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Introduction
Optimal control is the policy of getting the optimized control 

value for minimizing a predefined cost function. Recently, several 
optimization methods have been introduced for achieving this 
purpose.1–4 Among these methods, Pontryagins maximum principle5 
and the Hamilton Jacobi Bellman equation6 are the most popular. 
In Pontryagins maximum principle, the optimal control problem 
will be converted to an ODE problem while the Hamilton Jacobi 
Bellman method converts the optimal control into a nonlinear partial 
differential equation. Hamilton Jacobi Bellman method can be 
utilized in different linear, non-linear and even distributed optimal 
control problems. Be-cause of difficulty in solving the HJB and the 
Pontryagins maximum principal method, it is usually necessary to 
employ the numerical methods to achieve the optimal solutions for 
the nonlinear practical models. One of the popular semi-numerical 
methods which is frequently used in the recent years is the Adomian 
decomposition method.7 Adomian decomposition method and its 
modifications have been efficiently employed to solve the ordinary 
and partial differential equations.8–10 Because the method uses no 
linearization or smallness assumptions in solving the differential 
equations, it has been an effective method among the other techniques. 
Generally, in designing the optimal control problems for engineering 
and practical applications the parameters considered as deterministic, 
but there is a great deal of uncertain parameters which can greatly 
affect the system performance. Such an uncertainty can be made by 
model simplification, manufacture error, design tolerance etc. If the 
number of the system uncertainties becomes very small, deterministic 
methods can be employed to solve these problems with little errors. If 
the number of uncertain parameters has been increased or the ranges of 
these parameters have become large, the deterministic methods might 
give the wrong answer. Three different methods have been introduced 

for solving these uncertain problems: Probabilistic methods, fuzzy 
methods and interval methods.11 The main purpose of this paper is to 
introduce an interval version of Adomian decomposition method to 
solve the Hamilton Jacobi Bellman equation. The proposed method 
is first applied on a linear optimal control with uncertainties. After 
that, it is utilized to solve a nonlinear optimal control with uncertain 
parameters. Finally, a practical distributed system is solved by 
the proposed method; in this problem, in addition to assuming the 
presence of uncertainty in parameters, the initial conditions are also 
considered with uncertainty.

Interval arithmetic
This section describes the basic concepts of the interval arithmetic 

which is necessary to use the proposed method.12 Generally, basic 
interval arithmetic operations have described to guarantee the interval 
results reliability. let: [ ],X x x=  and ,Y y y =   be interval numbers 
as: X, Y ∈ R, ,x x y y< <  and the symbol ⋄ illustrates the basic 
mathematical operations, i.e. addition , subtraction, multiplication and 
division for real numbers. In other words,

		     { }, , , ◊ ∈ + − × ÷  .

By assuming the assumption above, we have:

		  { },Y Y y YΧ◊ = Χ◊ ∈Χ ∈|x ,	                                     (1)
where 0∉Y for preventing the singularity in the division. We can 
easily prove that the set IR of real compact intervals is closed with 
respect to the illustrated operations.13 from the explanation above, the 
basic interval arithmetic operations between two interval numbers X 
and Y and can be defined as follows:

		
,X Y x y x y + = + +                                                                 

(2)
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,X Y x y x y − = − −                                                                 (3)

	

{ } { }min ,max, , , , , ,xy xy xy xy xy xy xy xyY  Χ × =  
                     

(4)

		

1
/ Y

Y
Χ = Χ ×

                                                                          
(5)

		

1 1 y Y
Y y

  
= ∈ 
  

| , if 0 Y∉ ,

( )
( ) ( )

0,max , , 2 ,0 ,

min , ,max , , n 2 k, 0 ,

, , 2 1,

n n

n n n n n

n n

x x n k

x x x x

x x n k

  = ∈Χ  
  Χ = = ∉ Χ   
   = +   

    

   						                 

(6)

If in mathematical operations, a real number like x gets into 
operations, it can be described as x x x= =  and called degenerate 
interval ; in other words, the interval form for this constant number 
is X ≡ [x, x].

Description of the Hamilton-Jacobi-Bellman 
(HJB) formulation under interval uncertainty

In this section, a brief illustration of the optimal control and how 
to use the Hamilton-Jacobi-Bellman for solving these problems are 
described. Consider a state space representation system as below:

    		    ( ) ( ) ( ) [ ]( )   ,  , ,  ,x t F x t u t t δ=                                           (7)

where, x(t) is the space vector, u(t) is the control signal and 
[ ]  , δ δ δ=     is a coefficient with interval uncertainties. The main 
purpose is to find a control signal to minimize the following index 
performance:

		  ( ) ( )( )ˆ, , , ,
0

tf
J g x u dτ τ τ δ τ = ∫  

                                                (8)

Here, g(.)is an arbitrary convex function, tf is final time of system 
operation ˆ ˆ ˆ  , δ δ δ 

  
=  is a coefficient with interval uncertainties and 

J = [J, J] is the lower and upper bounds of the optimized performance 
index. By supposing the dynamic programming approach, we have:14

  

( )( ) ( )( )
( )

( ) ( )( )* ˆV , , min , ,
0

f

f

t
x t t J x t t g x u d

u
t t

π τ τ τ δ τ
τ
τ

 = = ∫  

≤ ≤      

						                   

(9)

Since,

 						                   

(10)

By considering the principle of optimality

						                  (11)

And with applying Taylor series, we have:

( )( )
( )

( ) ( )( ) [ ] ( )( ) [ ] [ ] ( ) ( )ˆ ˆV , min , , , , , . .
t t V V

x t t g x u d V x t t t x t t x t H O T
t xt

t t

τ τ τ δ τ δ
τ

τ

+∆ ∂ ∂      = + + ∆ + +∆ − +∫      ∂ ∂ 
≤ ≤ +∆





    		
							                                                                                         

                                                                                                       

(12)

By assuming 0 1t< ∆  , then tτ → [16]. Therefore:

[ ] ( )( )
( )

[ ]( ) [ ] [ ] [ ] [ ]( ) ( )ˆV , min , , , , ,
t t V V

x t t V x t t f x u t x O t
t xu t

δ δ δ
τ

+∆ ∂ ∂ = + ∆ + ∆ + ∆∫   ∂ ∂


  	

						               (13)	
By applying the division operation into both sides, we obtain:

( )
( ) [ ] [ ]( )ˆmin , , , , , ,

t t VV
g x u t f x u t

t tu t
δ δ

τ

 +∆ ∂∂   − = + ∫  ∂ ∂             

(14)

The previous nonlinear time-variant differential equation forms 
the HJB equation. By using the Hamiltonian function, we have:

		
( )

( )
( )*, min , , ,,x xH x u V H x u V tt

u τ
=  	           (15)

By substitution the Hamiltonian function into the Eq. (14), the nal 
interval HGB equation can be describes as below:

		
( )*, ,x

V
H x u V tt

∂
− =
∂

 		            (16)

Interval adomian decomposition method 
(IADM )

In this section, a brief description of the interval Adomian method 
for HGB equation is introduced. Suppose that Lt = ∂t∂ . Let consider 
the HGB equation in the following form:

		  ( )( )*, , , , , ,x xt
L V H x u x V x t V t=  	          (17)

From Eq.15, we obtain:	

		  ( ) [ ]( )* , , , , , ,x xu x V x t f V x t δ=
	          

(18)

Substituting Eq.16 into Eq.17 yields:	

		
[( )( ), , , , , ,x xt

L V H x f V x t V tδ=
	          

(19)

Since, the main equation can be considered as:	

		
( ) ( )x xt

L V R V N V= +
		           

(20)
where	

		  ( ) [ ] ( )x xR V R Vα= ×
		           

(21)

		  ( ) ( )x xN V N Vβ = ×  		           
(22)

Here, R (Vx) and N (Vx) are the linear and nonlinear terms of 
the Hamiltonian function, respectively and [α] and [β] are uncertain 
coefficients for linear and nonlinear terms, respectively. Using the 
Adomian decomposition method, the nonlinear term (N(Vx)), can be 
achieved by:

		  ( ) 0x nN V An
∞∑= = 			            (23)

where, An = An(V0x(x), V1x(x), . . . , Vnx(x)) are the Adomian 
polynomials:

	
( )( )

0

1
0,1, 2, ...0!

n
i

ixn n

d
A N V x nin d λ

λ
λ =

∞= =∑ =             (24)

By applying the inverse operator [ ]1 .
0

t

t
L dτ−
 
 = ∫ 
 

into the both sides 
of the Eq. 19

		
( ) ( )1 1 1

x xt t t t
L L V L R V L N V− − −= +  	           (25)

Since, by considering the given conditions, the final equation can 
be achieved by:

		
( ) ( )1 1

x xt t
V L R V L N V− −= Φ + +  	           (26)

( )( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )* ˆ ˆV , , min , , , , , ,
f

f

tt t
x t t J x t t g x u d g x u d

u t t t
t t

τ τ τ δ τ τ τ τ δ τ
τ
τ

+∆    = = +∫ ∫    
+∆ 

≤ ≤





( )( )
( )

( ) ( )( ) [ ] ( )( )}ˆ ˆV , min , , , , ,
t t

x t t g x u d V x t t t t
t

t t

τ τ τ δ τ δ
τ

τ

+∆
   = + +∆ +∆∫    

≤ ≤ +∆




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Where [ ],Φ = Φ Φ  illustrates the initial condition interval by the 
presence of uncertainty. We consider the truncated V as:

		   
0

i

n
V V

i
∑=
=

 		   	   (27)

By using Equation (28), we can compute Vi as follows:

	 [ ] ( ) [ ]
0

1 1
1

,

n t nx t n

V

V L R V L Aα β− −
+

 =Φ


= × + × 		     

(28)

Illustrative examples
The proposed interval method is studied by three examples to 

describe the robustness of the approach.

Example 1

Linear LQR system: In the first example, consider a linear system 
which has equal uncertainty in both control and state terms. Find the 
optimal control based on minimizing the performance index in below:

	      
( ) ( )2 2

11
, 0 t 1

2 0
J U t X t dt = + ≤ ≤∫  

 
		    

(29)

Subject to

		  ( ) ( )ˆX X t U tδ δ= +

		      (30)

Where ˆ 0.1, 0.9δ δ  = =   . The problem without uncertainty is 
solved in (14). From Eq. (15), the HJB equation is achieved as follows:

[ ] [ ]
2 2

2 21 1ˆ
2 2

V VV V X
t XX X

δ δ δ
∂ ∂∂ ∂    = − −    ∂ ∂∂ ∂    	      

(31)

From the Eq. (27):

						            (32)

 Where, [ ]2 2ˆ 0.1, 0.9 0.1, 0.9 0.01, 0.81δ δ       = = × =      
. the closed form of this system for n=3 is shown as follows: Figure 1. 
A random value for ˆδ δ= is applied in the interval [0.1, 0.9] and the 
solution is stand between two interval. The intervals are characterized 
by grids.

Example 2

Non-linear quadratic regulation system: In this example, a non-
linear LQR system with uncertainty is studied. The target is to find the 
optimal control based on minimizing the performance index is:

		
( ) ( )2 2

1
, 0 1,

0
J U t X t dt t = + ≤ ≤∫  

 
 	           (33)

subject to:

		
( ) ( )( ) ( )2 sin ,

2
X X t X t U t

δ
= +

	           
(34)

where δ = [1, 2]. The HJB equation for this problem can be 
obtained as follows:

	
[ ] ( ) ( )

2
2 21

sin
4

V V VX t X X
t x x x

δ∂ ∂ ∂   
= − +   ∂ ∂ ∂   

          (35)

From the Eq.(27):				  

						               (36)	
     So we can compute and plot the closed form Eq.(25) for n = 3 as 
follows: Figure 2. A random value for δ is applied in the interval [1, 
2] and the solution stands between two intervals. The random value 
solution is characterized by stars.

Example 3

In this example, a class of nonlinear diffusion equations subject 
to initial and boundary conditions is studied which arises during 
Magnetic Resonance Imaging (MRI). The main reason for prosperity 
in diffusion MRI is in the powerful concept that during their diffusion-
driven, random displacements molecules probe tissue structure at a 
microscopic scale well beyond the usual image res-olution.15,16 Here, 
a class of diffusion problem is considered which arises in MRI 
frequently. The equation is given as below:

	

		

( )( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) [ ]

,

,0 ,0 1,

0, ,0 ,

1, 0 ,

, , , 0,1 0, .

t

f

x f

f

x x Fx x
x f x x

t p t t t

t q t t

x t K x t t

υ α υ β υ

υ

υ

υ

υ

 = +

 = < <

= < <


= <


 < ∈ ×   	         

(37)

Where f(x), ( )xα and ( )xβ are known functions with uncertainty 
parameters, K is a known constant and p(x) and q(x) are control 
variables. For generating a HGB problem, we can have considered 
the problem below:

	

( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

,

,0 0 0 ,0 1.

t x x
x x F q t x p t q t x p t

x f x q x p x

υ α υ β υ

υ

 = + + + − +


= − − < <

 

   

(38)

For instance, consider the equation below:

	

[ ] [ ] [ ]

( )

( )

2
2

2

4 3

, 0.8,1.2 ,

,0 ,
12 6

0, 0,0 f

V V V
t x xx

x xV x

V t t t

δ δ
δ

  ∂ ∂  = + =
 ∂ ∂ 


= −


 = < <


 		            

(39)

( )

[ ] [ ] [ ]

[ ] [ ] [ ]

2 2 2 2
,0

2
2

2 3 2 20 0
1

2
2

2 5 2 41 1
2

1 1 1 1 ,
2 2 2 20
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d d 0.0016,0.135 X t 0.005,0.405 X t ,

2 0 0

ˆ
d d 64 7,0.0437 X t 0.001,0.2247 X t

2 0 0

t
V X d X t X t X t

t tV VV
X X

t tV VV e
X X

τ τ

δ
τ δ τ

δ
τ δ τ

−
 = = = −∫   

  ∂ ∂    = − = +∫ ∫   ∂ ∂   

  ∂ ∂    = − = − −∫ ∫   ∂ ∂   
[ ]

[ ]

2 3

2
2

1
1

0.00035,0.255 ,

.

.

.

ˆ
d d

2 0 0
n

n

X t

t tV VV
X X

δ
τ δ τ+












−







   ∂ ∂     = −∫ ∫    ∂ ∂   



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( )

[ ] ( ) [ ] [ ] ( )

[ ] [ ] ( ) [ ] ( ) [ ]

2 2 2 2
,0

2
2 2 3 3 20 0

1

2 7 3 6 3 4 4 2 3
2

1

,
0

1 d sin 0.7,0.7 0.5,1 sin ,
4 20 0

0.07, 0.07 X t 0.35, 0.17 X sin t 0.35, 0.175 sin 0.25,1 sin ,
.
.
.

1
4

n
n

t
V X d X t X t X t

t tV VV X X d X t X X t
X X

V X X X t X t

VV
X

τ τ

δ
τ τ

+

 = = =∫   

∂ ∂   =− − =− +∫ ∫   ∂ ∂   

= − − + − − + − − +

∂ =  ∂
[ ] ( )

2
2d sin d

20 0
n

t t VX X
X

δ
τ τ














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From the equation above, it can be seen that the initial condition has 
also uncertainty in this problem. From the Eq.27, the closed form 
solution can be achieved by 

3

0
iV V

i
= ∑
=

 

		

						               (40)

A random value for [δ] is applied in the interval [0.8, 1.2] and the 
solution is stand between two intervals. The intervals are characterized 
by grids (Figure 3).

Figure 1 The Interval Adomian Solution for the linear LQR system with 
uncertainty by HGB method.

Figure 2 The Interval Adomian Solution for the nonlinear LQR system with 
uncertainty by HGB method.

Figure 3 The Interval Adomian Solution for distributed diffusion problem 
with uncertainty by HGB method.

Conclusion
In this paper, an uncertain analysis method is proposed for solving 

the Hamiltonian-Jacobi-Bellman, for systems involving uncertain 
parameters. The Adomian decomposition method is applied to deal 
with the interval method to handle the interval uncertainty. Three 
case studies including linear, nonlinear and a distributed nonlinear 
optimal control are studied for checking the system robustness. The 
main advantage of the proposed method over traditional numerical 
methods is that the proposed method is the first time which is used the 
interval arithmetic to provide a robust result for HGB equation with 
uncertain coefficients.
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