

Research Article

Additive main effects and multiplicative interaction analysis of European linseed (Linum Ustatissimum L.) cultivars under South African conditions

Abstract

Flax (Linum ustatissimum L.) is a multipurpose crop cultivated for both the fibre in the stem (fibre flax) or for its oil pressed from the seed (linseed). The natural qualities of flax make it a desirable commodity for manufacturers seeking alternative solutions to chemical and plastic-based products. As there is no production of flax in South Africa, ten linseed cultivars were imported from the Netherlands and the United Kingdom and evaluated for their adaptability under South African conditions. These cultivars were planted during the 2005 to 2009 season at six different localities (environments) in the Western Cape Province under rain fed conditions. The localities were, Bredasdorp, Caledon, Elsenburg, Koringberg, Langgewens and Napier. The Additive Main Effects and Multiplicative Interaction (AMMI) statistical method as well as the PCA (Principal Component Analysis) model were used to describe cultivar environment interaction on grain yield. Results indicated that the cultivars Sunrise, Capricorn, Bilstar, Virgo and Taurus were the most adapted cultivars for high potential environments.

Volume 2 Issue 3 - 2015

MJ Jacobsz, WJC van der Merwe, MM van der Westhuizen

Agricultural Research Council - Institute for Industrial Crops, South Africa

Correspondence: MI Jacobsz, Agricultural Research Council -Institute for Industrial Crops, South Africa, Email mjacobszl@telkomsa.net

Received: April 17, 2015 | Published: April 27, 2015

Abbreviations: AMMI, additive main effects and multiplicative interaction; ASV, ammi stability value; PCA, principal component analysis; CxE, cultivar x environment interaction

Keywords: flax, AMMI model, ASV, linseed

Introduction

Flax (*Linum ustatissimum* L.) is a multipurpose crop cultivated for both the fibre in the stem (fibre flax) or for its oil pressed from the seed (linseed). The natural qualities of flax make it a desirable commodity for manufacturers seeking alternative solutions to chemical and plastic-based products. Linseed grains, which are either brown or yellow, contain 35-45% oil and 18-26% protein. Linseed oil is the most widely available botanical source of Omega-3 fatty acids. Alphalinolenic acid (ALA) is the important Omega-3 fatty acid in linseed, which is of considerable benefit to humans and animals. Linseed cultivars vary in their ALA content, from cultivars with an ALA content of 2%, which makes them unsuitable for the Omega-3 market, to ALA-rich cultivars (60% ALA) which are extremely suitable for the Omega-3 human food and animal feed markets. Cultivars with an ALA content of 2% compete with sunflowers for processing into margarine and cooking oil.1

Practically, all linseed and linseed products used in South Africa are currently being imported from countries such as Canada, Germany, Denmark and the Netherlands. Canada is the world's leading producer of linseed oil and according to Statistics Canada the current production is running 13% below demand.² Thus, here is a high demand for this commodity which can potentially be exploited by local farmers. Linseed is an excellent rotational crop with wheat and barley. Flax has great potential to be planted commercially under South African conditions.3 The current study was undertaken to interpret Cultivar x Environment (CE) interaction obtained by AMMI analysis of yield performance of 10 linseed cultivars over 6 environments, to visually assess how yield performances vary across environments on a biplot and to group the cultivars having similar response patterns across varying environments together.

Materials and methods

Description of the study area

Five linseed cultivars (Bilton, Biltstar, Capricorn, Taurus and Virgo -imported from the Netherlands) and another five cultivars imported from the UK (Gemini, Laser, Linus, Marmalade and Sunrise) were evaluated over a four year period from 2005 to 2009 at six localities (environments) namely Bredasdorp, Caledon, Elsenburg, Koringberg, Langgewens & Napier in the Western Cape Province of South Africa. The trails were planted from mid-May to early June after the first rains and cultivated under rain fed conditions. A seeding rate of 50kg seed ha⁻¹ was used. Standard fertilization and weed control practices were implemented throughout the study. 400kg ha⁻¹ of 2:3:4 (27) was incorporated in the soil before planting. Two top dressings of 50kg ha⁻¹ was done with Limestone ammonium nitrate (LAN). Harvesting of grain was commenced during November. The trial design was a randomized block design with three replications. Plot size was 1mx4m with 6 rows. The inter-row spacing was 25cm with a sowing depth of 2cm. Linseed grain yield data was used to evaluate the different cultivars and localities applying the Additive Main effects and Multiplicative Interaction (AMMI) model.⁴ AMMI stability values (ASV) were computed from stability values as derived by Purchase et al.5

Results and discussion

Although numerous statistical techniques are available to describe cultivar x environment interaction⁶⁻⁸ the additive main effects and multiplicative interaction method (AMMI) has been used by various researchers on crops such as bread wheat,5 cotton,9 durum wheat,10 faba bean,11 lucern,12 maize,13 potatoes14 and tobacco.15 The graphical

version (biplot) of the cultivar means and the first interaction (PCA) Principle component analysis scores eases interpretation and identification of high yielding cultivars. Principal component analysis is a variable reduction procedure and is the most frequently used multivariate method. 6,16 Its aim is to transform the data from one set of coordinate axes to another, which preserves, as much as possible, the original configuration of the set of points and concentrates most of the data structure in the first principal component axis.

From the ANOVA table for AMMI analysis it can be seen that the mean squares for cultivars, environments and C x E interaction were found to be highly significant (Table 1). This suggested that a broad range of diversity existed among cultivars and among environments and that the performance of the cultivars was inconsistent over environments. Of the total treatment variation, the variance due to difference in the environment was the largest (61.2%) as can be expected in diverse production areas in the Cape Province of South Africa. This was followed by the variance due to C x E interactions (16.7%) (Table 2). In contrast, the variance due to cultivar was only 2.0%. The ordinary ANOVA model accounted for 63.2% of the trial sum of squares, concentrating only on the cultivar effects and environment effects. Although it is obvious that cultivars, environments and cultivar x environment interaction exerted a significant effect on yield, it is not clear which cultivars, environments or cultivar x environment interactions were responsible for the differences, or how these responses differ. The ANOVA model was thus found not to be adequate enough for analyzing the linseed grain yield data, as C x E interactions were highly significant. The ANOVA model was, therefore, combined with PCA (Principal Component Analysis) model to further analyze the residuals of the ANOVA model, which contains the C x E interaction (Table 1). Results from the analysis of multiplicative effects showed that the first interaction principal component analysis (IPCA1) captured 54.7% of the interaction sum of squares. The second interaction principal component analysis (IPAC2) explained only 13.3% of the C x E interaction. This is of relative minor magnitude and it would be difficult to draw meaningful conclusions from this principal component factor. Further analysis would, therefore, mostly concentrate on the IPCA1 scores.

The IPCA1 scores and mean performances data (grain yield) for both cultivar and environment that were used to construct an AMMI biplot are presented in Table 3. This was used to identify a specific pattern of the main effect and C x E interactions on both the cultivars and environments simultaneously.⁶⁻⁸ It is clear from

the biplot that the points for environment were more scattered than the points for cultivars (Figure 1). This indicated that variability due to environments was higher than that of cultivar differences. According to the AMMI model, cultivars which are characterized by means greater than grand mean and the IPCA score nearly zero are considered as generally adaptable to all environments (this suggests negligible or no C x E interaction). The cultivars, Laser and Linus meet these requirements. On the other hand, cultivars with high mean performance and with large value of IPCA scores are considered as having specific adaptability to the environments. The cultivars Sunrise, Capricorn, Bilstar, Virgo and Taurus fell into this category. Favourable environments for these cultivars can be characterized as with high mean and large IPCA score with same sign as of cultivar IPCA1 score. The environments in quadrant II of the biplot, i.e. Elsenburg 2007, Caledon 2007, Langgewens 2007; 2009 and Napier 2008, will thus be suitable environments for these cultivars. Similar sign of IPCA1 scores implies positive interaction and as a result will suggest higher yield of related cultivars. Lower potential environments predominating in quadrant I nemely Langgewens 2006, Bredasdorp 2006 and Koringberg 2006 and 2008 are grouped together, because of the low rainfall received.

AMMI analysis generates predicted means which gave greater accuracy, hence greater value for making selections than do the unadjusted or observed means.⁴ The observed and AMMI predicted values are demonstrated in Table 2. Based on this predicted yield data, it is evident that Virgo is one of the first five AMMI selections in 16 out of 20 environments, Linus 13 out of 20, Sunrise is 12 out of 20 and Taurus 11 out of 20 environments, but no clear pattern is evident in terms of localities or seasons (Table 3).

Purchase et al.,⁵ developed a test based on AMMI model's IPCA1 and IPCA2 values for each cultivar and each environment.⁵ It is called the AMMI Stability Value (ASV). An AMMI stability value is the distance from the coordinate point to the origin in a two dimensional scatter gram of ICPA1 scores against ICPA2 scores.). Cultivar Bilton (with the lowest ASV), was ranked as the most stable cultivar but it had a below average yield performance, except for the highest yield at Elsenburg (2006). The environment Napier in the 2007 season was the most stable environment and Langgewens 2008 and Elsenburg 2008 was the least stable environments. The latter two environments received flush floods during the 2008 season which had an effect on the grain yield. Cultivar Bilton was ranked with the lowest ASV, as the most stable cultivar but it had a below average yield performance.

Table I ANOVA for AMMI model for the cultivar evaluation trials at the different localities in the Western Cape Province over the period 2005 – 2009

Source	df	SS	MS	Prob
Environment	19	107 497 885	5 657 783	<0.001
Block	40	19 175 697	479 392	<0.001
Cultivar	9	3 517 968	390 885	<0.001
C x E Interaction	171	29 286 665	171 267	<0.001
ICPAI	27	16 048 662	594 395	<0.001
ICPA2	25	3 901 523	156 061	<0.001
Residual	119	9 336 479	78 456	<0.001
Error	360	16 098 679	44 719	
Total	599	175 578 894	293 117	

Table 2 AMMI selections per environment

Environment			IPCAI					
			Score		Selection			
Elsenburg	2007	1349	15.2	Linus	Sunrise	Gemini	Laser	Bilton
Caledon	2007	1280	11.1	Sunrise	Marmalade	Taurus	Gemini	Capricorn
Langgewens	2007	1280	9.3	Sunrise	Linus	Laser	Marmalade	Gemini
Langgewens	2006	488	5.7	Sunrise	Laser	Linus	Marmalade	Virgo
Koringberg	2007	567	5.4	Sunrise	Laser	Marmalade	Linus	Taurus
Elsenburg	2006	1953	5.1	Linus	Sunrise	Laser	Biltstar	Virgo
Elsenburg	2009	1286	5.1	Sunrise	Linus	Laser	Virgo	Marmalade
Bredasdorp	2006	574	4.8	Sunrise	Linus	Laser	Virgo	Marmalade
Caledon	2006	1074	4.5	Linus	Sunrise	Laser	Virgo	Biltstar
Caledon	2009	1449	4.5	Sunrise	Laser	Linus	Virgo	Taurus
Koringberg	2008	83 I	3.2	Linus	Biltstar	Virgo	Laser	Sunrise
Koringberg	2006	47 I	3.1	Sunrise	Taurus	Virgo	Laser	Linus
Napier	2006	905	8.0	Biltstar	Virgo	Linus	Laser	Taurus
Napier	2007	1017	0.3	Taurus	Sunrise	Virgo	Capricorn	Marmalade
Caledon	2008	1862	-1.5	Biltstar	Virgo	Linus	Bilton	Laser
Bredasdorp	2007	477	-1.9	Taurus	Virgo	Capricorn	Biltstar	Laser
Langgewens	2009	1134	-9.1	Taurus	Virgo	Biltstar	Capricorn	Laser
Napier	2008	1460	-11.5	Taurus	Virgo	Biltstar	Capricorn	Laser
Elsenburg	2008	1211	-26.9	Taurus	Virgo	Biltstar	Capricorn	Laser
Langgewens	2008	967	-26.9	Taurus	Virgo	Capricorn	Biltstar	Laser

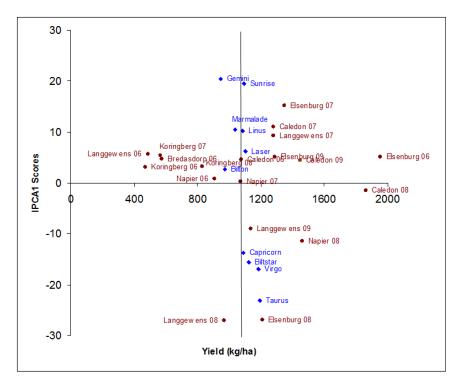


Figure I AMMI model biplot for linseed grain yield showing main and interaction effects for both cultivars and environments.

Table 3 Observed and predicted grain yield (kg⁻¹ ha⁻¹) of 10 linseed cultivars evaluated over 6 localities from 2005-2009

Environment	Year	Yield type	Bilton	Bilstai	Capricorn	Gemini	Laser	Linus	Marmalade	Sunrise	Taurus	Virgo
Bredasdorp	2006	T AMMI	584 495	643 562	591 501	* 530	546 625	569 636	493 569	702 668	694 560	528 597
Bredasdorp	2007	T AMMI	324 334	482 523	427 526	382 303	614 478	455 442	391 428	453 467	747 655	594 610
Caledon	2006	T AMMI	1009 1020	1022 1091	1062 988	* 1022	1255 1128	988 1149	1153 1052	1070 1148	983 1044	1105 1102
Caledon	2007	T AMMI	742 767	748 719	1420 1415	1622 1437	1761 1304	1098 1133	1661 1604	1580 1764	1509 1483	1122 1169
Caledon	2008	T AMMI	2012 1957	2184 2138	1675 1749	1792 1660	1919 1901	1824 1975	1836 1679	1552 1720	1892 1838	1933 2001
Caledon	2009	T AMMI	1293 1344	1376 1416	1348 1397	1414 1404	1367 1494	1638 1493	1441 1456	1568 1552	1500 1462	1531 1475
Napier	2007	T AMMI	855 887	1066 1027	873 893	856 768	993 940	938 970	903 815	763 878	880 924	992 998
Napier	2008	T AMMI	1005 783	819 932	990 1098	447 905	1014 1019	929 947	1166 1048	1388 1108	1237 1220	1148 1106
Napier	2009	T AMMI	1052 1366	1906 1730	1510 1592	1820 1080	1328 1414	1576 1373	1381 1268	1381 1220	1823 1799	1812 1760
Elsenburg	2006	T AMMI	2368 1930	1566 1991	1804 1840	1594 1907	1929 2014	2098 2052	2096 1919	2077 2020	1845 1887	2047 1973
Elsenburg	2007	T AMMI	1374 1431	1226 1306	912 1045	1746 1498	1581 1484	1643 1599	1191 1375	1433 1568	1163 985	1227 1201
Elsenburg	2008	T AMMI	1173 1010	1713 1656	1570 1600	586 526	1146 1059	626 926	942 896	701 709	2003 1962	1655 1770
Elsenburg	2009	T AMMI	1215 1212	1578 1273	1537 1205	1234 1247	1395 1339	1298 1354	1051 1281	1564 1382	1235 1260	1740 1303
Koringberg	2006	T AMMI	518 334	471 432	437 457	241 401	516 503	46 I 486	511 480	823 564	540 539	388 519
Koringberg	2007	T AMMI	388 429	63 I 484	562 526	630 546	641 613	374 598	491 604	855 710	488 588	616 575
Koringberg	2009	T AMMI	863 832	1057 928	808 725	808 742	810 884	848 928	750 760	858 844	783 786	690 885
Langgewens	2006	T AMMI	313 376	494 426	508 424	541 469	488 539	457 438	478 513	623 620	491 479	413 492
Langgewens	2007	T AMMI	1192 1186	1095 1172	1276 1163	1575 1331	1216 1354	1500 1371	1368 1337	1194 1476	1197 1184	1200 1225
Langgewens	2008	T AMMI	626 698	1258 1345	1449 1400	556 292	677 805	823 641	464 692	40 I 505	1843 1773	1578 1523
Langgewens	2009	T AMMI	1043 1012	1132 1332	1350 1255	481 808	1246 987	1203 1098	1345 1051	768 961	1260 1444	1505 1391

T – Observed mean yield AMMI – AMMI predicted yield *Cultivar not planted at locality

Table 4 AMMI stability values for each cultivar

Cultivar	Yield	IPCA I	IPCA 2	ASV	
Bilton	970	2.7	16.5	19.9	
Laser	1100	6.2	2.4	25.7	
Linus	1083	10.2	9.9	73.3	
Marmalade	1038	10.5	-9.7	44.0	
Capricorn	1087	-13.8	-10.8	57.7	
Biltstar	1124	-15.6	16.5	66.1	
Virgo	1184	-16.9	0.9	69.9	
Sunrise	1094	19.5	-9.8	80.7	
Gemini	944	20.4	-2.7	84.0	
Taurus	1194	-23.2	-13.3	96.3	

Conclusion

Cultivar Bilton gave the highest yield of 2368 kg ha⁻¹ at Elsenburg during the 2006 season. Bilton also gave the second highest yield at Caledon (2008) and Koringberg 2009, and the third best yield at Koringberg 2006. Cultivars Bilton and Laser were the AMMI best choices for most of the environments. Although Bilton had a slightly lower yield (970 kgha-1) it had higher stability (ASV=19.9). Laser gave higher yields (1100kg) but lower stability (ASV=25.7). Other high yield performers was the cultivar Sunrise that gave the highest yields in 5 out of the 20 environments namely Bredasdorp (2006), Napier (2008), Koringberg (2006+2007), and Langewens 2008. Cultivar Bilstar gave the highest yield in 4 out of the 20 environments, namely: Caledon (2008), Napier (2007+2009) and Koringberg (2009). Although Taurus was found to be the most unstable cultivar according to the ASV values, and showed limited adaptation to testing environments, it gave a grain yield that is above average (Table 4), whereas the most stable cultivar (Bilton) gave below average yields. For this reason, stability in itself cannot be used as the only parameter for selection, as the most stable cultivar wouldn't necessarily give the best yield performance. This contradiction was also found by cotton researchers in California¹⁷ that found a positive correlation between yield and stability and an association that suggests that cotton cultivars producing higher yields are, in general, lower in stability.

Acknowledgements

Department of Agriculture, Forestry and Fisheries for funding.

Conflict of interest

The author declares no conflict of interest.

References

- Turner J. Linseed Law A handbook for growers and adviser. United Kingdom Ltd, Hadleigh, Suffolk: BASF; 1987.
- 2. www.statcan.gc.ca
- Van Tonder CSM, Jansen A, Jacobsz M, et al. Adaptability of European fibre and linseed flax (*Linum usitatissimum*) cultivars to South African conditions. *African Crop Science Conference Proceedings*. 2003;6:38–41.
- Gauch HG, Zobel RW. Accuracy and selection success in yield trial analysis. Theor Appl Genet. 1989;77(4):473–481.

- Purchase JL, Hatting H, van Deventer CS. Genotype x environment interaction of winter wheat (*Triticum aestivum* L.) in South Africa: II. Stability analysis of yield performance. S Afr J Plant Soil. 2000;17(3):101– 107.
- Crossa J, Gauch HG, Strobel RW. Additive mean effects and multiplicative interaction analysis of two international maize cultivar trails. *Crop Sci.* 1990;6(3):36–40.
- 7. Kempton RA. The use of biplots in interpreting variety by environment interactions. *J Agric Sci.* 1984;103(1):123–135.
- Zobel RW, Wright MG, Gauch HG. Statistical analysis of yield trial. Agron J. 1988;80(3):388–393.
- 9. Campbell BT, Jones MA. Assessment of genotype x environment interactions for yield and fiber quality in cotton performance trials. *Euphytica*. 2005;144:69–78.
- Mohammadi R, Amri A. Genotype x environment interaction for duram wheat grain yield and selection for drought tolerance in irrigated and drought environments in iran. J Crop Sci Biotech. 2011;14(4):265–274.
- Fikere M, Tadesse T, Letta T. Cultivar-environment interactions and stability parameters for grain yield of Faba bean (*Vacia faba L.*) cultivars grown in South eastern Ethiopia. *Int J Sustain Crop Prod.* 2008;3:80–87.
- Smith MF, Smith A. The success of the AMMI model in predicting Lucerne yields for cultivars with differing dormancy characteristics. S Afr J Plant Soil. 1992;9(4):180–185.
- Maali SH. Additive main effects and multiplicative interaction analysis of maize yield trials in South Africa. S Afr J Plant Soil. 2008;25:185–193.
- Steyn PJ, Visser AF, Smith MF, et al. Ammi analysis of potato cultivar trials. S Afr Tydskri Plant Grond. 1993;10.
- Sadeghi SM, Samizadeh H, Amiri E, et al. Additive main effects and multiplicative interactions (AMMI) analysis of dry leaf yield in tobacco hybrids across environments. *African Journal of Biotechnology*. 2011;10(21):4358–4364.
- Purchace JL. Parametric analysis to describe G X E interaction and yield stability in winter wheat. PhD Thesis. Department of Agronomy, Faculty of Agriculture, Bloemfontein, South Africa: University of the Orange Free State; 1997.
- Geng S, Zhang Q, Bassett DM. Stability in yield and fiber quality of California Cotton. Crop Sci. 1987;27:1004–1010.