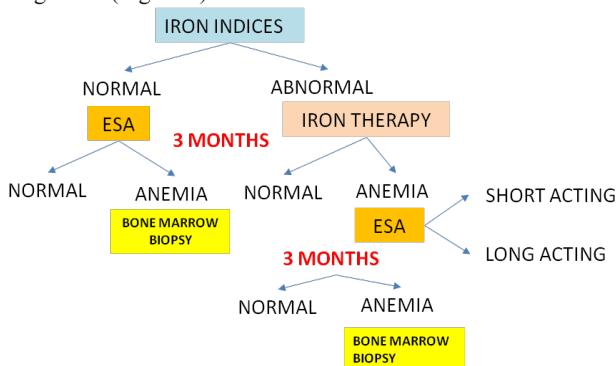


Approach to post kidney transplantation anemia

Keywords: anemia, kidney transplantation, anemia post-transplantation, ckd, immunosuppression


Opinion

Post-Transplant Anemia (PTA) is an important issue in kidney transplant recipients. Anemia is a major player in the non-immunological causes of graft dysfunction. The precipitating causes of anemia post transplantation include immunosuppressive drugs, iron deficiency, infections, older donor age, rejection episodes, and an increased inflammatory state.¹ In case of one kidney transplantation, the transplanted kidney function seems to be only partially restored, resulting in an incomplete correction of anemia. This post-transplantation anemia (PTA) likely contributes to chronic ischemic injuries and eventually graft loss on the long term.²

When to consider post transplantation anemia?

Evaluation of PTA should be undertaken when hemoglobin fails to normalize by 3 months after transplantation. Evaluation of PTA should take place when the hemoglobin falls to less than 11 g/dl in pre-menopausal females or to less than 12 g/dl in males and postmenopausal females.³ The definition of anemia is established by the World Health Organization and was subsequently adopted by the American Society of Transplantation, which defines anemia as hemoglobin concentration <12 g/dl in women and <13 g/dl in men.⁴

Transplant recipients differ from other patients with chronic kidney disease because they bear the additional burden of therapy with immunosuppressive drugs that may directly exacerbate anemia. Indeed, the wide variation in the reported prevalence of PTA likely reflects differences in the use of anti-proliferative immunosuppressive agents (e.g., azathioprine, mycophenolate mofetil, and sirolimus) that may directly but variably inhibit erythropoiesis.⁵ Other factors commonly associated with PTA include recipient age and female gender, donor age, and the use of angiotensin converting-enzyme inhibitors or angiotensin receptor blockers, the latter likely related to the influence of these drugs on angiotensin II type I receptors that are increased on erythroid progenitors in patients with PTA.⁶ More recent data have suggested strong associations of anemia with graft failure and mortality.⁷ We recommend the following diagram to guide PTA management (Figure 1).

Figure 1 POST TRANSPLANTATION ≥ 3 MONTHS, IF HEMOGLOBIN <13 g/dl in males and post menopausal women and <12 g/dl in pre-menopausal women.

PTA correction with erythropoietin hormone in transplant recipients with moderate renal dysfunction slows the decline in glomerular filtration rate, reduces the incidence of end stage kidney

Volume 4 Issue 5 - 2017

Mohamed MElsaftawy, Ahmed Akl

Department of Nephrology & Transplantation, Urology & Nephrology Center, Egypt

Correspondence: Ahmed Akl, Consultant of Nephrology & Transplantation, Urology & Nephrology center, Mansoura University, Mansoura, Egypt, Email aiakl2001@yahoo.com

Received: April 19, 2017 | Published: April 24, 2017

disease, and improves quality of life (QoL) without increasing the risk of cardiovascular events. This study provides evidence that kidney disease in transplant recipients constitutes a particular entity and that the results from nephron protection studies conducted in CKD patients should not be directly extrapolated to transplant recipients. Additional studies should be carried out to confirm whether complete correction of anemia in transplant recipients might impact patient survival and establish the optimal hemoglobin target level in transplant recipients.⁸

Acknowledgments

None.

Conflicts of interest

None.

References

1. Reindl-Schwaighofer R, Oberbauer R. "Blood disorders after kidney transplantation". *Transplant Rev (Orlando)*. 2014;28(2):63–75.
2. Schjeldrup P, Dahle DO, Holdaas H, et al. Anemia is a predictor of graft loss but not cardiovascular events and all-cause mortality in renal transplant recipients: follow-up data from the ALERT study. *Clin Transplant*. 2013;27(6):E636–643.
3. Joist H, Brennan DC, Coyne DW. Anemia in the kidney-transplant patient. *Adv Chronic Kidney Dis*. 2006;13(1):4–10.
4. López Oliva MO, Del Castillo Caba D, Fernández Fresnedo G. Managing anaemia in kidney transplant patients with chronic kidney disease. *Nefrologia*. 2009;29 Suppl 1:25–30.
5. Vanrenterghem Y, Ponticelli C, Morales JM, et al. Prevalence and management of anemia in renal transplant recipients: A European survey. *Am J Transplant*. 2003;3(7):835–845.
6. Gupta M, Miller BA, Ahsan N, et al. Expression of angiotensin II type I receptor on erythroid progenitors of patients with post-transplant erythrocytosis. *Transplantation*. 2000;70(8):1188–1194.
7. Lorenz M, Kletzmayr J, Perschl A, et al. Anemia and iron deficiencies among long-term renal transplant recipients. *J Am Soc Nephrol*. 2002;13(3):794–947.
8. Choukroun G, Kamar N, Dussol B, et al. CAPRIT study Investigators. Correction of postkidney transplant anemia reduces progression of allograft nephropathy. *J Am Soc Nephrol*. 2012;23(2):360–368.