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simulate system compliance with functional requirements (stator rotor 
clearance, flush, etc.). The tolerance optimization is a critical point to 
address since the mechanisms most of time corresponds to hyperstatic 
architectures. In such cases, the contact between surfaces of parts 
induced by these architectures considerably increases the complexity 
of the problems to be solved. More to this, the parts are generally 
assumed to have an infinitely rigid behaviour. This limitation should 
be overcome in case of flexible parts of the mechanisms subject to 
thermal expansion and external mechanical loads.

Studies introduced by Fleming in 1988 provided the foundation 
for a variational approach to tolerance analysis, based on operations 
by sets of geometric constraints.1 A set of geometric constraints 
defines all the possible positions of a surface within a tolerance zone2 
which can be generated by offsets of the nominal model of the part.3 
In this way the geometric variations of a part that are compliant 
with ISO specifications for orientation or position tolerances can be 
characterised.4‒7 In the same way, a set of geometric constraints can 
also be used to characterise all relative positions between two distinct 
surfaces that are potentially in contact.8 Fleming established the 
correlation between cumulative defect limits on parts in contact and 
the Minkowski sum of finite sets of geometric constraints.1 A detailed 
synthesis of this is given in.9 Algorithms of Minkowski sums applied 
to the problem of tolerance analysis have also been developed.10,11 
Giordano showed that modelling the relative positions of two parts 
resulting from several potential contacts can be formalised by an 
operation involving the intersection of sets of geometric constraints.12 
More generally, the variational approach to tolerancing consists of 
characterising the relative position of two surfaces from any two 
parts of a system by intersections and Minkowski sums of sets of 
geometric constraints derived from ISO specifications for the parts 
and specifications formulated specifically for two parts potentially in 
contact.13 

The variational approach to geometric tolerancing differs from 
parametric approaches.14 Parametric approaches, especially those used 
in the various commercial tools, formalise the relative position of any 
two surfaces of a mechanism at a specific point by a simple relation 

(linear or non-linear) between parameters of position (translation 
and/or rotation). This relation is obtained using either an analytical 
method15‒18 or a Monte Carlo method.19 This type of approach does 
not support the redundancy of suppressing degrees of freedom 
between two parts. In addition, it is generally necessary to generate 
several equations to simulate the relative position of two surfaces. 
Historically the procedures for tolerance analysis using a variational or 
parametric approach are based on the following physical hypotheses: 
no defect in the shape of the real surfaces, no local strain on surfaces 
in contact, and no flexible parts. Many studies have been developed 
using a parametric approach where distortion in the parts is taken into 
account. Some models can simulate the geometric variations of an 
aeronautical structure20,21 or an automobile structure22,23 by seeking to 
minimise strains caused in the parts by the assembly process. Maciej 
et al. have proposed a tolerance analysis platform incorporating 
the strain caused in parts by the assembly process and the dynamic 
behaviour of a mechanical system.24

In a variational approach using domains, Giordano et al. have 
incorporated local strains in surfaces in contact in a ball bearing and 
in a cylindrical gear transmission.25 The aim of this study is to propose 
a multiphysical approach, able to take into account variability’s due 
to the processes involved in obtaining and assembling the parts, as 
well as variations due the thermo-mechanical behaviour of the parts. 
This multiphysical approach uses a variational method based on 
operations on polytopes. This means that each geometric constraint 
is a halfspace of which the boundary is a hyperplane of the affine 
space of dimension n, which we will call n-hyperplane. The domains 
developed by Giordano et al.,12 and T-Maps developed by Davidson 
et al.,7 manipulate halfspaces of which the boundaries are generally 
not linear. In the first part, we describe modelling the topological 
structure of a mechanical system by means of a contact graph with one 
connected component. Next we present the method for determining 
geometric variations in a mechanical system within reference 
behaviour. In the context of the reference behaviour all the parts are 
at 20°C and are considered as being infinitely rigid: the geometric 
variations considered are only those resulting from processes for 
obtaining the parts and the assembly processes.
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Introduction
The development of new manufacturing methods and the 

revolution in the production system enable the design of innovative 
systems with high-performance and most of time complex geometries 
and architectures (i.e. high-efficiency engines, lightweight aircraft 
structures, etc.). This is also the case in the aeronautic field for which 
the overall performance of aeronef requires rigorous optimization of 
both the engines and the structure. At the mechanical system level 
(i.e. turboshaft engine), methods and tools take into account variations 
in component parts and movement restrictions imposed in contact to 
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The second part of the article sets out the physical hypotheses 
that define thermo-mechanical behaviour when a mechanical system 
is subjected to a thermal field. The method we propose incorporates 
thermo-mechanical strains into the geometric variations of the parts 
and contacts. Thermo-mechanical strains are determined using a finite 
element model. An example of analysis of a functional requirement is 
also described in parts one and two.

In the third part, we examine a global procedure which can be used 
to simulate geometric variations in a system for an operating cycle 
discretized into several specific behaviours, and finally we discuss 
future developments and prospects for this work.

Tolerance analysis of a mechanical system 
within a reference behaviour

Here we define a mechanical system in reference behaviour where 
the following physical hypotheses are put forward: there is no defect 
in the shape of the real surfaces, no local strain on surfaces in contact, 
and no flexible parts.

Defining and setting the parameters of geometric 
deviations

Characterisation of the geometric deviations of a part: Real 
surfaces, those resulting from the manufacturing process, are 
modelled by substituted surfaces.26 A substituted surface is an ideal 
surface (i.e. geometrically perfect) of the same type as the nominal 
surface of which it characterises particular physical features, i.e. a 
surface that is nominally cylindrical will be modelled by a cylindrical 
substituted surface. Figure 1 shows the nominal model and the 
model of the substituted surfaces of a part. In particular, we can see 
the cylindrical substituted surfaces 1,1 and 1,2 which correspond to 
nominal cylindrical surfaces 1,1n and 1,2n respectively. The nominal 
model is by definition the geometrically perfect model used in the 
CAD/CAM system. The geometric defects of a real surface can be 
simulated on the substituted surface model, using situation deviations 
and dimension deviations.

Figure 1 Geometric deviations (situation deviations and dimension 
deviations).

Situation deviations define the positioning of situation elements 
of the substituted surface in relation to those of the corresponding 
nominal surface being used as a reference.20 In Figure 1, 1,1/1,1

g
nd  

and 1,2/1,2
g

nd
 
illustrate situation deviations between surfaces 1,1 and 

1,1n and between surfaces 1,2 and 1,2n respectively. The difference 
between the diameter of the substituted surface, denoted 1,1D , and 
the diameter of the nominal surface, denoted 1,1nD , is the dimension 

deviation of a cylindrical surface denoted 1,1d  (see Figure 1):

1,1 1,1 1,1nD D d− = 	                                                                        (1)

The situation and dimension deviations define the geometric 
deviations of a part. Situation deviations can be formalised 
mathematically by a small displacement torsor27 to characterise the 
situation deviations between two surfaces. 

The following equation expresses the small displacement torsor of 
substituted surface 1,1 in relation to the nominal surface 1,1n denoted 

1,1/1,1
g

nd    at point B:

1,1/1,1n

1,1/1,1n
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B
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   =     
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ε                                                                 (2)

Vector 1,1/1,1nρ  characterises the rotation deviations, while vector 

B-1,1/1,1nε  characterises the translation deviations at point B (see 

Figure 1).

According to the property of the small displacements field, we 
than have:27

1,1/1,2 1,1/1,2 1,1/1,2     , M euclidean  spaceN M N− −= + × ∀ ∀ ∈NM ρε ε 	
                                                                                                                 (3)

Thus, the relative position between surfaces 1,1 and 1,2 can be 
deduced from the equation:

	
1,1/1,2 1,1/1,1 1,1 /1,2 1,2 /1,2 1,1/1,1 1,2 /1,2
g g g g g g

n n n n n nd d d d d d= + + = +                         

                                                                                                                 (4)

The geometric deviations between the two nominal surfaces 
1,1n and 1,2n are by definition null. Let us consider the coaxiality 
specification shown in Figure 2a. According to,4 the axis of the 
cylindrical substituted surface 1,1 is contained within a tolerance zone 
ZT . ZT  is a cylinder of diameter 1,1t∅  and its axis coincides with 

axis A (axis of cylinder 1,2), see Figure 2b. To ensure that the axis of 
surface 1,1 is located within the tolerance zone ZT , the following 
equation should be written at the two extremities A and B, where 

iθn  is a unitary vector orthogonal to axis A and n  is the angular 
discretization step around axis A:

	

( )

1,1 1,1
1,1/1,2

1,1 1,1
1,1/1,2

cos sin
2 2     

, 0     ,
2 2

i i iiA

iiB

t t

with
t t i i n and i n

n

θθ

θ

θ θ
π

θ

−

−

  = ⋅ + ⋅− ≤ ⋅ ≤  
 

= ≤ < ∈ − ≤ ⋅ ≤  





y znn

n


ε

ε
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By expressing equation (5) in terms of  (3) as a function of 
translation deviations at point P in the middle of the line segment 
limited by A and B, in the base ( )x, y, z  if we postulate AB a=

 we have:
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Figure 2 Coaxiality modelled by a geometric polytope.

The equations in (6) form a finite set of closed halfspaces of 4


. Respecting these equations (6) can be formalised by an intersection 
limited to a finite number of closed halfspaces of which the 
boundaries are hyperplanes of 4

 .13 Generally, the H-representation 
of a polytope of n

  can then be formalised.28,29 Thus the equations in 
(6) characterise a polytope which we will call a geometric polytope, 
denoted g

1,1/1,2D , of the coaxiality specification of 1,1 in relation to 

1,2. This is a 4-polytope which can be represented graphically in 3
  

for 1,1/1,2 0yρ =  for example, see Figure 2c. In the same way, it is 
possible to define a geometric polytope that represents the boundaries 
of the situation deviations of all orientation or position specifications.13

Characterisation of the geometric deviations between two 
surfaces potentially in contact: The definition of contact between 
two surfaces, i.e. a joint, can be expressed using a set of parameters. 
There have been several studies on this subject.30-32 Hereafter we will 
use the definition proposed in,33 which is a direct application of that 
proposed in.32 A joint is defined by its type (planar pair, cylindrical 
pair, ball and cylinder pair, etc.),34 its situation element(s) (plane, 
line, point), its nature (fixed, sliding or floating) and by its clearance 
(minimal clearance, maximal clearance).33

Consider Figure 3: two parts 1 and 2 are in contact via their 
respective surfaces 1,2 and 2,2 and also via surfaces 1,3 and 2,3.The 
joint between surfaces 1,2 and 2,2 is a cylindrical pair type and the 
situation element is a line ( ),B x . Contact is of a floating nature, with 
clearance J  being the difference between the diameter of surface 2,2 
(bore) and the diameter of surface 1,2 (shaft):

2,2 1,2J D D= −
                                                                                                                                            

(7)

The joint between surfaces 1,3 and 2,3 is a planar pair type and the 
situation element is a plane ( ),B x . Contact is of a sliding nature and 

hence clearance is null.33 Situation deviations between two surfaces 
that are potentially in contact can be formalised mathematically by a 
small displacement torsor. The torsor 1,2/2,2d  defines deviations in the 
joint between surfaces 1,2 and 2,2 at point B:

1,2/2,2

1,2/2,2
1,2/2,2B

Bd
−

 
   =    

ρ

ε
                                                              

(8)

Figure 3 Contact specifications.

Equation (9) defines the different positions between surfaces 
potentially in contact for any point N on the contact surface cE  
according to Nn , with a vector normal to cE  at point N:

1,2/2,2   Nc NN JE −∀ ∈ ⋅ ≤nε
                                                         

(9)

The contact surface cE  is the intersection of the surfaces in 
contact in the specific configuration where:

a.	 Situation deviations between the two surfaces are null (the 
situation elements of the surfaces are the same),
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b.	 Intrinsic dimensions (diameter of a cylinder, angle at the top of 
a cone, etc.) of the two surfaces are the same.

Distance Nd  is the local distance in N between the two surfaces in 
contact according to Nn  specifically in the position where situation 
deviations between the two surfaces are null. In the example of contact 
between surfaces 1,2 and 2,2, cE  is a cylinder and its axis is the line 

segment [ ],B C  and 
2

N

J
d = .

As when characterising the geometric deviations of a part, equation 
(9) should be written at the two extremities B and C of the axis of the 
cylindrical contact surface where n is the angular discretization step 
around axis ( ),B x  of the contact surface cylinder:

( )
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                                                                                                            (10)

Equations (10) are called non-interference constraints stresses.32 

Equations (10) written as a function of the translation deviations of 
the midpoint of the line segment limited by B and C, characterise the 
contact polytope c

1,2/2,2D  defined in the base ( )x, y, z  by:

	

( )
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                                                                                                               (11)

This is a 4-polytope defined by its graphic representation in 3
  

for 1,2/2,2 0yρ =  which is similar to polytope g
1,1/1,2D  shown in Figure 

2.

If 0
2

N

J
d = ≤  (in the case of clamping), the contact polytope is 

a vertex centred on the origin according to the physical hypotheses 
formulated at the beginning of section 2. In this case, the joint is 
defined as one of fixed contact.33 In the same way, a contact polytope 
can be defined which characterises the limits of the situation deviations 
of surfaces potentially in contact for all types of joints (spherical pair, 
ball and cylinder pair, ball and plane pair, etc.) defined in.34,13

Topological structure of a mechanical system, 
condition for cycle closure

Formalising the topological structure of a mechanism may be 
based on a contact graph with one connected component on which the 
dimension chains35 can be visualised. Figure 4, based on Figure 3, is a 
graphic representation of the mechanism consisting of a shaft labelled 

1 and housing labelled 2. The shaft is represented by a large circle and 
the three surfaces 1,1, 1,2 and 1,3 are small circles. All the nominal 
surfaces of the shaft are represented in a single small circle, called 1,0, 
representing a marker associated to the nominal model of part 1.2 The 
edge linking surface 1,1 to vertex 1,0 represents situation deviations 
for surface 1,1 in relation to its nominal surface. The edges that link 
together two surfaces belonging to two different parts represent the 
joints. For example, the edge that links surface 1,2 to surface 2,2 
represents the cylindrical pair joint (label CP) between surfaces 1,2 
and 2,2 while the edge linking surface 1,3 to 2,3 represents the planar 
pair joint (label PP). The features of these two joints are described in 
paragraph 2.1.2 and are shown in Figure 3.

Figure 4 Graph representation.

We searched for independent cycles in order to determine which 
equations guaranteed that a mechanism can exist, i.e. that it can be 
assembled. The number of independent cycles is the cyclomatic 
number µ  of the graph. In a graph with one connected component, 
µ is defined as follows:

1

with:

: number of edges of the graph

: number of vertices of the graph

e v

e

v

µ = − +

                                                  

(12)

In our example:

8 8 1 1µ = − + =                                                                             (13)

For each cycle closure,36 considers that the condition of 
interchange ability can be verified if the sum of the deviation hulls, 

written , / ,E i j i k   , is included in the sum of the clearance hulls, 

written , / ,J i j u v   . This condition guarantees assembly in the worst 

case, thus in our example:

( ) ( )min
2,2/2,3 1,3/1,2 1,2/2,2 2,3/1,3E E J J+ ⊆ +                                 

(14)

In our case, condition (14) which is formalised by the hulls can be 
transposed by operations on polytopes. c,min

, / ,i j u vD  represents the contact 

polytope in the minimum clearance configuration that corresponds to 
the most unfavourable case for an assembly condition.

( ) ( )g g c,min c
2,2/2,3 1,3/1,2 1,2/2,2 2,3/1,3+ ⊆ +D D D D

                                 
(15)

Figure 5 shows how the Minkowski sum of the two contact 
polytopes is determined, where polytope c,min

1,2/2,2D  characterises the 

CP joint in the minimum clearance configuration. The two geometric 
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polytopes g
1,2/1,3D  and g

2,2/2,3D  correspond to two perpendicularity 
specifications on parts 1 and 2 respectively (see Figure 6). 

Finally, Figure 7 illustrates equation (15) where the sum of 
geometric polytopes must be inside the sum of contact polytopes in a 

cycle. From this, we deduce the condition for assembling the system 
in the worst case scenario, as defined in the following equation:

1,2 2,2 min
t t J

b b b
+ ≤

                                                                       
(16)

Figure 5 Minkowski sum of contact polytopes.

Figure 6 Perpendicularity specifications modelled by geometric polytopes.

Figure 7 Inclusion of a sum of geometric polytopes inside a sum of contact 
polytopes in a cycle.

Simulation of respecting a functional condition 

A functional condition (or requirement) is a condition placed on 
a functional characteristic of position or orientation between two 
surfaces, which are usually on different parts, and which are not 
potentially in contact. Figure 8 illustrates the example presented 
above. Let us suppose that a functional condition FC has to be 
respected which limits the relative position of surfaces 1,1 and 2,1. 
In the diagram this is represented in a rectangle labelled FC on an 
edge linking surfaces 1,1 and 2,1. This example shows a condition 
of coaxiality being modelled in a unidirectional functional condition. 
The functional condition FC limits the displacement of point A on the 
axis of surface 1,1 in relation to the axis of surface 2,1 along axis y :

1,3/2,3min max     Ae e e with e −≤ ≤ = ⋅ yε
                                                

(17)

Figure 8 Cycles influent on the Functional Condition FC.

Equation (17) represents two halfspaces of dimension 1, whose 
intersection defines the functional polytope f

1,1/2,1D  characterising 

the functional condition FC. The functional condition FC depends on 
two cycles 1C  and 2C : see Figure 8. For the FC to be respected, 
the intersection of the two geometric polytopes representing the 
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deviations between surfaces 1,1 and 2,1 by 1C  and 2C  respectively 

must be included in the functional polytope f
1,1/2,1D  :13

( )1 2 f
1,1/2,1 1,1/2,1 1,1/2,1

1
1,1/2,1 1

2
1,1/2,1 2

with :

 polytope corresponding to 

 polytope corresponding to 

C

C

∩ ⊆D D D

D

D
                                              

(18)

The position of surface 1,1 (cylinder) can be controlled in relation 
to surfaces 1,3 (primary plane) and 1,2 (secondary cylinder) by 
defining a location specification using ISO standards:4 see Figure 9 
and Figure 10. The position of surface 2,1 in relation to 2,3 and 2,2 
can be defined in the same way by a location specification: see Figure 
9 and Figure 10. Finally, the geometric polytope characterising the 
deviations of surface 1,1 in relation to surface 2,1 is given in:

( )1 2 g c c g
1,1/2,1 1,1/2,1 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1

1 g c g
1,1/2,1 1,1/1,3-1,2 1,3/2,3 2,3 2,2/2,1

2 g c g
1,1/2,1 1,1/1,3-1,2 1,2/2,2 2,3 2,2/2,1

with:

−

−

−

∩ = ∩

=

=

D D D + D D +D

D D +D +D

D D +D +D

                                                                                                              (19)
Figure 9 Graph representation of geometric specifications ensuring respect 
of the Functional Condition FC.

Figure 10 ISO representation of geometric specifications ensuring respect of the Functional Condition FC.

From this we deduce that respecting the functional condition FC 
can be written:

( )g c c g f
1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1 1,1/2,1−∩ ⊆D + D D +D D

           
(20)

Let us suppose:

( )g c c g
1,1/2,1 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1−= ∩D D + D D +D

                
(21)

Figure 11a shows determining polytope 1,1/2,1D  using Minkwoski 
sums and an intersection. Figure 11b shows respecting the functional 

condition where the geometric polytope 1,1/2,1D  (of dimension 2) must 
be included inside polytope f

1,1/2,1D  (of dimension 1). Consequently, 

respect for the functional condition FC can be defined by the following 
equations in the worst of cases:

max
1,1 2,12

min

max
1,1 2,12

max

2 2 2

2 2 2

t tJ
e

t tJ
e

− − − ≥

+ + + ≤
                                                               

(22)
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Figure 11 Respect of the Functional Condition FC by operations on polytopes.

Including thermo-mechanical strains in the 
geometrical variations 
Description of the thermo-mechanical operating cycle of a system: 
So that thermo-mechanical strains can be included in the geometric 
variations of the reference behaviour, several different behaviours are 
considered for each system studied:

a.	 One reference behaviour,

b.	 One or several thermo-mechanical behaviours.

A reference model is defined from the reference behaviour, 
where all the parts are at 20°C. This reference model is based on the 
hypotheses traditionally put forward in geometric tolerancing, and 
set out at the beginning of section 2. Thermo-mechanical behaviour 
corresponds to a particular operating point in the system where 
certain parts are subjected to thermo-mechanical constraints. Thermo-
mechanical constraints on the parts cause strains, leading to situation, 
dimension and form deviations which must be considered when 
modelling geometric variations. The functioning of the system studied 
here over time is discretized into several different thermo-mechanical 
behaviours. No transitional state is considered. Next in section 3 we 
show how modelling particular thermo-mechanical behaviour with 
polytopes can be deduced from the model already defined for the 
reference behaviour.37

The following hypotheses are postulated:

a)	 Invariance of the topological structure of the contact graph,

b)	 Consideration of variations in the form and dimensions of the 
parts,

c)	 No local strain on surfaces in contact.

Invariance of the topological structure of the contact graph means 
that there is no additional contact or any suppression of contact 
between two behaviours. In addition, each contact type remains 
the same: a cylindrical pair remains a cylindrical pair; a planar pair 

remains a planar pair, etc. However, the different parameters that 
characterise contact (minimal clearance, maximal clearance, nature of 
contact, etc.) may change. The thermo-mechanical behaviour of the 
system is presumed to be elastic; it is modelled in small strains and in 
small displacements.

Integration of thermo-mechanical strains on the parts 
in a free state

For each part, a thermo-mechanical simulation is carried out 
with finite elements in a free state. The purpose of a simulation is 
to determine geometric variations of thermo-mechanical origin in a 
part, while considering no contact stress with the surrounding parts. 
A method commonly used in tridimensional metrology26 assesses 
geometric variations in a part in a free state that are thermo-mechanical 
in origin. A deformed part is modelled by a finite number of points, 
each of which corresponds to a node in the mesh of the deformed 
part. An ideal surface (plane, cylinder, cone, etc.) is associated to the 
mesh nodes using the least squares criterion. Thus a plane surface is 
associated to the nodes of the deformation of a nominal plane surface; 
a cylindrical surface is associated to the nodes of the deformation of 
a nominal cylindrical surface, etc. It is thus possible to characterise 
the geometric deviations caused by thermo-mechanical strain between 
two associated surfaces, using a small displacement torsor from which 
a reduced polytope with a vertex of n

  can be deduced.

Let us consider part 1 shown in Figure 12: Figure 12a shows the 
nominal model of the part from which the deformation of the part 
subjected to thermo-mechanical strains is determined. Figure 12b 
shows the associations of two cylindrical surfaces 1,1th and 2,2th 
with deformations deduced from the nominal cylindrical surfaces 
1,1n and 2,2n respectively. In the same way, the plane surface 1,3th 
is associated with the deformation deduced from the nominal plane 
surface 1,3n. The relative position of surfaces 1,3th and 1,2th can be 
expressed by the following equation, based on (3):

1,2 /1,3 1,2 /1,2 1,3 /1,3th th th n n thd d d= +                                                   
(23)
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Figure 12 Characterisation of thermo-mechanical strains by geometric deviations defined by substituted surfaces.

In the base ( )x, y, z , we have:

1,2 /1,3

1,2 /1,3 1,2 /1,3
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th th
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                                                                                                                   (24)

We can characterise the geometric deviations defined by 

1,2 /1,3th thd    by the polytope g,th
1,2/1,3D . This polytope is a vertex of 2

  

the components of which are given by 1,2 /1,3th th yρ −  and 1,2 /1,3th th zρ − . 

We can hypothesise that in any thermo-mechanical behaviour:
g,ma g
1,3/1,2 1,3/1,2 defined in the reference behaviour=D D

                
(25)

The geometric polytope characterising geometric variations 
between surfaces 1,3 and 1,2, brought about by manufacturing 
processes and cumulated with variations caused by thermo-mechanical 
strains, is then defined by the following Minkowski sum:

g g,ma g,th
1,3/1,2 1,3/1,2 1,3/1,2= +D D D

                                                           
(26)

Determination of polytope g
1,3/1,2D  is shown in Figure 13.

Figure 13 Characterisation of geometric deviations induced by manufacturing process and thermo-mechanical behaviour.

Integrating thermo-mechanical strains into the 
contacts

Simulation of a joint between two parts potentially in contact 
consists of determining the contact polytope in the event that the 
surfaces in contact are thermo-mechanically deformed. The condition 
of non-interference defined in (9) no longer depends only on clearance 
between the two surfaces due to manufacturing deviations but also 
on local clearance due to dimension and form deviations of thermo-
mechanical origin. In this case, the non-interference constraints 
between surfaces i, j and u, v formalised in equation (27) generalise 
equation (9) where dN represents local clearance at point N:

N, , / , N N.   c i j u vN E d∀ ∈ ≤nε
                                                     

(27)

Local clearance dN at point N is defined as a function of clearance 
J between the two substituted surfaces and as a function of form 
deviations of thermo-mechanical origin N- ,i j thdev −  and N- ,u v thdev −  in 
surfaces i, j and u, v respectively:

( )N N- , N- ,
2

i j th u v th

J
d dev dev− −= + −

                                              
(28)

Figure 14 shows the case of the CP joint between surfaces 1,2 and 
2,2 studied in paragraph 2.1.2 under thermo-mechanical behaviour. 
Here, clearance J  between the two substituted surfaces is defined by 
the following equation:

( ) ( )2,2 1,2 2,2 2,2_ma 2,2_th 1,2 1,2_ma 1,2_th

1,2 2,2

1,2_ma 2,2_ma

1,2_th 2,2_th

D D D D

with:

D , D :  nominal diameters

, : diameter deviation du to manufacturing process

, : diameter deviation du to thermom

n n

n n

J d d d d

d d

d d

= − = −+ + + +

echanical strains

                                                                                                                   (29)
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Figure 14 Geometric deviations between two disturbed surfaces potentially in contact.

The least favourable configuration for assembly in terms of 
manufacturing deviations is that which corresponds to: 

( )( ) ( )( )min 2,2 2,2_ma 2,2_th 1,2 1,2_ma 1,2_thmini maxi
D Dn nJ d d d d= −+ + + +

                                                                                                             
(30)

Finally, equations  are written as follows for the CP joint:

 
                                                                                                                (31)

The upper and lower boundaries of the halfspaces are no longer 
constants as they were in equation (9). It is not possible to express this 

polytope simply, in a similar way to (11). The polytope characterised 

by (31) is generally written c,th
1,2/2,2D  or c,th,min

1,2/2,2D  giving consideration 

to (30). There are two possibilities: 

a.	 The intersection between the halfspaces defined by (25) 
generates a polytope,

b.	 The intersection between the halfspaces defined by (26) 
generates an empty set.

Case (a) is illustrated in Figure 15 where the polytope c,th,min
1,2/2,2D

, represented in two specific projection planes, characterises the 
relative positions of surfaces 1,2 and 2,2 at point A. Contact between 
1,2 and 2,2 gives rise to no additional strain in the mechanical system. 
It is specified that the joint has floating contact.

Figure 15 Contact polytope between two disturbed surfaces: case of no clamping.

Case (b) corresponds to a local clamping phenomenon, also called 
local tightening, between the two parts. No movement between the 
two surfaces relative to one another is possible: it is specified that 
the joint has fixed contact. The contact polytope c,th,min

, / ,i j u vD  is a vertex 

that coincides with the origin: see Figure 16. Clamping will cause 
additional strains locally in the two parts in contact which will have 
to be determined in a thermo-mechanical simulation of the complete 
system.

( ) ( ) ( ){ }N-2,2 N-1,2 1,2/2,2 1,2/2,2 N-2,2 N-1,2.
2 2

c

th th N N th th

N E

J J
dev dev AN dev dev− − − − −

∀ ∈

− − − ≤ + × ≤ + −nε ρ
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Figure 16 Contact polytope between two disturbed surfaces: case of clamping.

Condition for cycle closure

In paragraph 2.2, we saw that the topological structure of a 
mechanism is made up of a number of independent cycles and it must 
be ensured that these are closed. Closing a cycle requires the inclusion 
of g

, / ,i j i k∑D , the Minkowski sum of the geometric polytopes of the 

cycle, in c
, / ,i j u v∑D , the Minkowski sum of the contact polytopes of 

the cycle:

( )g c
, / , , / ,i j i k i j u v∑ ∑⊆D D

                                                                
(32)

In thermo-mechanical behaviour, equation (32) becomes: 

( )g,ma g,th c,th
, / , , / , , / ,i j i k i j i k i j u v∑ ∑+ ⊆D D D

                                                  
(33)

with:
g,ma
, / ,i j i kD + g,th

, / ,i j i kD : geometric polytope defining geometric variations 

between surfaces i, j and i, k of part i caused by manufacturing 

processes, cumulated with variations caused by thermo-mechanical 
strains in i in the free state,

c,th
, / ,i j u vD : contact polytope which takes into account thermo-

mechanical strains between surfaces i, j and u, v which are potentially 
in contact.

Determining polytope ( )g,ma g,th
, / , , / ,i j i k i j i k+D D  is described in 

paragraph 3.2. Determining polytope c,th
, / ,i j u vD  is described in 

paragraph 3.3.

Figure 17 shows the three possible cases representing verification 
that the sum of the geometric polytopes is included in the sum of 
the contact polytopes, based on the example described in paragraph 2 
in the most unfavourable configuration for the assembly. Figure 17a 
illustrates the following configuration:

( ) ( ) ( )g,ma g,th g,ma g,th c,min,th c,th
2,2/2,3 2,2/2,3 1,3/1,2 1,3/1,2 1,2/2,2 2,3/1,3+ ⊆ +D +D D +D D D

                                                                                                        (34)

Figure 17 Inclusion of a sum of geometric polytopes inside a sum of contact polytopes taking into account the thermo-mechanical behaviour of the system.

This means that it is possible to assemble the system without any 
further strain in the parts. Thermo-mechanical strains in the parts in 
the Free State leave sufficient clearance in the joints to produce the 
assembly. Figure 17b illustrates the following configuration:

( ) ( )( ) ( )g,ma g,th g,ma g,th c,min,th c,th
2,2/2,3 2,2/2,3 1,3/1,2 1,3/1,2 1,2/2,2 2,3/1,3+ ∩ + = ∅D +D D +D D D

                                                                                                                 (35)

This means that it is not possible to assemble the system without 
adding further strain in the parts. Equation (35) represents clamping 
of the cycle. Thermo-mechanical deformations in the free state 
have suppressed clearance in the joints enabling the assembly to 
be produced. A finite element thermo-mechanical simulation of the 
complete system must be carried out, taking into account the contact 
conditions between the parts under thermo-mechanical behaviour. 
Figure 17c illustrates the following configuration:
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( ) ( ) ( )
( ) ( )( ) ( )

g,ma g,th g,ma g,th c,min,th c,th
2,2/2,3 2,2/2,3 1,3/1,2 1,3/1,2 1,2/2,2 2,3/1,3

g,ma g,th g,ma g,th c,min,th c,th
2,2/2,3 2,2/2,3 1,3/1,2 1,3/1,2 1,2/2,2 2,3/1,3

+ ⊄ +

+ ∩ + ≠ ∅

  
 
  

D +D D +D D D

D +D D +D D D

                                                                                                                (36)

The inclusion condition is generally not verified. However, with 
certain configurations it is possible for the two parts to be assembled 
without further strain: the intersection of the two polytopes is not 
empty. This represents an uncertain clamping of the cycle.

Simulating respect of a functional requirement 

Let us consider the functional condition defined by equation 

(17) characterised by the functional polytope f
1,1/2,1D . Equation 

(20), which defines respect of the functional condition, remains the 
same, given that the topological structure of the system between the 
reference behaviour and thermo-mechanical behaviour remains the 
same by virtue of the hypotheses set out at the beginning of paragraph 
3.1. In the first configuration, we assume that no local clamping is 
detected in the CP joint between 1,2 and 2,2 (see Figure 15) and that 
no clamping is detected in the cycle (see Figure 17a).

According to equation (22), it follows that:

                  
( )g g,ma g,th c,th,max c,th g,ma g,th

1,1/2,1 1,1/1,3-1,2 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1 2,3 2,2/2,1− −= ∩ +D D +D + D D +D D 	 (37)

with:
g,th
1,1/1,3-1,2D  and g,th

2,3 2,2/2,1−D : geometric polytopes representing 

deviations of thermo-mechanical origin in the free state in parts 1 and 
2 respectively,

g,ma
1,1/1,3-1,2D  and g,ma

2,3 2,2/2,1−D : geometric polytope representing 

manufacturing deviations in parts 1 and 2 respectively,
c,th,max
1,2/2,2D , c,th

1,3/2,3D : contact polytope incorporating thermo-

mechanical strains between parts 1 and 2 of the CP joint with maxJ
 clearance and of the PP joint with null clearance respectively.

Respecting the functional condition FC in this first configuration is 
illustrated in Figure 18 and defined by(38):

minmax 1,1 /1,3 1,2 2,3 2,2 /2,1

maxmax 1,1 /1,3 1,2 2,3 2,2 /2,1

1,1 2,1

2 2

1,1 2,1

2 2

th
A th th th y A th th th y

th
A th th th y A th th th y

t t
J e

t t
J e

ε ε

ε ε

− − − − − −

− − − − − −

− − − + + ≥

+ + + + + ≤

                                                                                                        (38)

Figure 18 Respect of the Functional Condition FC by operations on polytopes: case of no clamping.

Let us consider the mechanism in a second configuration where 
local clamping in the CP joint between 1,2 and 2,2 (see Figure 16) 
and clamping of the cycle (see Figure 17b) have been detected. 
The appearance of one or several clamps requires a further thermo-
mechanical study of the complete system to be carried out which takes 
into account these added strains over and above the strain on the parts 
in their free state. Clamping phenomena are modelled with marginal 
contact conditions between the parts in finite element modelling. 
When defining marginal contact conditions the characteristics of the 
joints defined in the thermo-mechanical behaviour must be respected: 

a)	 Cylindrical pair type contact of a fixed nature between 1,2 and 
2,2,

b)	 Planar pair type contact of a sliding nature (null clearance) 
between 1,3 and 2,3.

Figure 19 shows the result from a thermo-mechanical calculation 
on the complete system. The purpose of the thermo-mechanical 
simulation is to define the geometric polytope g,th

1,1/2,1D  which will 
determine deviations of thermo-mechanical origin between surfaces 
1,1 and 2,1. The method used is the same as in paragraph 3.2 to 
determine deviations of thermo-mechanical origin on a distorted part 
in the free state: see Figure 19.

According to (21), this polytope is determined as follows:
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Figure 19 Characterisation of the thermo-mechanical behaviour of the complete system: case of clamping.

( )g g,th g,ma c,th,max c,th g,ma
1,1/2,1 1,1/2,1 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1−= + ∩D D D + D D +D

                                                                                                              
(39)

with:
g,th
1,1/2,1D : geometric polytope characterising deviations of thermo-

mechanical origin between surfaces 1,1 and 2,1 from the thermo-

mechanical simulation of the complete system,

g,ma
1,1/1,3-1,2D  and g,ma

2,3 2,2/2,1−D : geometric polytope characterising 

manufacturing deviations in parts 1 and 2 respectively,
c,th,max
1,2/2,2D , c,th

1,3/2,3D : contact polytope between parts 1 and 2 of the 

cylindrical pair joint with maxJ  and the planar pair joint respectively 

including thermo-mechanical strains.

Respect of functional condition FC in this second configuration is 
illustrated in Figure 20 and defined by equation (40):

min1,1 /2,1

max1,1 /2,1

1,1 2,1

2 2

1,1 2,1

2 2

A th th y

A th th y

t t
e

t t
e

ε

ε

− −

− −

− − + ≥

+ + + ≤
                                              

(40)

Figure 20 Respect of the Functional Condition FC by operations on 
polytopes: case of clamping.

Proposal for a global tolerancing procedure 

Global tolerance analysis procedure

The organisational chart in Figure 21 breaks down the procedure 
proposed in this article into two distinct parts. The first corresponds to 
the preparation of the reference tolerance analysis model representing 
the reference behaviour. The start data consists of:

a)	 A functional requirement,

b)	 CAD model of the complete system,

c)	 Specifications for contact between the parts,

d)	 ISO geometric specifications for the parts.

If the system cannot be assembled without distorting the parts (i.e. 
if cycle closure independent of the system graph is not possible) or if 
the functional requirement is not respected, then the global method 
has provisions for suggesting to the designer that the geometric 
specifications of the parts should be modified. This may simply 
involve reducing the dimensions of the tolerance zones and increasing 
minimum clearance, for example. If this is not sufficient, perhaps in 
terms of manufacturing criticality criteria, then it is suggested that 
the designer modifies the contact specifications. This may involve 
removing or adding joints and hence potentially modifying the number 
of parts. In general, this modifies the system architecture considerably. 
Implementation of the tolerance analysis process in this first part of 
the global method is described in paragraph 2. All thermo-mechanical 
behaviours are based on the reference model in accordance with the 
hypotheses set out in paragraph 3. 

Next, the tolerance analysis model of specific thermo-mechanical 
behaviour is produced. The thermo-mechanical specifications of the 
system are added to the start data needed to produce the reference 
model. These are temperature and material specifications. In the first 
phase, temperature specifications are taken into account in a thermal 
simulation of the complete system. In the second phase, the thermo-
mechanical strains of all the parts in the free state are determined. 
For these two phases we used a commercial thermo-mechanical 
finite element calculation tool. In the third phase, all the joints are 
characterised by a thermo-mechanical contact polytope incorporating 
the variations in dimension and form of surfaces potentially in 
contact. In this way, any possible local clamping (or tightening) 
between two parts can be detected. Finally, by simulating closure of 
the independent cycles any clamping of the cycles can be identified. 
If clamping is detected, a thermo-mechanical study of the complete 
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system is carried out to determine the thermo-mechanical variations 
in the surfaces specified by the functional requirement in terms of 
situation, dimension and form deviations. If no clamping is detected, 
the thermo-mechanical behaviour of the system depends only on strains 
in the parts in the free state: no further thermo-mechanical simulation 
is required. Finally, if the functional requirement is not respected, then 
this suggests that the designer should modify the thermo-mechanical 

specifications as well as the geometric specifications of the parts and 
the contact specifications of the system. In general, modifying the 
temperature, materials or contact specifications can change the system 
architecture considerably. Implementation of the tolerance analysis 
processes in this second part of the global method is described in 
section 3.

Figure 21 Global method of tolerancing analysis taking into account thermo-mechanical behaviour.

Discussion of the proposed procedure

The operational cycle of the system studied is discretized into 
several behaviours: one reference behaviour and several thermo-
mechanical behaviours. The reference behaviour is based on 
modelling infinitely rigid solids and does not take into account any 
strain that may be caused by residual stresses during manufacture or 
assembly. Each thermo-mechanical behaviour is defined by constant 
temperature specifications. The functioning of a high pressure 

turbine is thus defined by a finite set of behaviours where the turbine 
combustion chamber is at 20°C. This set of behaviours characterises 
the turboshaft engine’s thermo-mechanical operating cycle.38 The 
thermo-mechanical behaviour of the system is assumed to be elastic. 
In addition, the invariance of the topological structure of contacts 
between behaviours means that geometrical variations in the system 
can be determined from closure of the same cycles in all behaviours. 
These cycles characterise the 3D dimension chains and determine the 
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operations (Minkowski sum and intersection) to be put in place. These 
operations are characterised in the reference behaviour. Only the 
polytope operands are liable to change from one behaviour to another. 
The global method outlined in Figure 21 uses a finite element thermo-
mechanical simulation tool.

This tolerance analysis method is based solely on a worst case 
analysis. 

Conclusions and future developments
We have shown how to use operations on polytopes to characterise 

geometric variations limited by ISO geometric specifications for the 
parts and by contact specifications between the parts. After setting up 
a method adapted to modelling a system of infinitely rigid solids, we 
described the principles of integrating thermo-mechanical strain in the 
parts and the contacts. Statistical formulations are planned in future 
studies, but these may prove ineffective in behaviours where the 
original determinist thermo-mechanical deviations are very great in 
comparison with deviations due to manufacturing processes. Finally, 
future developments are planned which will take into account strains 
arising from residual stresses in manufacturing processes (e.g. Resin 
Transfer Moulding) or in assembly processes where rivets or bolts 
are used. This will enhance the multiphysical nature of this approach.
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