

Review Article

Remarks on the possibility of deep space travel to potentially habitable satellites like Titan and Europa

Abstract

The vast expanse of space beckons us with the promise of discovery and the potential for finding new homes for humanity. This paper explores the feasibility of deep space travel, specifically focusing on missions to potentially habitable satellites like Titan (Saturn's moon) and Europa (Jupiter's moon), which possible have liquid water on their surface or atmosphere. We discuss the technological advancements required for such endeavors, considering challenges like propulsion systems, life support, and radiation shielding. The paper analyzes the unique environments of Titan and Europa, highlighting their potential for harboring life and the possibility of terraforming them to create suitable habitats for humans. Finally, we explore the ethical considerations surrounding and the importance of international collaboration in achieving this possible deep space travel.

Keywords: deep space travel, satellites, Saturn's moon, Jupiter's moon

Volume 8 Issue 3 - 2024

Victor Christianto

Malang Institute of Agriculture, Indonesia

Correspondence: Victor Christianto, Malang Institute of Agriculture, East Java, Indonesia, Email victorchristianto@gmail.com

Received: July 05, 2024 | Published: July 26, 2024

Introduction

For centuries, humanity has gazed at the stars, captivated by the mysteries of the cosmos. Today, with advancements in science and technology, the dream of deep space travel is no longer science fiction. This paper delves into the possibility of venturing beyond our planet and establishing a presence on potentially habitable satellites like Titan and Europa. These celestial bodies, while far removed from Earth, offer intriguing possibilities for harboring life and potentially sustaining human colonies. First of all, allow us to quote a few passages from our previous article discussing plausible relation between icy moons and comets with regards to finding origin of life.1 The early solar system, a swirling nebula known as the protoplanetary disk, presents a compelling canvas for this exploration. This cosmic cradle contained a rich tapestry of organic compounds and complex prebiotic molecules the building blocks of life as evidenced by meteorites and comets, remnants of that ancient era. These celestial wanderers carry within them a whisper of the past, a potential Rosetta stone of pan-Christic origins.

- i. The Whispers of Life in Comets: These icy celestial bodies are time capsules, frozen in the deep space for billions of years. Their pristine makeup holds traces of the protosolar nebula, offering a glimpse into the primordial soup from which life may have arisen. Recent missions like Rosetta have detected a remarkable variety of complex organic molecules within comets, including amino acids, the very building blocks of proteins. Could these be mere random products of cosmic chemistry, or do they resonate with the "life essence" proposed by pan-Christic biogenesis?
- ii. Asteroids: Fossilized Seeds of Pan-Christic Potential: While lacking the icy embrace of comets, asteroids offer another window into the early solar system. Composed of rocky remnants from the protoplanetary disk, they too can harbor organic compounds and offer insights into the initial distribution of these life-giving molecules. The presence of complex amino acids in certain meteorites further fuels the fire of pan-Christic inquiry. Could these be traces of a proto-ecosystem, an early spark of life nurtured by the "order and synchronization" forces within the protoplanetary disk? Or are they merely echoes of a cosmic game of chance, devoid of any divine orchestration?

iii. The Link Between Proto-Solar System and Life's Essence:

Tracing the connection between these primordial traces of life and the pan-Christic concept of "life essence" requires venturing beyond the realm of physical evidence. It asks us to contemplate the interplay between the material and the divine, the dance between the building blocks of life and the spark that animates them. Perhaps the protosolar nebula, with its rich prebiotic soup and intricate dance of forces, represents not just a random scattering of materials, but a crucible where the "life essence" first infused into existence, imbuing even the nascent forms of life with a potential for growth and evolution.

It is likely that the very act of seeking life traces in the proto-solar system pushes the boundaries of our understanding. It compels us to consider the possibility that life is not merely a product of chance collisions and ruthless competition, but a symphony orchestrated by hidden forces, both material and divine. The whispers of life in comets, the fossilized potential in asteroids, and the grand cosmic story of the protoplanetary disk all become potential clues in this grand detective story, urging us to listen for the echoes of pan-Christic biogenesis in the very origins of our solar system.¹

Review on Europa as a potentially habitable satellite

The year is 2000, and the search for a second Earth is heating up. At a symposium of the British Interplanetary Society, Europa, a moon of Jupiter, emerges as a leading contender for the title of "next habitable world." But what makes this icy orb so captivating to astrobiologists?

A subterranean sea of promise

Unlike our own moon, Europa boasts a hidden treasure a vast subsurface ocean, possibly containing twice the amount of water found on Earth! This salty ocean is believed to be kept liquid due to the immense tidal forces exerted by Jupiter and its other moons. The presence of liquid water is crucial for life as we know it, making Europa an exciting prospect.

Europa isn't just a giant ball of ice. The same tidal forces that keep its oceans liquid also churn its interior, generating significant amounts of mechanical energy. This energy could potentially serve as a food source for life, similar to hydrothermal vents found in Earth's oceans.

Chemical ingredients for life

The ingredients for life may also be present on Europa. Studies suggest the presence of simple organic molecules on its surface, hinting at the possibility of a more complex chemistry within the ocean.

While Europa's surface is a frigid wasteland, it's potential for life lies beneath the icy crust. Missions like the upcoming Jupiter Icy Moons Explorer (JUICE) aim to study the moon's composition and potential for life through indirect methods.

The 2000 symposium wasn't just about Europa's internal ocean. Scientists like Dr. David Taylor, inspired by Carl Sagan's ideas, explored the possibility of life existing even in the upper atmosphere of Jupiter itself. While this notion remains highly speculative, it highlights the open-ended nature of our search for life beyond Earth.

Europa, with its hidden ocean, potential for energy sources, and chemical ingredients, stands as a prime candidate in our quest for habitable worlds. While significant challenges remain in unraveling its secrets, Europa continues to ignite our imaginations and fuel our search for life amongst the stars.

Review on Titan as a potentially habitable satellite

Saturn's moon, Titan, has captured the imagination of astrobiologists for decades. This seemingly unreachable world, cloaked in a thick, hazy atmosphere, offers a landscape unlike any on Earth, yet it possesses intriguing characteristics that make it a potential candidate for harboring life.³

Liquid Riches, Not Water Based: One of Titan's most captivating features is the presence of liquid on its surface. Unlike Earth, however, these lakes and rivers flow with liquid hydrocarbons, primarily methane and ethane. While these organic molecules form the building blocks of life on Earth, their role in potential life forms on Titan remains a captivating mystery. The key factor here is the extreme cold at nearly -180°C, water exists only as solid ice.

A Subsurface Ocean Surprise: Beneath the icy crust lies another potential life-giving element a global ocean, possibly even larger than Earth's. This ocean is believed to be primarily composed of water, raising the possibility of a hidden habitable environment. While the frigid surface temperature makes liquid water unlikely on the surface, the internal heat generated by tidal forces from Saturn could keep the ocean from freezing.

Fueling Life's Engine: Similar to Europa, another intriguing moon, Titan's tidal forces play a crucial role in its potential habitability. The churning caused by these forces creates internal friction, generating heat that could power chemical reactions at the water-ice interface. This scenario mirrors hydrothermal vents on Earth, which support diverse ecosystems despite the extreme conditions.

A Prebiotic Playground: Titan's atmosphere is a treasure trove of organic molecules, constantly bombarded by ultraviolet radiation from the Sun. This bombardment might be the key ingredient for creating prebiotic molecules, the essential precursors to life. These complex molecules could rain down onto the surface or seep into the subsurface ocean, potentially providing the building blocks for life to emerge in this exotic environment.

Challenges and Mysteries: Despite its captivating potential, Titan presents significant challenges. The frigid temperatures and thick, smoggy atmosphere make it a harsh environment for life as we know it. Additionally, our current understanding of life is heavily reliant

on water as a solvent. The role of liquid hydrocarbons in potential lifeforms on Titan remains a fascinating unknown, requiring further exploration and study.

A World Beckoning Exploration: While not a second Earth, Titan offers a glimpse into a world unlike any other in our solar system. With its abundance of organic molecules, a potential subsurface ocean, and the possibility of internal heat sources, Titan remains a tantalizing target in the ongoing search for life beyond Earth. Future missions like the Dragonfly lander aim to unravel Titan's secrets and shed light on the possibility of life existing in this exotic, hydrocarbon world.

Titan's potential for harboring life is intriguing, but with significant uncertainties. While it may not be suitable for life as we know it, the possibility of exotic lifeforms utilizing a different chemistry makes Titan a compelling target for further exploration. As we delve deeper into understanding this captivating moon, Titan may very well rewrite the definition of a habitable world.^{3–5}

Why ordinary rocket-based propulsion technologies are unlikely able to bring us to deep space

The vast expanse of space beckons us with the promise of exploration and discovery, but reaching distant destinations like other star systems remains a daunting challenge. While rockets have been the workhorses of space travel for decades, their current propulsion technologies face limitations that hinder deep space journeys. Here's why ordinary rocket-based propulsion might not be enough to bridge the gulf between planets and stars.

The fundamental equation governing rocket performance, the Tsiolkovsky Rocket Equation, paints a sobering picture. It dictates that the final velocity of a spacecraft depends on the exhaust velocity of its propellant and the total change in mass (the ratio of initial mass to final mass). Chemical rockets, the workhorses of today's space travel, offer relatively low exhaust velocities compared to the ideal needed for deep space travel. This translates to needing an enormous amount of propellant often exceeding the mass of the payload itself to achieve the necessary speeds.

The challenge of fuel mass

Launching a spacecraft with enough chemical fuel for deep space missions becomes impractical. The sheer mass of propellant required for a meaningful journey to another star system would make the spacecraft unwieldy and incredibly expensive to launch. We'd be essentially launching a giant fuel tank with a tiny payload inside.

The burn time blues

Chemical rockets rely on burning fuel to generate thrust. This translates to limited burn times, restricting the total velocity change achievable. Deep space travel requires sustained acceleration over long periods, something current chemical rockets struggle to achieve.

Beyond chemical rockets: in search for alternatives

The limitations of chemical rockets have spurred the search for alternative propulsion technologies. Some promising candidates include:

- I. Nuclear Electric Propulsion (NEP): Nuclear reactors power electric generators, producing electricity that propels the spacecraft with ion engines. NEP offers high efficiency and continuous thrust, but requires significant development.
- II. Vasimir Engine: This plasma-based thruster concept offers high exhaust velocity, but faces challenges in terms of power requirements and technical maturity.

III. Other exotic thruster concepts, such as TR3B which will be discussed later on.

Deep space exploration demands a multi-pronged approach. Continued research into advanced propulsion technologies like NEP and fusion rockets holds promise for the future. Additionally, techniques like gravitational slingshots around planets can be used to boost spacecraft velocity. Ultimately, conquering the vast distances of deep space will require a shift in paradigm, moving beyond the limitations of ordinary rocket-based propulsion technologies.

A review of TR3B as possible new type of devices

The human desire to explore the cosmos pushes the boundaries of technology. Deep space exploration demands a focus on proven scientific principles and continued research into more promising propulsion technologies like NEP and nuclear thermal rockets.

In the quest for deep space travel, numerous unconventional propulsion concepts emerge, including the enigmatic TR3B design. This article explores the TR3B concept and its potential role in future space missions, while acknowledging the need for a critical and evidence-based approach.

The TR3B, often referred to in underground channel due to its triangular shape, is a rumored highly advanced aircraft utilizing an anti-gravity propulsion system. Patents by John Quincy St. Clair describe a triangular spacecraft that supposedly manipulates electric fields to achieve a "negative-gravity" effect. However, the existence of such a craft and its underlying physics remain unconfirmed by any official sources (Figures 1 & 2).6

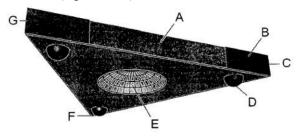


Figure I Design of triangular spacecraft as per John Quincy St Clair's patent.⁶

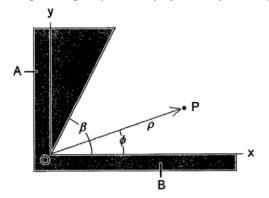


Figure 2 Design of triangular spacecraft as per John Quincy St Clair's patent.⁶

A critical look

While the concept of manipulating electric fields for propulsion is intriguing, the TR3B design faces significant challenges:

I. Lack of Scientific Consensus: The physics behind the TR3B's anti-gravity effect are not supported by established scientific principles. There's no known mechanism for manipulating gravity in the way the TR3B proposes.

- II. Absence of Evidence: There's no verifiable evidence of a functional TR3B craft, nor any scientific data to support its capabilities.
- III. Focus on Unproven Technology: Investing resources in unproven concepts like the TR3B could divert attention from more promising avenues of research, like nuclear or plasmabased propulsion systems.

While the TR3B presents an interesting thought experiment, the focus of deep space propulsion research should be on concepts with a stronger scientific foundation.

The search for new propulsion methods should be encouraged, but grounded in scientific principles. While unconventional ideas like the TR3B can spark curiosity, a critical and evidence-based approach is crucial. Our focus should be on actively researching and developing propulsion technologies with a strong foundation in physics and engineering. This will pave the way for the next generation of spacecraft to conquer the vast distances of deep space.

The TR3B concept, while interesting, is so far lacking scientific backing and evidence for its functionality. By striking a balance between open-mindedness and critical thinking, we can propel ourselves towards a future of interstellar exploration. Nonetheless, design and patent such as offered by John Quincy St Clair is recommended to study further.

Other than those alternatives to rocket space propulsion, what can be considered further for deep space mission include for instance galactic dynamics based on filament structure of hydrogen.⁷

Discussion

As we discussed in aforementioned paragraphs, moons like Europa and Titan, with their hidden oceans and potential for life, ignite our imagination for future colonization. However, the journey will be long and arduous. Here's a roadmap to prepare mankind for this momentous leap:

I. Beyond Rosetta: Unraveling the Mysteries

Missions like Rosetta, which orbited Comet 67P/Churyumov Gerasimenko, offer valuable insights. We need to build upon such a mission. Our next steps involve:

- i. Enhanced orbiters and landers: Deploying probes with advanced sensors to map Europa's icy shell and probe the depths of Titan's atmosphere.
- ii. Sample return missions: Retrieving ice cores from Europa and atmospheric samples from Titan to analyze their composition for potential resources and biosignatures.⁸
- II. Scouting for life support

Once we have a better understanding of these moons' environments, we can delve deeper:

- i. In-situ resource utilization (ISRU) experiments: Testing technologies to extract water from Europa's ice and utilize Titan's abundant methane for fuel and energy production.
- Investigating subsurface biospheres: Developing probes capable
 of investigating Europa's icy crust to search for potential liquid
 oceans and hydrothermal vents, environments that could harbor
 life.

164

- iii. Building life support prototypes: Constructing miniaturized biodomes on these moons to test the viability of growing food and creating breathable atmospheres.
- III. Reaching for the Stars: Beyond Rockets

The vast distances to Europa and Titan necessitate innovative propulsion systems. Here's where the conversation gets truly futuristic:

- i. Fusion propulsion: Harnessing the power of nuclear fusion for even more efficient interstellar travel (though significant technical hurdles remain).
- ii. Exploring exotic concepts: Researching theoretical propulsion methods like Alcubierre drives (warping spacetime for fasterthan-light travel), or folding space using hyperdimensional topology (a highly theoretical concept that could potentially shorten travel distances,9 or possible modeling of wormhole in lab for instance by finding analogy with crystalline phase of iced-water; see our previous article. 10-12

Colonizing Europa or Titan will be a collaborative effort spanning generations. It will require international cooperation, sustained funding, and a commitment to pushing the boundaries of science and technology. With each mission, we collect invaluable data and refine our approach. The challenges are immense, but the potential rewards a new home for humanity are worth the fight.

Concluding remark

In this rather exotic review article, we discussed among other things why Titan or Europa can be likely destinations for the deep space travel in search of possible habitable satellites in the next years. Deep space exploration demands a multi-pronged approach. Continued research into advanced propulsion technologies like NEP and fusion rockets holds promise for the future. Additionally, techniques like gravitational slingshots around planets can be used to boost spacecraft velocity. Ultimately, conquering the vast distances of deep space will require a shift in paradigm, moving beyond the limitations of ordinary rocket-based propulsion technologies.

In conclusion, while rockets have propelled us to incredible feats in space exploration, their current limitations make them ill-suited for venturing into the vast expanse of deep space. As we strive to reach distant celestial bodies, the development of advanced propulsion technologies will be key to unlocking the secrets of the cosmos and paving the way for a future amongst the stars.

Provided the aforementioned route to find traces of life via deep space mission can be done, then the search for life's origins becomes not just a scientific pursuit, but a philosophical and spiritual one as well. It invites us to embrace the mystery, the interconnectedness, and the possibility of a universe imbued with meaning beyond the material.

Acknowledgments

Discussions with Prof Florentin Smarandache, Robert N. Boyd, PhD., are gratefully acknowledged. Sections of this review article have been written with assistance of a large language model / AI.

Conflicts of interest

The authors declare that there is no conflict of interest.

Funding

None.

References

- 1. Christianto V, Suria I. An alternative description of paleo-astrogeophysics process and origin of Earth based on low temperature physics, including an outline to mitigate increasing Earth surface temperature. Jurnal Amreta. 2024;7(2).
- 2. Hiscox J. Outer solar system, Europa, Titan and the possibility of life. Astronomy & Geophysics. 2000;41(5)23-24.
- 3. Adang M, Ainabe A, Dave A, et al. Searching for life on Titan, the undersea retrieval of Titan lake extractions (TURTLE) mission. AIAA SciTech Forum. 2023.
- 4. Abbishek G, Kulkarni R, Guven U, et al. Space settlement on Saturn's moon: Titan. 66th International Astronautical Congress; 2015.
- 5. McKay CP. Titan as the abode of Life. Life. 2016;6(1)8.
- Quincy St JC. Triangular spacecraft. United States patent application; US 2006/0145019.
- 7. Soller JD, Miville-Deschênes MA, Molinari S, et al. The galactic dynamics revealed by the filamentary structure in atomic hydrogen emission. A & A. 2022;662:A96.
- 8. Forward RL. Guidelines to antigravity. 1962.
- 9. Yang Qi, Jian CM, Wang C, et al. Folding approach to topological orders enriched by mirror symmetry. ArXiv. 2017;09391.
- 10. Christianto V, Chandra TD, Smarandache F. Godel, Escherian staircase and possibility of quantum wormhole with liquid crystalline phase of iced-water - part I: theoretical underpinning. BPAS Chemistry. 2023;42(2):70-75.
- 11. Christianto V, Chandra TD, Smarandache F. Godel, Escherian Staircase and possibility of quantum wormhole with liquid crystalline phase of iced-water - part II: experiment description. BPAS Chemistry. 2023; 42(2):85-100.
- 12. Christianto V, Smarandache F, Boyd RN, et al. New foundations in the sciences: physics without sweeping infinities under the rug. viXra. 2019.