α-amylase. On the other hand, in dicots, the 
degradation of starch yields glucose and maltotriose.29 The majority 
of β-amylase is already present in the endosperm in an inactive form 
in the quiescent grains, but later during germination it is converted 
into active state by GA induced proteinases from aleurone layer. It 
cannot hydrolyze native starch grains until they are broken down into 
large dextrins by α-amylolytic attack. Nandi et al.,30 reported that 
long-lived β-amylase plays an important role in starch degradation 
and helps in initiating early embryo growth. Both α and β-amylase are 
unable to hydrolyseα-1,6 bonds in the branch points in amylo pectin. 
Specific, de-branching enzymes are required to hydrolyze these bonds 
and release additional amylose chains for further degradation. The 
α-glucosidase, limit dextrinase and cell wall hydrolases are synthesized 
by the aleurone layer and transported along with α-amylase into the 
starchy endosperm. In some seeds, the major carbohydrate reserves 
are in the form of cell wall galacto-mannans and the corresponding 
hydrolytic enzymes are endo-β-mannanase, β-mannosidase and 
α-galactosidase.31–34 In cereals, the protein reserves are stored in two 
separate sites viz. in the aleurone grains of aleurone layer (about 20%) 
and in the protein bodies of the endosperm (about 70%). Hydrolysis 
of storage proteins into amino acids or smaller peptides is carried out 
by proteinases/proteases.35 The free amino acids released are utilized 
for protein synthesis or transported to the growing axis. Protein 
degradation in seed storage tissues during germination does not occur 
at once in the entire organ. The region where degradation starts varies 
from species to species.36–37

Effect of storage on seed viability 

The fact that seeds of most species can be dried and stored from 
year-to-year has been exploited by man since the beginning of 
agriculture. Indeed, the ability of many orthodox seeds to remain 
viable for tens or hundreds of years in dry storage,38 indicates that 
they can be used for the long-term ex situ conservation of plant 
germplasm. Though the causes of deterioration of seed viability 
during storage has not been fully understood, scientists relate it 
to bioenergetics disturbance,39 damage to nucleic acids,40 loss of 
vitamins and hormones41–43 and membrane deterioration.11,42,43 Several 
comprehensive reports have shown that loss of seed vigour and 
viability is associated with free radical-mediated lipid peroxidation, 
enzyme inactivation or protein degradation, disruption of cellular 
membranes, Maillard reactions and oxidative damage to genetic 
(nucleic acids) integrity.12,44–46 A number of studies have reported 
potential correlation of seed longevity in dry storage with seed mass, 
oil content, carbohydrate composition and climate.38,42,47 However, a 
purported link between high oil content and short storage life-span has 
not been supported by recent analyses.4,38 showed that reducing the 
moisture content of Dendrocalamusstrictus seeds to 8.4% and storing 
them in wax paper bags helped maintain seed viability. Rapid loss in 

viability of seeds occurred within 5-months under ambient conditions 
(25-34°C) whereas under vacuum (CaCl2 in a desiccator at 25-34°C) 
or cold storage (10°C) conditions the deterioration was gradual. 
Seeds stored at low temperature i.e. 0 to 5°C showed highest viability 
percentage after 9-months. Seethalakshmi48 suggested two methods 
for the storage of bamboo seeds viz. cold storage and storing seeds 
over desiccants like calcium chloride at room temperature and the later 
was reported to be most effective. Warrier et al.,49 studied that storage 
of wet seeds of Bambusaarundinacea also poses problems. Desiccator 
drying of seeds was found to retain viability while sun drying proved 
detrimental. Moisture content of seeds could be reduced to as low as 
1.90% for effective storage. 

Membrane integrity and seed ageing

Biological membranes with a normal composition and 
organization regulate the transport of materials into and out of the 
cell. Therefore, they play a key role in maintaining seed viability 
and vigour. Solute leakage accompanies seed imbibition during the 
process of membrane reorganization following rehydration. The rate 
of leakage depends on the degree of cell membrane damage and repair 
in response to ageing may constitute an important factor in explaining 
seed deterioration.50–52 In seed ageing, damage to cellular membranes, 
decrease in mitochondrial dehydrogenases activities, chromosomal 
aberration and DNA degradation increases.53 Electrical conductivity 
measurements of seed leachates are routinely used to determine 
seed vigour in a number of species.54–55 Ion leakage (e.g., K+, Mg2+, 
Cl-, Ca2+, and Mn2+) has been shown to relate to seed viability and 
vigour.56,57 Leakage of sugars is considered a less reliable index of 
membrane integrity than the leakage of electrolytes.58 It is also not 
clear if sugar leakage from the embryo and endosperm are equally 
important for seed vigour.

Metabolic changes during seed ageing

Seed ageing is a natural phenomenon which occurs in all seeds, 
even if they are stored in dry and low temperature rooms.59 The main 
factors affecting seed ageing are the temperature and relative humidity 
at which the seeds are stored, the moisture content of the seeds and the 
seed quality. Generally, high moisture levels and temperature reduce 
seed longevity and cause profound deteriorative biochemical changes 
in seed membrane, DNA and food reserves.12,45,46 Time and again 
researchers have correlated seed ageing with biochemical changes 
such as alteration in protein synthesis60 degradation of DNA and RNA 
(Wilson and McDonald, 1986); degradation of hydrogen peroxide 
detoxification pathway;61 deterioration in membrane properties.53,62

Effect of ageing on enzyme activity 

Seed deterioration has been associated with chromosome 
aberrations and changes in RNA synthesis, in proteins and then 
enzymes. Incomplete protein synthesis occurs due to DNA degradation 
that impairs the transcription and translation process.12 There have 
been reports of differential respiratory and enzymatic activity with ATP 
production and membrane alterations. A scrutiny of literature suggests 
that cellular and physiological aberrations are a main cause of loss 
of viability during seed ageing. Smith and Berjak45 showed that with 
ageing the membrane of the seed become leaky, enzymes lose catalytic 
activity and chromosomes accumulate mutations. VanBilsen et al.,44 
also reported that membranes become more susceptible to imbibition 
damage with ageing. Commonly, seed deterioration is reported to 
accompany changes in enzyme activity during ageing.43,63–65 Although 
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seed deterioration is generally accompanied by loss of enzyme 
activity,9 a few hydrolytic enzymes like α-amylase and proteases 
show an increase in their activity.66 Several workers have shown a 
decrease in amylase activity with ageing. Saxena et al.,43,64–68 reported 
that enzymes catalase, peroxidase and total dehydrogenase showed 
a decline in activity in aged seeds of sesame (Sesamumindicum) 
subjected to accelerated ageing at 45°C and 10% RH, while invertase, 
RNA-ase and acid phosphatase showed an increase in their activity 
with ageing. However, with further increase in age, these enzymes 
showed a decrease in their activities. Kannababu & Karivaratharaju69 
reported that accelerated ageing of sunflower seeds showed a decrease 
in activity of malate dehydrogenase and succinate dehydrogenase 
in both cotyledons and embryonic axis of germinating seedlings of 
sunflower (Helianthus annuus). 

Effect of ageing on antioxidant system of seeds 

The ascorbic acid (ASC) system functions dynamically in seeds, 
although the strategies for ASC production and utilization may vary 
according to seed developmental and functional stages. ASC has 
been considered almost uniquely for its antioxidant properties,70,71 
since ASC can react with reactive oxygen species (ROS) such as 
hydrogen peroxide, superoxide radical and hydroxyl radicals in non-
enzymatic reactions. It is now clear that ASC also has a paramount 
role in both animal and plant cells as a co-substrate necessary for 
the activity of many 2-oxoacid-dependent dioxygenases;72–75 Plant 
systems resist toxic oxygen species based on the presence of reduced 
molecules such as glutathione, ascorbate, enzymes such as superoxide 
dismutase (SOD), catalase, glutathione reductase (GR) and ascorbate 
peroxidase (APX). Thiols are first affected by oxidation due to the 
presence of sulfhydryl groups. Reduced glutathione (GSH) is a major 
non-protein thiol that plays an important role in storage, transport and 
maintenance of the redox status in cells;70,71;Klapheck et al.,76 reported 
the role of GSH in germinating castor beans during oxidative stress 
as it degraded H2O2. Early products of radical-mediated reactions 
in vitro can be detected by electron paramagnetic resonance (EPR) 
studies. Less direct evidence comes from measurement of specific 
activities of enzymes such as SOD, GR, APX, etc. EPR studies of 
high and low vigour dry embryos of rice seeds stored in a warm and 
humid environment were tested for the presence of free radicals by 
Nandi et al.30 The results indicated that high vigourunaged embryos 
possessed high activity for the antioxidant enzymes, SOD and POX. 
It was observed that the balance between free radical/oxidative chain 
products and the integrity of active oxygen-scavenging enzymes 
present in dry embryos determined the fate of membranes and 
macromolecules during imbibition and early germination. Since ASC 
is known as an antioxidant and APX is known to catalyse the removal 
of hydrogen peroxide, much attention has been given to their possible 
involvement in the mechanism of seed defence against oxidative 
stress occurring during desiccation.77 However, this is not consistent 
with the fact that both ASC and APX activity decrease during the 
desiccation stage.77,78 APX protein content in barley is associated with 
early grain filling and then typically decreases during desiccation.79 

Effect of ageing on seed membrane phospholipids

A perusal of the literature suggests that there may be several 
mechanisms of seed ageing.71,80,81 Although lipid peroxidation and the 
loss of membrane phospholipids are regarded as major causes of seed 
ageing,8,12 yet several studies of long-term storage detected little or no 
lipid peroxidation and loss of phospholipids from seeds of soybean,14 
and wheat.15 Although the longevity of seeds is enhanced by storage 

under dry conditions, eventually the seeds deteriorate and lose the 
ability to germinate. One of the most commonly cited hypotheses 
explaining seed deterioration points to lipid peroxidation as the 
mechanism by which cellular membranes are disrupted.8,14,52,82 There 
are many types of peroxidative reactions in which lipids serve as 
substrates, but the most commonly accepted view involve breakage of 
the ester linkage between the acyl chain and the glycerol backbone82 or 
attack of unsaturated bonds of the fatty acid chain.83 Both triglycerides 
and polar lipids are subject to these reactions, and if these reactions 
occurred, the chemistry of the lipid components of the seeds would 
change. Unfortunately, studies on the changes in lipid chemistry with 
seed deterioration have produced mixed results,52,82 and a consensus 
regarding the importance of lipid peroxidation in seed deterioration 
has not been reached. Cellular membranes have been proposed as 
some of the primary sites of injury during desiccation and storage of 
seeds.12,62,84 This is mediated by an oxidative attack which promotes 
phospholipid degradation and loss of membrane organization.85 It is 
unlikely that changes observed in the triglycerides are responsible for 
changes in seed viability; yet, it is possible that membrane lipids are 
susceptible to the same reactions. It has been suggested that changes 
in membrane lipids are involved in the loss of viability of stored 
seeds52,65,86,87 but measurements of the changes in the properties of 
membranes in vivo have not been possible using this technique. The 
mechanism by which the physical properties of storage lipids change 
is unknown. 

Effect of ageing on seed membrane proteins

Ultra structural studies on seeds have distinguished between dry 
and imbibed seed tissues of soybean.88 studied characteristics of the 
organelles and cells under stress of chilling injury in soybean used 
electron microscopic (EM) studies.89 Most studies have focused on 
storage tissues such as cotyledons in soybean.89 Studies by Yaklich 
et al.,90 on soybean seed anatomy using transmission electron 
microscopy (TEM) featured test a and the phloem and xylem of the 
vascular sutures in the soybean pod. It has been observed that protein 
oxidation can cause modification of amino acid side chains, backbone 
fragmentation, protein demonization or aggregation, and the unfolding 
or altered conformation of proteins.91 These structural changes 
alter the functional activities of the modified proteins such as their 
ability to modulate gene expression, cell signalling, apoptosis, and 
necrosis. Reactive intermediates from protein peroxides can induce 
chain reactions that cause damage to other intracellular targets such 
as DNA, lipids, and other proteins.12 Protein modifications are often 
associated with ageing and diseases.92 However, protein oxidation 
may provide a means by which reactive oxygen species are utilized 
or counteracted e.g. the restoration of metabolic activities following 
imbibition of mature dry seeds.87,93–95 A major cause of deterioration 
in these seeds is the process that could contribute to the ‘cascade’ of 
changes associated with the execution phase of cell death.64,65,95 

Effect of ageing on changes in endogenous growth hormones 

Plant hormones and growth regulators are the chemicals that affect 
flowering; ageing; root growth; distortion and killing of leaves, stems, 
and other parts; prevention or promotion of stem elongation; colour 
enhancement of fruit; prevention of leafing and/or leaf fall; and many 
other conditions. Even small quantities of these substances produce 
major growth changes. Growth regulators are known to modify the 
growth and development pattern of plants by exerting profound 
effect on various physiological processes and hence regulating 
the productivity.96–100 suggested that GA1 and GA3 are the major 
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gibberellins produced by the germinating embryo though GA4 and 
GA7 were also detected. Further it was suggested that GA3 and GA7 
activate the aleurone cells where as GA1 and GA4 control the embryo 
growth. Other effective gibberellins are GA2 and GA22 while some 
such as GA12, GA17, and GA26 did not have any promotive action. 
A major role of endogenous GAs in the control of seed germination 
has also been emphasized by Karssen et al.101 Although it is well 
established that gibberellins (GAs) and abscisic acid (ABA) regulate 
amylase synthesis in the cereal aleurone layer, very little is known as 
to how GA and ABA affect amylase synthesis and secretion by the 
scutellum.102 

Studies on the expression of α-amylase genes in barley and rice 
scutella.99,103 However, indicate that the mechanism of their regulation 
is similar to that for the corresponding genes in aleurone layers. Along 
with regulating the synthesis of secreted hydrolases, ABA and GA 
influence other functions of aleurone layers and scuttle that relate 
to germination. The aleurone layer is the principal store of mineral 
elements in the grain of small cereals where K+, Mg2+ and Ca2+ are 
stored in the vacuole as chelates of phytic acid.104 GA stimulates 
the synthesis of Phytase, and Phytase break down makes cations 
and phosphate available to the embryo. The viability of the cereal 
aleurone layer is also tightly regulated by ABA and GA. Haberlandt105 
was among the first to report that cells of the aleurone layer die after 
reserves in the endosperm have been mobilized.106 ABA promotes 
aleurone cell viability and GA promotes aleurone cell death.107,108 
identified and quantified endogenous free ABA, IAA and GAs in the 
whole white spruce (Piceaglauca) seeds. It was reported that ABA 
content was high at the early stage of embryo development. Levels of 
IAA declined in the mega-gametophytes after pollination and through 
the seed development. Levels of GA4 slightly decreased while GA9 
increased during this period. Kojima109 determined the endogenous 
level of IAA and ABA in tomato (Lycopersicon esculentum). 

It was found that the concentration of IAA was higher in the 
symplast (SP) solution than in the apoplasts (AP) solution in both 
upper and lower parts of stems, suggesting that polar IAA transport 
might be only 19 % of the amount of IAA in stems. Concentration of 
ABA was high in the pericarp, axis and the locule tissue in the fruits. 
Warda110 reported large amount of GA3-like substances and ABA 
in the developing seeds of cucumber (Cucumis sativa). Munoz et 
al.,111 studied the role of endogenous CKs on reserve mobilization in 
cotyledons of Cicerarietinum. He suggested that CKs are concerned 
with the metabolism of carbohydrates and proteins. Dewar et al.,112 
used HPLC to assay the amount of CKs-Zeatin (Z), Z. reboside (ZR) 
and isopentenyladenine (IPA) and combined amounts of GA1, GA3, 
IAA and ABA during germination in sorghum. He reported higher 
concentration endogenous ABA in the embryo prior to germination. 
No study has been conducted on the endogenous hormones in 
bamboo seeds except for the only work by Richa et al.,43 who 
studied the endogenous levels of IAA and ABA in five bamboo 
species viz. Bambusabambos, Dendrocalamusmembranaceus, 
Gigantochloaalbociliata, Thyrsotachyssiamensis and 
Dendrocalamusstrictus. These authors reported an increase in the 
levels of free ABA in all the five bamboo species, with maximum 
amount in Dendrocalamusstrictus and minimum in Bambusabambos, 
after 12 months of storage. A significant decline in the endogenous 
levels of IAA was also observed in D. strictus, which also showed 
maximum decline in viability.113,114

Conclusion
From the above discussion, it can be concluded that bamboo seeds 

undergo age-induced biochemical and physiological changes, similar 
to that of cereals. Age-induced deterioration brings about membrane 
damage, causes leakage of reserve food material and enzyme 
degradation. Change in the optimum levels of plant hormones was 
also discussed. Seed viability could be retained for a greater period by 
storing the seeds under controlled conditions. The decline in vigour 
and viability of seeds is recoverable to some extent by the appropriate 
application of various seed invigoration treatments.
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