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Nomenclature: A, area of the nanotube; E, modulus of 
elasticity; EI, bending rigidity; Hs, residual surface stress; Hx, 
magnetic field strength; I moment of area; L, length of the nanotube; 
mc mass of tube per unit length; N, axial/Longitudinal force; T, 
change in temperature; t, time coordinate; w, transverse displacement/
deflection of the nanotube; W, time-dependent parameter; x, axial 
coordinate;  ( )xφ , trial/comparison function; xα , coefficient of 
thermal expansion; η, permeability

Introduction
Carbon nanotubes have shown to be nanostructures with 

remarkable physical, mechanical, electrical and chemical properties. 
Such excellent properties have aided their various medical, industrial, 
electrical, thermal, electronic and mechanical applications.1–5 Due 
to their importance for the practical applications, their dynamic 
behaviours have been studied.6–13 However, the effects of the surface 
energy and initial stress are neglected in the studies. Indisputably, the 
properties of the region of the solid surface are different properties 
from the bulk material. Also, for classical structures, surface energy-
to-bulk energy ratio is small. However, nanostructures have large 
surface energy-to-bulk energy ratio and high ratio of surface energies 
to volume, elastic modulus and mechanical strength. Consequently, 
the mechanical behaviours, bending deformation and elastic waves 
of the nanostructures are greatly influenced. Therefore, the surface 
energy effects cannot be neglected in the dynamic behaviour analysis 
of nanostructures.  Such surface energy of nanostructures is composed 
of the surface tension and surface modulus exerted on the surface 
layer of nanostructures.13–21 Consequently, different works have been 
presented in literature to analyze the impacts of surface energy on the 
dynamic response and instability of nanostructures.22–28

Due to residual stress, thermal effects, surface effects, mismatches 
between the material properties of CNTs and surrounding mediums, 
initial external loads and other physical issues, carbon nanotubes often 
suffer from initial stresses The effects of initial stress on the dynamic 
behaviour of nanotubes have been studied.29–37 However, because of 
their significant in practically nano-apparatus applications, there is 
a need for a combined on the effects of surface behaviours, initial 
stress and nonlocality on the physical characteristics and mechanical 
behaviours of carbon nanotubes. 

In the above past studies, different mathematical methods have 
been used to analyze the problem.  However, most of these methods 
require high skill in mathematical analysis for their applications. As 
a means of overcoming the drawbacks in the other approximation 
analytical methods, recently, Temimi and Ansari38 introduced the 
semi-analytical iterative technique in 2011 for solving nonlinear 
problems. The new iterative method has been used to solve many 
differential equations, such as nonlinear differential equations.39–55 
The results obtained in these studies indicate that the Temimi and 
Ansari method (TAM) provides excellent approximations to the 
solution of nonlinear equation with low computational time, high 
accuracy, and high order of convergence. The previous studies39–55 
have shown that the TAM can solve nonlinear differential and 
integral equations without linearization, discretization, restrictive 
assumptions, closure, perturbation, approximations, discretization and 
round-off error that could result in massive numerical computations. 
This method has not been applied to solve vibration problems in 
nanostructures. Also, scanning through the past works and to the best 
of the authors’ knowledge, a study on simultaneous effects of surface 
energy and initial stress on the vibration characteristics of nanotubes 
resting of Winkler and Pasternak foundations in a thermo-magnetic 
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Abstract

In this article, simultaneous impacts of surface elasticity, initial stress, residual surface 
tension and nonlocality on the nonlinear vibration of single-walled carbon conveying 
nanotube resting on linear and nonlinear elastic foundation and operating in a thermo-
magnetic environment are studied. The developed equation of motion is solved using 
Galerkin’s decomposition and Temini and Ansari method. The studies of the impacts of 
various parameters on the vibration problems revealed that the ratio of the nonlinear to 
linear frequencies increases with the negative value of the surface stress while it decreases 
with the positive value of the surface stress. The surface effect reduces for increasing in the 
length of the nanotube. Ratio of the frequencies decreases with increase in the strength of the 
magnetic field, nonlocal parameter and the length of the nanotube. Increase in temperature 
change at high temperature causes decrease in the frequency ratio. However, at room or low 
temperature, the frequency ratio of the hybrid nanostructure increases as the temperature 
change increases. The natural frequency of the nanotube gradually approaches the nonlinear 
Euler–Bernoulli beam limit at high values of nonlocal parameter and nanotube length. 
Nonlocal parameter reduces the surface effects on the ratio of the frequencies. Also, the 
ratio of the frequencies at low temperatures is lower than at high temperatures. It is hoped 
that the present work will enhance the control and design of carbon nanotubes operating in 
thermo-magnetic environment and resting on elastic foundations.

Keywords: surface effects, carbon nanotubes, nonlocal elasticity theory, Temini and 
Ansari method
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environment has not been carried out. Therefore, in this work, Temini 
and Ansari method is applied with Galerkin’s decomposition method 
to study the coupled impacts of surface effects, initial stress and 
nonlocality on the nonlinear dynamic behaviour of single-walled 
carbon nanotubes resting on Winkler (Spring) and Pasternak (Shear 
layer) foundations in a thermal-magnetic environment. Erigen’s 
nonlocal elasticity, Maxwell’s relations, Hamilton’s principle, surface 
effect and Euler-Bernoulli beam theories are adopted to develop the 
systems of nonlinear equations of the dynamics behaviour of the 
carbon nanotube. The studies of the impacts of various parameters on 
the vibration problems are also carried out.

Model development 
Figure 1 shows a single-walled CNT of length L and inner and 

outer diameters Di and Do resting on Winkler (Spring) and Pasternak 
(Shear layer) foundations.  The SWCNTs conveying a hot fluid and 
resting on elastic foundation under external applied tension, initial 
stress, magnetic and temperature fields as shown in the figure. 

Based on Erigen’s theory, Euler-Bernoulli’s theory and Hamilton’s 
principle.56–58 The partial differential equation governing the dynamic 
behaviour is derived as 
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Figure 2 shows the effect of flow in a channel. In the fluid-
conveying carbon nanotube, the condition of slip is satisfied since 
in such flow, the ratio of the mean free path of the fluid molecules 
relative to a characteristic length of the flow geometry which is 
the Knudsen number is larger than 10-2. Consequently, the velocity 
correction factor for the slip flow velocity is proposed as59:
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Where Kn is the Knudsen number, σv is tangential moment 
accommodation coefficient which is considered to be 0.7 for most 
practical purposes41,42
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   and B = 0.04 and b is the general slip coefficient (b = 

−1).

From Eq. (2), 
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Therefore, Eq. (1) can be written as 
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where the transverse area and the bending rigidity are given as

A dhπ=
3
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The symbol Hs is the parameter induced by the residual surface 
stress. τ is the residual surface tension, d and h are the nanotube 
internal diameter and thickness, respectively. It should be noted that 
the diameter of the nanotube can be derived from chirality indices (n, 
m) 

2 23
i
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π
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where 3 0.246a nm= . ”a” represents the length of the 
carbon-carbon bond. d is the inner diameter of the nanotube.

Analytical solutions of nonlinear model of 
free vibration of the nanotube 

It is difficult to solve Eq. (6) exactly because of the nonlinear 
term. Therefore, an approximate analytical method is used to solve 
the nonlinear model. In order to develop analytical solutions for 
the developed nonlinear model, the partial differential equation is 
converted to ordinary differential equation using the Galerkin’s 
decomposition procedure to decompose the spatial and temporal parts 
of the lateral displacement functions as 

( , ) ( ) ( )w x t x u tφ=                                                                                                                   (8)

Where ( )u t the generalized coordinate of the system and ( )xφ
is a trial/comparison function that will satisfy both the geometric and 
natural boundary conditions.

Applying one-parameter Galerkin’s solution given in Eq. (8) to 
Eq. (6) 
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We have the nonlinear vibration equation of the pipe as
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The circular fundamental natural frequency gives 
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For the simply supported pipe, 
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Eq. (12) can be written as 
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For an undamped simple-simple supported structures, where G = 
0, we have

3( ) ( ) ( ) 0u t u t u tα β+ + =                                                                                                         (14)

Determination of natural frequencies
In order to determine the natural frequency of the vibration, we 

make use of the transformation, tτ ω= , Eq. (14) becomes

 2 3( ) ( ) ( ) 0u u uω τ α τ β τ+ + =                                                                                    (15)

The symbolic solution of Eq. (15) can be provided by assuming an 
initial approximation for zero-order deformation to be 

( )ou Acosτ τ=                                                                                                                        (16)

Substitution of Eq. (16) into Eq. (15) provides
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The elimination of secular term is produced by making
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Therefore, the zero-order nonlinear natural frequency becomes
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Similarly, the first-order nonlinear natural frequency is given as
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Approximate analytical methods of solution: 
Temini and Ansari method

The nonlinearity in the above Eq. (15) makes it very difficult 
to generate closed form solutions to the equations. Therefore; in 
this work, recourse is made Temini and Ansari method to provide 
approximate analytical solution to the problem. 

Principle of Temini and Ansari method 

The principle of the method is described as follows. The general 
system of nonlinear equation is in the form

( ( )) ( ( )) ( ) 0L u x N u x g x+ + =                                                                                  (25)

with the boundary conditions
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, 0duB u
dx

  = 
                                                                                                                           (26)

where x denotes the independent variable, u(x) represents an 
unknown function, g(x) is a known function, L is a linear operator, N 
is a nonlinear operator and B is a boundary operator. Since L is taken 
as the linear (highest order derivative) part of the DE, it is possible to 
take some or the remaining linear parts of the DE and add them to N as 
needed. The procedure of the proposed TAM is as follows. 

Assuming that u(x) is an initial guess of the solution to the problem 
u(x) and is the solution of the equation
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In order to generate the next improvement to the solution, Eq. (28) 
is solved
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Following the above procedure, the Temini and Ansari method 
gives the possibility to write the solution of the general nonlinear 
equation in the iterative formula
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Application of Temini and Ansari method to the 
nonlinear problem

From Eq. (15), it is clear that
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Integrating both sides twice, we have
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Using trigonometric identity in Eq, (39), one arrives at
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After the integration, we arrived at
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and subsequent problems can be obtained from the iterative 
problem generating relation by we build a correcting practical as
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The solutions of ( )nu τ form the approximate analytical solutions 
of ( )u τ . The analytical solutions are simulated and the results are 
shown below
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Substitute Eq. (12) and (45) into Eq. (8), we have 
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Results and discussion
Figure 1 shows the comparison between the results of Temimi and 

Ansari method (TAM) and numerical method (NM) using Fourth-
order Runge-Kutta method. The obtained results of using TAM as 
compared with the numerical procedure are in good agreements. 
The high accuracy of TAM gives high confidence about validity of 
the method in providing solutions to the problem. Also, the effects 
of various parameters of the model on the dynamic response of the 
single-walled carbon nanotube are also presented in the figures under 
various subsections in the section in Figure 3.

The importance of surface residual stress on the vibration 
behaviour of the nanotube is shown in Figure 4. It is shown that the 
dynamic response of the nanotube different for negative and positive 
values of surface residual stress. This establishes that the dynamic 
behaviour of the fluid-conveying nanotube depends on the sign of the 

https://doi.org/10.15406/aaoaj.2023.07.00167


On the dynamic behaviour of carbon nanotubes conveying fluid resting on elastic foundations in a 
magnetic-thermal environment: effects of surface energy and initial stress

30
Copyright:

©2023 Isaac et al.

Citation: Isaac OO, Oladosu SA, Kuku RO, et al. On the dynamic behaviour of carbon nanotubes conveying fluid resting on elastic foundations in a magnetic-
thermal environment: effects of surface energy and initial stress. Aeron Aero Open Access J. 2023;7(1):26‒34. DOI: 10.15406/aaoaj.2023.07.00167

residual surface stress. Indisputably, as it is shown in the figure, at any 
given dimensional amplitude, there is an increase in the frequency 
ratio when the negative value of the surface stress increases while 
the frequency ratio decreases when the positive value of the surface 
stress increases. This is because, the negative values of surface stress 
decrease the linear stiffness of the nanostructure while the positive 
values of surface stress increase the linear stiffness of the carbon 
nanotube. 

Figure 1 Carbon nanotube conveying hot fluid resting on elastic foundation.

Figure 2 Effect of slip boundary condition on velocity profile.59

Figure 3 Comparison between the obtained results and the numerical 
solution for the nonlinear vibration.

Figure 4 Effect of surface residual stress per unit length on the frequency 
ratio of the nanotube.

Additionally, the positive surface elasticity produces softening 
effect in the nanotube, while negative surface elasticity gives 
stiffening influence in the nanotube. Therefore, it can be stated that 
when the surface stress is zero, the effect of surface elasticity is not 
so important. Consequently, one can infer that the surface stress alone 
is important and effective even without consideration of the surface 
elasticity. However, when the surface stress is nonzero, the surface 
elasticity plays a significant role in the dynamic behaviour of the 
nanostructure. 

The importance of surface stress, nonlocality and nanobeam 
length on the frequency ratio of the fluid-conveying nanostructure 
is displayed in Figure 5. The figures show that the frequency ratio 
decreases with increase in the length and thickness ratio of the of the 
nanotube. It could also be stated that nonlocal parameter reduces the 
influence of the surface energy and stress on the frequency ratio. The 
results also presented that the vibration frequency of the nanotube 
under the consideration of the effects of surface energy and stress is 
larger than vibration frequency of the nanobeam given by the classical 
beam theory which does not consider the surface effect. Also, the 
figures present a clear statement that when the nanotube length 
increase, the natural frequency of the nanotube gradually approaches 
the nonlinear Euler–Bernoulli beam limit. This is as a result of 
decrease in the surface effect. Therefore, high thickness ratios and 
long nanotube length make the impacts of surface energy and stresses 
on the on the frequency ratio to vanish. The impact of the initial stress 
on the dynamic behaviour of the nanotube is shown in Figure 6. It is 
depicted at any adimensional amplitude increases, there is an increase 
in the frequency ratio as the initial stress increases. 

Figure 5 Effects of the nanotube nonlocal parameter and length on the 
frequency ratio.

Figure 6 Effect of initial stress on the frequency ratio of the nanotube.
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The nonlocal parameter is a scaling parameter which makes the 
small-scale effect to be accounted in the analysis of microstructures 
and nanostructures. The effect of the nonlocality on the frequency 
ratio decrease for varying adimensional amplitude is illustrated in 
Figure 7. The fundamental frequency ratio of the fluid-conveying 
structure decreases as the nonlocal parameter increases. Also, the 
effect of the nonlocality on the frequency ratio decreases by increasing 
the amplitude ratio of the structure. The variations in the ratio of 
the frequencies with adimensional nonlocal parameter for different 
change in temperature are presented in Figure 8&9. In Figure 8, it is 
shown that increase in temperature change at high temperature causes 
decrease in the frequency ratio. However, at room or low temperature, 
the frequency ratio of the hybrid nanostructure increases as the 
temperature change increases as shown in Fig. 8. Also, the ratio of the 
frequencies at low temperatures is lower than at high temperatures.

Figure 7 Effects of maximum amplitude and nonlocal parameter on ratio of 
the frequency ratio.

Figure 8 Effects of change in temperature on the frequency at high 
temperature.

Figure 9 Effects of change in temperature on the frequency ratio at low 
temperature.

Figure 10 shows the significance of the magnetic field strength 
on the frequency ratio of the nanotube. It is shown that the frequency 
ratio decreases when the strength of the magnetic field increases. 
Also, at high values of magnetic fields and amplitude of vibration, 
the discrepancy between the nonlinear and the linear frequencies 
increases. A further investigation shows that the vibration of the 
nanotube approaches linear vibration when the magnetic force 
strength increases to a certain high value. Such very high value of 
magnetic force strength which causes great attenuation in the beam 
can be adopted as a control and instability strategy for the nonlinear 
vibration system.  

Figure 10 Effects of magnetic field strength on the frequency ratio.

Comparison of the midpoint deflection of linear and nonlinear 
vibrations of the nanostructure is analyzed in Figure 11. The nonlinear 
term causes stretching effect in the nonlinear in the nonlinear 
vibration. As stretching effect increases, the stiffness of the system 
increases which consequently increases in the natural frequency and 
the critical fluid velocity.

Figure 11 Linear and nonlinear dynamic behaviour of the nanostructure.

Figure 12 presents the effect of nonlocal parameter on the vibration 
of the nanotube. It is depicted that increase in the nonlocal parameter 
leads to decrease in the frequency of vibration and decrease in the 
critical velocity. The significance of slip parameter on the dynamic 
response of the carbon nanotube is shown in Figure 13. From the 
figure, it is established that increase in the slip parameter causes 
decrease in the frequency of vibration and the critical velocity. Also, 
the Figures depict the critical speeds corresponding to the divergence 
condition for different values of the system’s parameters for the 
varying nonlocal and slip parameters.
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Figure 12 Effects of nonlocal parameter and fluid flow velocity on the natural 
frequency of the nonlinear vibration.

Figure 13 Effects Slip parameter (Knudsen number) on the natural frequency 
of the nonlinear vibration.

Conclusion
In the current paper, Galerkin decomposition and Temini and 

Ansari methods have been applied to explore the simultaneous 
impacts of surface elasticity, initial stress, residual surface tension 
and nonlocality on the nonlinear vibration of single-walled carbon 
conveying nanotube resting on linear and nonlinear elastic foundation 
and operating in a thermo-magnetic environment have been analyzed. 
Through the parametric studies, it was revealed that the

i. Ratio of the nonlinear to linear frequencies increases with the 
negative value of the surface stress while it decreases with 
the positive value of the surface stress  At any given value of 
nonlocal parameters, the surface effect reduces for increasing in 
the length of the nanotube.

ii. Ratio of the frequencies decreases with increase in the strength 
of the magnetic field, nonlocal parameter and the length of the 
nanotube. The natural frequency of the nanotube gradually 
approaches the nonlinear Euler–Bernoulli beam limit at high 
values of nonlocal parameter and nanotube length.

iii. Nonlocal parameter reduces the surface effects on the ratio of 
the frequencies. 

iv. Increase in temperature change at high temperature causes 
decrease in the frequency ratio. However, at room or low 
temperature, the frequency ratio of the hybrid nanostructure 
increases as the temperature change increases. Also, the ratio 
of the frequencies at low temperatures is lower than at high 
temperatures.

v. Increase in the nonlocal and slip parameters leads to decrease in 
the frequency of vibration and decrease in the critical velocity. 

It is hoped that through this study, the control and design of carbon 
nanotubes operating in thermo-magnetic environment and resting on 
elastic foundations will be greatly enhanced.
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