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Self sustained oscillations for square cavities at yaw

Abstract

An experimental study was conducted to determine the characteristics for a
compressible turbulent flow over square cavities at yaw. Flush-mounted dynamic
pressure transducers for mean and fluctuating pressure measurements were installed
along the chordwise direction. The self-sustained oscillation phenomenon was
examined by spectral density function. For a fixed yaw angle, the ratio of the incoming
boundary layer thickness to the depth of the cavity has an evident influence near the
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Introduction

Cavities that are exposed to surface bounding flows are of high
interest in both fundamental aspects and engineering applications
due to the inherent complex flow structure and induced drag.
Self-sustained oscillations lead to fluctuating load on airframes
and generate enormous noise. Lawson & Barakos' reviewed the
numerical simulations on cavity flows from 1955 to 2009. Cavity
flows are influenced by free stream conditions and cavity geometry.
The most remarkable parameter is the ratio of length to depth, L/H.
Charwat® showed the critical length of a cavity flow, which is the
length between the leading edge of the cavity and the attachment of
shear layer, is dependent on the state of incoming boundary layer
(laminar or turbulent). For a shallow cavity, Plentovich et al.’ found
that there are three types of cavities, namely, an open, a transitional
or a closed cavity. For supersonic cavity flows, a transitional cavity
can be further split into a transitional-open or a transitional-closed
cavity. In addition, for a compressible flow, the boundary between
an open and a transitional cavity is at L/H of 8—10 and that between
a transitional and a closed cavity is at L/H of 9—-14.*° The critical L/H
for a transitional cavity decreases as L increases and is more apparent
for higher M

For an open cavity, the flow essentially bridges the cavity and
a shear layer is formed over the cavity. There is an almost uniform
distribution of static pressure along the cavity floor. The impingement
of'the shear layer on the rear wall of the cavity leads to high fluctuations
and acoustic tones.® A yawed rectangular cavity means the flow are
parallel to the planform of a cavity, but the chordwise direction of
the cavity has an angle, £, with respect to the freestream direction.”
An asymmetric flow pattern inside the cavity was observed.® Lada
& Kontis® showed the yaw angle either disturbs the shear layer or
changes the flow type, resulting in attenuation of self-sustained
oscillations. The incoming boundary layer thickness to depth ratio,
S/ H, is another critical parameter. Increasing & / H could smooth
out the pressure gradient near the rear corner of a cavity.? The effect of
6/ H was also noted by Sinha et al.'” A laminar incoming boundary
layer generates strong vortex inside the cavity and the vortex is a more
localized phenomenon near the rear face.

Experiments were conducted to characterize a compressible
turbulent flow for square cavities at yaw. The effect of 6/ H on
the chordwise distribution of the mean and fluctuating pressure is
determined. The distribution of the power spectral density near the
rear face is also reported to characterize self-sustained oscillations.

Experimental setup

Experiments were conducted in the blowdown type transonic
wind tunnel at Aerospace Science and Technology Research Center,
National Cheng Kung University (ASTRC/NCKU). The tunnel has a
constant area test section of 600x600 mm? and 1500 mm in length.
The test section is assembled with solid side walls and perforated
top/bottom walls. The freestream Mach number, M, is 0.64, 0.70
and 0.83+0.01, and the corresponding unit Reynolds number
is 12.9, 15.1 and 17.2 x 10° per meter, with a naturally developed
turbulent boundary layer over a flat plate. The stagnation pressure p,
and stagnation temperature were maintained at 172 £ 0.5 kPa (25 *
0.15 psia) and room temperature, respectively. The boundary-layer
thickness, &, at 25 mm upstream of the cavity was approximate 7
mm."?

The test model consisted of a 4° sharp leading-edge flat plate and an
interchangeable instrumentation plate, as shown in Figure 1. The flat
plate was 450mmx150 mm and was supported by a single sting that
mounted on the bottom wall of the test section. The instrumentation
plate with a square cavity was 195mm x 150mmx25mm. For a fixed
yawed angle (f = 10°), the geometry of cavities is summarized in
Table 1. The length was 31, 43, 59mm and the depth ranged from
2.2 to 9.7 mm, corresponding to L/H of 4.43-21.50 and 6/ H of
0.73-3.50.

Dynamic surface pressure (Kulite XCS-093-25A, B screen)
measurements were conducted for the cavity models. The outputs of
the pressure transducers were recorded by using a National Instruments
(NI-SCXI) system, with a sampling rate was 5 s . The uncertainties
for the static surface pressure coefficient Cp and the surface pressure

fluctuation coefficient C  were 2.4% and 0.4%, respectively.
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Figure | A schematic drawing of test configuration and location of pressure transducers.

Table | Geometry of the square cavities

Cavity L, mm H, mm L/H a/H

| 5 6.2 1.4
31

2 22 14.09 3.18

3 9.7 443 0.72

4 7 6.14 |

5 5 8.6 1.4
43

6 35 12.29 2

7 3 14.33 2.33

8 2 21.5 35

9 9.6 6.15 0.73
59

10 42 14.05 1.67

Results and discussion

The effect of yaw angle on chordwise pressure distributions is
shown in Figure 2 where M = 0.83 and L/H = 4.43 and 8.60. For a
given value of L/H, there is less expansion near the rear face when
B = 10°. Lee et al.” also indicated that the yaw angle has an evident
effect on the amplitude of Ca near the rear face for open and

transitional cavities. Regarding the effect of d/H on square cavities
at yaw, Figure 3 presents the results of mean surface pressure of open
and transitional cavities for M = 0.83 in chordwise direction. For the
open cavities (Figure 3(a)), little variation is observed upstream and
along the floor of the cavity. Increasing § / H results in a suppression
of trailing edge expansion downstream of the cavities. For the
transitional cavities (Fig. 3(b)), despite the existences of suppressions
downstream of the cavities as & / H increases, the values of Cp along
the rear half of the cavity (x/D = 0.5-1.0) for § / H =1.67 are higher
than those for § / H = 2.33 and 3.18. Figure 4 shows the variations
in trailing-edge expansion with & / H for square cavities at yaw. For
both open and transitional cavities, the expansion downstream of the
cavities is suppressed by increasing & / H . Note that the effect of
Mach number is minimal.

Figure 5 shows the results of pressure fluctuations for the open
and transitional cavities for A = 0.83 in chordwise direction. For
open cavities, a similar trend is evident in the distributions of &/ h

with different values of §/ H; in contrast, C

immediately
9 p max

downstream of the cavities decreases as &/ H increases. For

transitional cavities, the distributions of C  exhibit a similar trend
o

P
with those for open cavities, and the C amplitude demonstrates
o

P
a slight drop with increasing § / H . The effect of o/H on C

9 p max
is shown in Figure 6. Increasing & / H tends to reduce the strengpth of
pressure fluctuations near the rear face of a cavity. Furthermore, this
phenomenon is more pronounced for open cavities at low values of M.

Flow unsteadiness is associated with deviation of higher order
moments (Skewness, a,, and flatness, «, , coefficients) with respect
to the Gaussian distribution, in which the values of @, and a, are 0
and 3, respectively.”® a, represents the asymmetry of the probability
density function and the deviation in &, shows the presence of more
large amplitude events. The effect of 6/ H on a, and a, for open
and transitional cavities at x/L = 1.058 is presented in Figure 7. For
either open or transitional cavities, § / H has a subtle influence on
@,. On the other hand, with increasing § / H , the value of a, for
the open cavity increases but that for the transitional cavity decreases.
a,atM=0.64and 6/ H =1.40is less than thatat § / H = 1.0, this
requires further study. The variation of a, with &/ H for the open

cavity is more evident at larger M.
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Figure 2 The chordwise static surface pressure distributions for M = 0.83 at

B = 0°and10°.
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sustained oscillations in a cavity. The distributions of power spectral S -02r B
density for M=0.83 with varying &/ H are presented in Figure 8. 04 M i
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shows a similar trend. Figure 7 Skewness and flatness coefficients at x/L = 1.058.
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Figure 8 Power spectral density.

Conclusion

This experimental study determines the characteristics of square
cavities at yaw (f = 10°) for a compressible turbulent flow. For
a given value of M, an increase in &/ H results in a suppression
of trailing edge expansion downstream of the cavities. The effect
of Mach number is minimal. Further, increasing &/ H reduces the
strength of pressure fluctuations near the rear face of a cavity and this
phenomenon is more pronounced for open cavities at low values of M.
For self-sustained oscillations, the peak frequencies decrease with an
increase in the cavity length. The SPLs of these peaks are higher at a
lower value of 6 / H .
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