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Introduction
In engineering applications, especially in the field of modern 

military defence, the cylindrical shells, conical shells and coupled 
conical-cylindrical shells are basically simplified models of many 
types of weapons and equipment, such as aircraft, missiles, and 
submarines. The study of free vibrational characteristics of cylindrical 
shells is comprehensive. Initially, researchers1-5 investigated 
cylindrical shells using classic thin shell theories such as Donnell 
equations, Kennard equations, Flugge equations and Sander-Koiter 
equations. Harari, Sandman and Laulagnet were representative 
scholars in the field. Rayleigh6 was a pioneer in the study of free 
vibrational characteristics of cylindrical shells. The literary work of 
Leissa7 gave general comments on the free vibrational characteristics 
of cylindrical shells. The free vibrational characteristics of conical 
shells with simply-supported boundary conditions are examined using 
Statistical Energy Analysis by Creenwelge.8 Talebitooti9 and Li10 
analysed the free vibrational characteristics of conical shells using the 
Rayleigh-Ritz method. The kp-Ritz method is used to study conical 
shells in the work of Liew et al.11 Guo12 applied the multiple factor 
method to discuss the free vibration characteristics of conical shells. 

Unlike the cylindrical shells, the section radius of a conical shell 
will vary in the axial direction, which increases the complexity and 
the difficulty in studying conical shells. So far, only an approximate 
solution for determining the natural frequencies of conical shells 
has been obtained. Limited work on the analysis of free vibrational 
characteristics of coupled conical-cylindrical shells has been carried 
out. Initially, the natural frequencies of the coupled conical-cylindrical 
shell were solved used FEM. Irie13 investigates the natural frequencies 
of the coupled shell through the transfer matrix theory. Caresta14 used 
the two thin theories by Donnell-Mushtari and Flugge to examine 
the free vibrational characteristics of coupled shells. This paper 
applies a new method to analyse the free vibrational characteristics 
of isotropic coupled conical-cylindrical shells, which is different from 

the approach employed in previous studies. The method is referred to 
as PITMM. Based on the Flugge thin shell theory, equations of motion 
for cylindrical and conical shells are derived. The coefficient matrix in 
the equations of motion for cylindrical and conical shells is calculated 
using the precise integration method. To take into account the point 
transfer matrix at the junction of the coupled conical-cylindrical 
shell and to absorb the matrix assembly solution from FEM, the total 
transfer matrix of the coupled shell is constructed. According to the 
boundary conditions, the natural frequencies of the coupled shell are 
solved.

Equations of motion
Motion of a cylindrical shell

The shell deformation is described by the thin shell theory that is 
based on linear assumptions. To obtain precise results, the relatively 
accurate Flugge shell theory is used in this paper. The force balance 
equation is obtained by analysing the micro-element stress of 
the cylindrical shell. In this paper, the equations are based on 
the kinetic theory. Thus, many terms include time items. For the 
purpose of facilitating the writing and derivation, the dynamic 
response time item i te ω−  is omitted in the remainder of the text. 
The cylindrical shell coordinates system ( , , )γ ϕ χ  and displacement 
positive direction are shown in Figure 1.

Based on the Flugge shell theory, the force balance equation of a 
cylindrical shell is given as follows:
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integration transfer matrix method (PITMM) is implemented to investigate the 
free vibrational characteristics of isotropic coupled conical-cylindrical shells. The 
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method. An approach for studying the free vibrational characteristics of isotropic 
coupled conical-cylindrical shells is obtained.
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Figure 1 Coordinate system of a cylindrical shell.

The Kevin-Kirchhoff membrane forces, shear and all internal 
forces are
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where K and D are the bending rigidity and membrane rigidity, 
respectively.
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The relationship between the radial displacement and slope is
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There are sixteen unknown quantities in the above 
equations. To eliminate eight unknown quantities

( ), , , , , , ,x x x x xN N N M M M Q Qθ θ θ θ θ θ θ , eight unknown quantities 

( )x x x x, , , , N , M , V ,Su v w ψ  are retained, which are the sectional state 
vector elements of the cylindrical shell. All quantities are processed 
into dimensionless quantities and expanded to trigonometric series 
along the circumferential direction.
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where n is the circumferential modal number. Other dimensionless 
quantities and dimensionless frequency parameter are
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Through complicated simplification, a first-order matrix 
differential equation of the cylindrical shell is obtained.
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where { }T
( ) x x x xu v w M V S Nϕξ ψ=Z is the 

state vector of the cylindrical shell. ( , , )u v w are the dimensionless 
quantities of the axial displacement ( x direction), the circumferential 
displacement (ϕ direction) and the radial displacement ( γ direction), 
respectively.ψ is a dimensionless slope, xN is a dimensionless 
membrane force, xM is a dimensionless bending moment, ( ),x xV S
are the dimensionless Kelvin-Kirchhoff shear force and shear force, 
E and µ are Young’s modulus and Poisson’s ratio, respectively. 

( )ξZ is the shell element’s state vector and is also a function of 
the dimensionless variablesξ . ( )ξU is the coefficient matrix of the 
differential equation of the cylindrical shell and is an eight-order 
square matrix. There are 22 non-zero elements in ( )ξU , see Appendix 
A.

Motion of the conical shell

In a cylindrical coordinate system, the generatrix direction and 
radial direction of the conical shell are defined as the coordinate 
direction. The position of any point on a conical shell can be described 
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as ( ),s θ . s is length from the top point of the conical shell to any 
point on the conical shell along the generatrix direction. θ is the 
angle of the point along the circumferential direction in a cylindrical 
coordinate system. The coordinate system of a conical shell is seen 
in Figure 2. The analysis of the conical shell force, the force balance 
equation of a conical shell is given as follows:
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Figure 2 Coordinate system of the conical shell.

The Kevin-Kirchhoff membrane forces, shear and all internal 
forces are
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The relationship between radial displacement and the slope of 
conical shell satisfies
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All quantities are processed into dimensionless quantities and 
expanded to trigonometric series along the circumferential direction.
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where bending rigidity is 
3
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Poisson’s ratio are E andν , respectively. n is the circumferential 
modal number. =1α and =0α are the symmetric or the anti-symmetric 
modal, respectively. R is the radius at the larger end of the conical 
shell. h is the thickness of the conical shell. Other dimensionless 
quantities are presented as
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s , startL , endL are described in Figure 2. ρ ,ω , λ are, respectively, 
material density, circular frequency and the dimensionless 
frequency parameter. There are sixteen unknown quantities in 
the above equations. To eliminate eight unknown quantities 
( ), , , , , , ,s s s s sM M M N N Q N Qθ θ θ θ θ θ θ , eight unknown quantities 

, , , , ,( ), ,s s s su v w M V N S θϕ are retained, which are the sectional state 
vector elements of the conical shell. Then, the first-order matrix 
differential equation of the conical shell is obtained.
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are shown in Appendix B.
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Solutions to equations
Assuming that the exciting loads of Eqs. (30), (56) are zero, the 

equations of motion are simplified to
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Eqs. (57) and (58) are the equations of motion for the cylindrical 
and conical shell, respectively, which are dealt with as follows
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In the following chapters, the solution for the coefficient matrix

1

exp( ( ) )d
ξ

ξ
τ τ∫ U using the precise integration method is presented.

Solutions for the coefficient matrix of the cylindrical 
shell

In the numerical calculation, the cylindrical shell is divided into 
a series of segments. The node coordinate of a segment is kξ , k
=i+1,i+2,i+3,…. Any coordinates of contiguous nodes are k and 1kξ + , 
where 1k kξ ξ ξ+ = + ∆ . The coefficient matrix ( )ξU for the cylindrical 
shell is independent ofξ . Thus, the coefficient matrix in Eq. (63) can 
be written as
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where 8I is an eight-order unit matrix. Using the addition theorem 
directly to add 8I and aT when aT is small relative to 8I , an error in the 
mantissa will occur due to computer rounding errors and leads to loss 
of precision. 

Therefore, this paper uses an addition theorem to calculate aT
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Solutions for the coefficient matrix of the conical shell

To facilitate the numerical calculation, the conical shell is split into 
a series of segments along the generatrix direction. Eq. (63) can be 
written as
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The coefficient matrix ( )ξU for the conical shell is dependent 

on ξ . Therefore, the transfer matrix 1exp ( )j
j

d
ξ
ξ τ τ+
∫ 
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U cannot be 

calculated like the transfer matrix for a cylindrical shell. This paper 
calculates the transfer matrix 1j+T for a conical shell by precise 
integration. Segments ξ∆ of the conical shell are divided into a precise 

integral step ς∆ ( )
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to be the constant coefficient matrix, which is independent of ς . The 
variable coefficient matrix 1j+T in segment ξ∆ of the conical shell can 
be calculated through the constant coefficient matrix of integral steps 
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precise integral step can be solved like the reference method for 
solving e ξ∆U in section 3.1.

Solutions for the point matrix at the junction of the 
coupled shell

The displacements, slopes, forces and moments at the junction 
of the coupled conical-cylindrical shell should satisfy the following 
deformation compatibility conditions (Figure 3) (Figure 4).

a. At the junction of the coupled shell, the displacements and 
slopes , , ,co co co cou v w ϕ of the conical shell are in continuity with 

, , ,cy cy cy cyu v w ϕ of the cylindrical shell at the three coordinate axis.

b. At the junction of the coupled shell, the forces and moments 
, , ,s s s s

co co co coN S N Mϕ of the conical shell are equal to , , ,s s s s
cy cy cy cyN S N Mϕ

of the cylindrical shell at the three coordinate axis.

According to the positive directions shown in the Figure 3 and 
Figure 4, the displacements, slopes, forces and moments of the conical 
and cylindrical shells at the junction satisfy

		  cos sincy co cou u wα α= −               (84)

		      cy cov v=                                       (85)

		   sin coscy co cow u wα α= +             (86)

		      cy coϕ ϕ=                                      (87)

		
cos sins s s

cy co coN N Vα α= +             (88)

		       
s s
cy coS Sϕ ϕ=                                    (89)

		
sin coss s s

cy co coV N Vα α= − +            (90)

		      
s s
cy coM M=                                   (91)

To take into consideration displacements, slopes, forces and 
moments satisfying the continuity conditions at the junction, the 
relationship of the left end state vector and the right end state vector 
at the junction is

	
( = ) = ( = )L co cy R

cy cos L s L→PZ Z                    (92)

Eq. (92) can be written as

	    ( ) = ( )cy co cy co
i iξ ξ→PZ Z                              (93)

The point transfer matrix co cy→P can be described as

 

cos 0 sin 0 0 0 0 0
0 1 0 0 0 0 0 0

sin 0 cos 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 cos 0 sin
0 0 0 0 0 0 1 0
0 0 0 0 0 sin 0 cos

co cy

α α

α α

α α

α α

→

−

=

−

 
 
 
 
 
 
 
 
 
 
  

P                 (94)

Figure 3 The positive directions for displacements and slopes of conical and 
cylindrical shells.

Figure 4 The positive directions for forces and moments of conical and 
cylindrical shells.
Solutions for the coefficient matrix of the coupled 
shell

An illustration of the coupled conical-cylindrical shell is seen in 
Figure 5, α where is the semi-vertex conical angle. R is the radius of 
the cylindrical shell, which is also the larger end radius of the conical 
shell.

 sL is the length from the top point of the conical shell to the 
smaller end of conical shell along the generatrix direction.

 eL is the 
length from the top point of the conical shell to the larger end of the 
conical shell along the generatrix direction. The length of conical 
shell is co e sL L L= − and the length of the cylindrical shell is cyL . The 
thickness of the coupled shell is h .

Figure 5 Illustration for the coupled conical-cylindrical shell.
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According to sections 3.1, 3.2, and 3.3, the state vector of the 
segment nodes from the coupled conical-cylindrical shell satisfy

		  1 1 0( ) ( )ξ ξ=Z T Z                    		    (95)

		  2 2 1( ) ( )ξ ξ=Z T Z                  		     (96)
...
...

		  1( ) ( )co
i i iξ ξ −=Z T Z                		   (97)

		  ( ) = ( )cy co cy co
i iξ ξ→PZ Z       		    (98)

	 1 1 1( ) ( ) ( )cy co cy co
i i i i iξ ξ ξ→
+ + += = PZ T Z T Z               (99)

...

...
		  1( ) ( )n n nξ ξ −=Z T Z                   	   (100)

Eqs. (95)-(100) can be written in term of a matrix as follows

( ) ( )

1 0

2 1

3 2

1

n 8 8,18 ,8 8

0 0 0 0 0 0 ( ) 0
0 0 0 0 0 0 ( ) 0
0 0 0 0 0 0 ( ) 0
0 0 0 ... 0 0 0 0
0 0 0 0 0 0 ( ) 0
0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ( ) 0

i i

n nn n

ξ
ξ
ξ

ξ

ξ

+

++

−
−

−
=

−

−

     
     
     
                                    

P

T I Z
T I Z

T I Z

T I Z

T I Z

 

 

            

						         (101)

According to the given boundary conditions at the ends of the 
coupled shell, row numbers where elements of the state vector are 
zero are found. Then, to delete corresponding columns of coefficient 
matrix, Eq. (101) can be written as


( )





( ) ( )

1 0

2 1

3 2

1

8 ,1n 8 ,18 ,8

0 0 0 0 0 0 ( ) 0
0 0 0 0 0 0 ( ) 0
0 0 0 0 0 0 ( ) 0
0 0 0 ... 0 0 0 0
0 0 0 0 0 0 ( ) 0
0 0 0 0 0 ... 0 0

00 0 0 0 0 0 ( )

i i

nn nn n

ξ
ξ
ξ

ξ

ξ

+

−
−

−
=

−

−

     
     
     
                                      

P

T I Z
T I Z

T I Z

T I Z

T I Z

 

 



            

						    

						          (102)
Since the state vectors cannot all be zero vectors, the determinant 

of the coefficient matrix must be zero. The following equation is 
obtained.



( )

1

2

3

1

8 ,8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ... 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ... 0 0

0 0 0 0 0 0

i

n n n

+

−
−

−
=

−

−

P

T I
T I

T I

T I

T I


                    (103)

The natural frequencyω of the coupled conical-cylindrical shell 
is the only unknown quantity in the matrix T and is obtained through 
solving the frequency characteristic Eq. (103). By substituting the 

natural frequency into Eq. (102), the proportional relationship of state 
vectors can be obtained. Then, the modes of the coupled shell will be 
acquired in the given boundary condition. 

Conclusion
A new method, PITMM, is introduced in this paper to research the 

free vibrational characteristics of isotropic coupled conical-cylindrical 
shells. Based on the traditional transfer matrix and precise integration 
methods, the PITMM is constructed. The method not only retains the 
traditional transfer matrix methods’ advantages of formula regularity 
and easy programming but also obtains the high accuracy from the 
precise integration methods.
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