Non–vacuum perfect fluid static cylindrically symmetric solutions in gravity and their energy $f(R)$ distribution

Abstract

Much attention has been given to modified theories of gravity especially towards $f(R)$ gravity during the last two decades to understand the reason behind the accelerated expansion of the universe. Recently, Sharif and Sadia explored the non–vacuum static cylindrically symmetric solutions for dust case and their energy contents too. In this paper, we are intent to extend their work for perfect fluid case. Regarding this, we obtain the non–vacuum field equations of $f(R)$ gravity for perfect fluid static solution using cylindrically symmetric background. The field equations turn out to be complicated and hence can’t be solved analytically so we have to put some restrictions to solve the field equations. For this purpose, we utilize metric approach and constant curvature assumption. Further, we explore the energy distributions of the obtained solutions by using general–ized Landau–Lifshitz energy–momentum prescription in the context of $f(R)$ theory of gravity for a specific choice of $f(R)$ models. Moreover, we examined the stability conditions for the obtained solutions.

Keywords: $f(R)$ gravity, vacuum solutions, perfect fluid, static cylindrically symmetric, generalized landau–lifshitz complex

Introduction

Out of many other alternative theories of Einstein’s theory of gravity, the $f(R)$ theory of gravity has a long history. During the last few years, there has been tremendous change in this area bringing about a lot of study which yields exciting results. On behalf of some evidences, it has been concluded that Weyl was the first who worked in the field of $f(R)$ gravity while many others are in view that it was Eddington who was the pioneer to contribute in this field. Later, Buchdahl reflected his ideas and efforts in the same field. A comprehensive review has been presented here which consists of relevant literature and important features and characteristics of $f(R)$ theories of gravity.

Using the relation with the weak field limit, Capozziello et al. obtained exact spherical symmetric solutions in $f(R)$ gravity for constant Ricci scalar as well as for Ricci scalar as function of radial coordinates. Later on, the same authors discussed spherically symmetric solution in $f(R)$ gravity via Noether symmetric approach. Kainulainen et al. investigated spherically symmetric spacetimes in $f(R)$ theories of gravity using analytical and numerical approaches. Multam"aki and Viija explored exact spherically symmetric static empty space solution. These results showed that a huge number of $f(R)$ theories have exact solutions as Schwarzschild de Sitter metric. The said authors also extracted non–vacuum solutions using static spherical symmetric background.

Hollenstein and Lobo coupled $f(R)$ gravity to non–linear electrodynamics in order to produce static spherically symmetric solutions. In an extended study of $f(R)$ gravity, Shojaei pondered on static spherically symmetric interior solutions. Caramés and Mello in a higher dimensional spacetime, scrutinizes spherically symmetric vacuum solutions. Sharif and Kousar determined non–vacuum static spherically symmetric $f(R)$–ric solutions. Much work is available in literature carried out by different authors.

In a detailed study of $f(R)$ gravity, Sharif and Shamir researched static plane symmetric vacuum solutions. Amir and Maqsood discussed some non–vacuum plane symmetric solutions using metric approach and non–varying Ricci scalar assumption. They also explored the energy contents of these solutions. Shamir has an elaborated contributions in examining plane symmetric vacuum Bianchi type III cosmology in $f(R)$ gravity. Momeni and Gholizade proved that exact solution of $f(R)$ gravity constant curvature can be applied to the exterior of a string. Azadi et al. using Weyl coordinates in the framework of the metric $f(R)$ theories of gravity, explored the static cylindrically symmetric vacuum solutions.

Amir and Sattar found locally rotationally symmetric vacuum solutions in $f(R)$ models. Amir and Naheed explored vacuum solutions of spatially homogeneous rotating spacetimes. Sharif and Arif worked on dust particle for the investigation of static cylindrically symmetric solutions in metric $f(R)$ gravity.

In GR, energy localization is a very serious problem and it is still not sorted out exactly. Much work has been done on problem in the frame–work of GR to resolve this issue. Different scientists gave their own energy momentum complexes and found the energy momentum distribution of many spacetimes but could not present a concrete conjecture. Methodology of energy–momentum pseudo tensor was the first effort to solve this matter and this step was taken by Einstein. Following him many authors, like Landau–Lifshitz, M"oller, Bergmann–Thomson and Weinberg gave their own energy–momentum prescriptions. Virbhadra and Parikh investi–gated the energy–momentum distribution of several spacetimes, such as Kerr–Newmann, Kerr–Schild classes, Einstein–Rosen, Vaidya and Bonnor–Vaidya spacetimes but could not reach at solid and unique conclusion.

There are many authors who are of the view point that this issue may be tackled correctly in the other frameworks, for example, in...
Non–vacuum perfect fluid static cylindrically symmetric solutions in gravity and their energy distribution

R
from this which helps in the simplification of field equations and to find out the \(f(R) \). Any metric with scalar curvature though, as \(R = R_{0} \), is a solution of Equation (5) if the below equation is as following

\[
F(R_{0})R_{0} - 2f(R_{0}) = 0.
\]

This condition of the constant scalar curvature for the vacuum and non–vacuum case will have following form

\[
F(R_{0})R_{0} - 2f(R_{0}) = kT.
\]

These conditions have vital role to find the acceptability of \(f(R) \) models.

Generalized landau–lifshitz energy–momentum complex

The generalized Landau–Lifshitz EMC is given by

\[
\tau^{\mu\nu} = F(R)\tau_{LL}^{\mu\nu} + \frac{1}{6\kappa}(f(R_{0})R_{0} - f(R_{0}))(\frac{\partial}{\partial x^{\nu}}(g^{00} x^{\lambda} - g^{\mu\lambda} x^{\nu}))
\]

where \(\tau_{LL}^{\mu\nu} \) is the Landau–Lifshitz EMC in GR and \(\kappa = 8\pi G \). In the field of \(f(R) \) theory of any metric tensor which holds constant scalar curvature late, EMD can be calculated. Energy density is represented by 00–component and as following,

\[
\tau^{00} = f(R)\tau_{LL}^{00} + \frac{1}{6\kappa}(f(R_{0})R_{0} - f(R_{0}))(\frac{\partial}{\partial x^{0}}(g^{00} x^{I} + 3g^{00}),
\]

where \(\tau_{LL}^{00} \) represents the sum of energy–momentum tensor and the energy–momentum pseudo tensor and is given by

\[
\tau^{00} = (-g)(\tau^{00} + \tau_{LL}^{00}),
\]

and

\[
\tau^{00} = \frac{1}{\kappa}(R^{00} - 1 - g^{00} R_{0}),
\]

where \(R \) is the Ricci scalar and \(\tau_{LL}^{00} \) can be evaluated from the following expression

\[
t^{00}_{LL} = \frac{1}{2\kappa}[(2\Gamma^{\gamma}_{\alpha\beta}\Gamma^{\delta}_{\gamma\rho} - \Gamma^{\gamma}_{\alpha\delta} \Gamma^{\rho}_{\gamma\beta} - \Gamma^{\rho}_{\gamma\alpha} \Gamma^{\delta}_{\rho\beta} - \Gamma^{\sigma}_{\rho\alpha} \Gamma^{\gamma}_{\sigma\rho})(g^{\alpha\mu} g^{\beta\nu} - g^{\mu\nu} g^{\alpha\beta})
\]

\[
+ g^{\mu\nu} g^{\beta\rho} (\Gamma^{\gamma}_{\alpha \rho} \Gamma^{\delta}_{\beta \gamma} + \Gamma^{\gamma}_{\alpha \beta} \Gamma^{\delta}_{\rho \gamma} - \Gamma^{\gamma}_{\rho \beta} \Gamma^{\delta}_{\gamma \alpha} - \Gamma^{\gamma}_{\rho \alpha} \Gamma^{\delta}_{\gamma \beta})
\]

\[
+ g^{\alpha\mu} g^{\beta\rho} (\Gamma^{\gamma}_{\rho \alpha} \Gamma^{\delta}_{\beta \gamma} - \Gamma^{\gamma}_{\rho \beta} \Gamma^{\delta}_{\gamma \alpha} + \Gamma^{\gamma}_{\rho \alpha} \Gamma^{\delta}_{\gamma \beta} - \Gamma^{\gamma}_{\rho \beta} \Gamma^{\delta}_{\gamma \alpha}) + g^{\alpha\mu} g^{\beta\rho} (\Gamma^{\gamma}_{\rho \alpha} \Gamma^{\delta}_{\gamma \beta} + \Gamma^{\gamma}_{\rho \beta} \Gamma^{\delta}_{\gamma \alpha})],
\]

Perfect fluid static cylindrically symmetric solutions

In this section, we find the non–vacuum field equations of \(f(R) \) theory for the metric representing static cylindrical symmetric spacetimes by using the con–dition of constant scalar curvature and metric pattern, i.e., \((R = \text{constant}) \). The line element representing static cylindrically symmetric spacetimes is given below

Citation: Imtiaz F, Amir MJ. Non–vacuum perfect fluid static cylindrically symmetric solutions in \(f(R) \) gravity and their energy distribution. Phys Astron Int J. 2018;2(5):489–496. DOI: 10.15406/paij.2018.02.00131
Non–vacuum perfect fluid static cylindrically symmetric solutions in gravity and their energy distribution

Here $A(r), B(r)$ and $C(r)$ are taken as arbitrary functions of r. For this line element Ricci scalar turn out to be

$$R = \frac{A'}{AB} - \frac{A''}{2A'B} + \frac{B''}{B^2} - \frac{B^2}{B^3} + \frac{C''}{BC} - \frac{C^2}{2BC^2} + \frac{A'C'}{2ABC}.$$ \hspace{1cm} (14)

where prime shows the derivative with respect to r. For perfect fluid the energy–momentum tensor is given as

$$T_{\mu\nu} = \langle \rho + p \rangle u_{\mu}u_{\nu} - \p g_{\mu\nu},$$ \hspace{1cm} (15)

where ρ is the density of energy and p is the pressure of the fluid and in comoving coordinates the fourth–velocity is given by $u_{\mu} = \sqrt{g_{00}}(1,0,0,0)$. The equation of state given below is satisfied by pressure p and energy density ρ.

$$p = \omega \rho, 0 \leq \omega \leq 1$$ \hspace{1cm} (16)

Similarly, we get just two independent equations by subtracting (22) and (33) components from (00).

$$\begin{align*}
A'F' - \frac{A'F'}{2AB} - \frac{C'F'}{2AB} + \frac{A'F'}{2BC} - \frac{C'F'}{2BC} - \kappa(p + \rho) &= 0, \\
A'F' - \frac{A'F'}{2AB} - \frac{C'F'}{2AB} + \frac{A'F'}{2BC} - \frac{C'F'}{2BC} - \kappa(p + \rho) &= 0.
\end{align*}$$ \hspace{1cm} (21)

These are the three non–linear ordinary differential equations in which six unknown variables A, B, C, F, ρ and p are involved. We can not find the solution of these equations directly. Condition of constant curvature has been used to solve these equations.

Constant curvature solution

Let’s say, for constant curvature $R = R_0$, it is apparent that the first and second derivatives of $F(R)$ will always reduce to:

$$F'(R_0) = 0 = F''(R_0).$$ \hspace{1cm} (23)

In the Equation (23), the Equation (20)–(22) and Equation (14) reduce to

$$\begin{align*}
\frac{A'CF}{4ABC} - \frac{B'CF}{2B^2} + \frac{A'BF}{2BC} + \frac{B'CF}{4BC^2} + \frac{A'CF}{4AB^2} + \frac{A'CF}{4ABC} - \kappa(p + \rho) &= 0, \\
\frac{A'F}{2AB} - \frac{A'F}{2AB} - \frac{C'F}{2AB} + \frac{A'F}{2BC} - \frac{C'F}{2BC} - \kappa(p + \rho) &= 0.
\end{align*}$$ \hspace{1cm} (24)

Also, from field Equation (4), we get

$$f(R) = \frac{3F(R) + (F(R)R - \kappa T)}{2}.$$ \hspace{1cm} (17)

Using this value of $f(R)$ in non–vacuum field Equation (2), we have

$$F(R)R_{aa} - \nabla_a \nabla_a F(R) - \kappa T_{aa} = \frac{F(R) - \Box F(R) - \kappa T}{8}.$$ \hspace{1cm} (18)

In the above equation, the terms on the right hand side are independent of index α, so we can write the field equation in the following manner,

$$A_{aa} = \frac{F(R)R_{aa} - \nabla_a \nabla_a F(R) - \kappa T_{aa}}{8}.$$ \hspace{1cm} (19)

Here A_{aa} is used to represent the traced quantity. By subtracting (00) and (11) components, we get

$$\begin{align*}
\frac{A'F}{2AB} - \frac{A'F}{2AB} - \frac{C'F}{2AB} + \frac{A'F}{2BC} - \frac{C'F}{2BC} - \kappa(p + \rho) &= 0, \\
\frac{A'F}{2AB} - \frac{A'F}{2AB} - \frac{C'F}{2AB} + \frac{A'F}{2BC} - \frac{C'F}{2BC} - \kappa(p + \rho) &= 0.
\end{align*}$$ \hspace{1cm} (20)

We will solve these equations using power law as well as exponential law assumptions.

Power Law Assumption

Power law assumption is used to solve these equations i.e., $A \propto r^m, B \propto r^n$ and $C \propto r^q$, where m, n and q are any real numbers. Therefore, we use $A = k_1 r^m, B = k_2 r^n$, and $C = k_3 r^q$ where k_1, k_2 and k_3 are constants of proportionality. By inserting these values of A, B and C in Equations (24)–(26) and subtracting them, we attain

$$\begin{align*}
m^2 - 2m - 2n - mn - nq - mq &= 0, \\
m^2 - 2m + q^2 - 2mn - 2nq - 2q &= 0, \\
q^2 - 2q + 2n + mq - mn - nq &= 0.
\end{align*}$$ \hspace{1cm} (28)

Also when we put these values in Equations (27) and compare coefficient, we obtain

$$\begin{align*}
m^2 - 2m - 2n + q^2 - 2q + mq &= 0. \\
1. m = 0, n = q &. II. n = 0, m = q &. III. q = 0, m = n
\end{align*}$$ \hspace{1cm} (31)

To solve these equations, we consider the following cases

Citation: Imtiaz F, Amir MJ. Non–vacuum perfect fluid static cylindrically symmetric solutions in gravity and their energy distribution. Phys Astron Int J. 2018;2(5):489–496. DOI: 10.15406/paij.2018.02.00131
Case I:

When we put $m=0, n=q$ in Equation (31), we obtain the following equation

$$a^2-4a=0,$$

which gives two cases, i.e., either $a=0$ or $a=4$. In former case we get trivial solution while the later case yields the non-trivial solution, given as

$$ds^2=k_dr^2-k_dr^4d\rho^2-k_dr^4d\phi^2-k_dr^4dz^2.$$ (32)

For this solution it is evaluated that:

$$R=0,$$

$$\rho=\frac{4F}{\kappa(1+\omega)k_r^3},$$

which is a non-vacuum solution.

Case II:

In this case, we insert $n=q, m=n$ in Equation (31) and have

$$3m^2-4m=0,$$

which gives two cases, i.e., either $m=0$ or $m=\frac{4}{3}$. In first case we get trivial solution while in second case we have the following non-trivial solution

$$ds^2=k_r^dr^2-k_d\rho^2-k_dr^4d\phi^2-k_dr^4dz^2.$$ (33)

For this solution, the Ricci scalar and the energy density have been evaluated as

$$R=0,$$

$$\rho=\frac{8F}{27\kappa(1+\omega)k_r^3},$$

which is obviously a non-vacuum solution.

Case III:

Here, we put $q=0, m=n$ in Equation (31) and obtain that

$$n^2-4n=0,$$

$$(\mu^2+\nu^2-\lambda^2+\mu^2+\nu^2\lambda^2)Fe^{-22}-R^2_2=0(\mu^2+\mu^2)-2\mu^2\nu^2\lambda^2\nu^2\lambda^2)Fe^{-22}=0.$$ (42)

The subtraction of Equations (40), (41) from (39) and similarly, the subtraction of Equations (41) from (40). Also comparing coefficient of Equations (42), we have,\n
$$\mu^2+\nu^2-\lambda^2-\mu^2\nu^2\lambda^2=0,$$ (43)

$$\mu^2+\nu^2+\lambda^2+\nu^2\lambda^2=0,$$ (44)

$$\lambda^2+\mu^2\lambda^2-\nu^2-\mu^2\nu^2\lambda^2=0,$$ (45)

$$\mu^2+\nu^2+\lambda^2+\mu^2\nu^2\lambda^2=0.$$ (46)

which have again two cases either $q=0$ or $q=4$. In previous case, the solution is trivial. But later case yields the following non-trivial, presented as

$$ds^2=k_r^dr^2-k_dr^4d\rho^2-k_dr^4d\phi^2-k_dr^4dz^2.$$ (34)

For this solution, we evaluated R and ρ as

$$R=0,$$

$$\rho=\frac{8F}{\kappa(1+\omega)k_r^3},$$

Again it proves that the solution is non-vacuum.

Exponential law assumption

By using exponential law assumption, i.e., inserting

$$A(r)=e^{2\mu(r)}, B(r)=e^{2\nu(r)}$$ and $C(r)=e^{2\lambda(r)}$ so that Equations (20)–(22) and (14) be

$$(\mu^2+\nu^2-\lambda^2+\mu^2+\nu^2\lambda^2)Fe^{-22}-F^2e^{-22}+\nu^2F^2e^{-22}=0,$$ (35)

$$(\mu^2+\mu^2-\lambda^2-\lambda^2)Fe^{-22}+(\mu^2-\lambda^2)Fe^{-22}=\nu^2\kappa(1+\omega)e^{-22}=0,$$ (36)

$$(\mu^2+\mu^2+\mu^2\lambda^2-\nu^2-\mu^2\nu^2\lambda^2)Fe^{-22}+(\mu^2-\nu^2)Fe^{-22}=\kappa(1+\omega)e^{-22}=0,$$ (37)

$$(\mu^2+\nu^2+\nu^2+\lambda^2+\lambda^2+\mu^2\lambda^2)e^{-22}-\nu^2R^2_2=0.$$ (38)

Now, we get four non linear differential equations and six unknown μ, ν, λ, F, p and ρ. By assumption of constant scalar curvature, we calculate the solution of these equations For constant curvature; these equation are as follows

$$(\mu^2+\nu^2-\lambda^2+\lambda^2+\nu^2\lambda^2)Fe^{-22}-\kappa(1+\omega)e^{-22}=0,$$ (39)

$$(\mu^2+\mu^2-\lambda^2-\nu^2\lambda^2)e^{-22}=0,$$ (40)

$$(\mu^2+\nu^2+\nu^2+\lambda^2+\lambda^2+\mu^2\lambda^2)e^{-22}=0.$$ (41)

We take into account the following three cases, in order to solve these equations

1. $\lambda'=0$, II. $\mu'=0$, III. $\nu'=0$.

Case I:

We consider the value of $\lambda'=0$. It implies that

$$\lambda=c_1,$$ (47)

where c_1 is an integration constant. Using this value in Equation (43)–(46), we get

$$\mu^2+\nu^2-\mu^2\nu^2\lambda^2=0,$$ (43)

$$\mu^2+\nu^2+\nu^2\lambda^2=0,$$ (44)

$$\lambda^2+\mu^2\nu^2\lambda^2-\mu^2\nu^2\lambda^2=0,$$ (45)

$$\mu^2+\nu^2+\lambda^2+\nu^2\lambda^2=0.$$ (46)
\[
\begin{align*}
\mu^2 + \mu" - 2\mu'v' &= 0, \\
-\nu" - \mu'v' &= 0, \\
\mu^2 + \mu" + \nu" &= 0.
\end{align*}
\] (49) (50) (51)

By using the Equation (51) into Equation (48), we obtain
\[
\mu'v" = 0
\] (52)

Now, we use Equation (52) into Equation (49) and (50), we get
\[
\mu" + \mu^2 = 0,
\nu" = 0.
\] (53) (54)

We can easily get the solution for the above equations as
\[
\mu = \text{ln}(a_x r + a_y),
\nu = b_x r + b_y.
\] (55) (56)

Thus, we have found the following non–vacuum solution:
\[
ds^2 = (a_x r + a_y)^2 dt^2 - e^{2\theta(r+z)} d\rho^2 - c_x d\theta^2 - e^{2\theta(r+z)} dz^2.
\] (57)

For this solution, we obtain
\[
R = 0, \\
\rho = \frac{2a_x b_x F}{\kappa(1 + \omega)(a_x r + a_y)e^{2\theta(r+z)}}.
\]

Case II:

We have assumed the value of \(\mu' = 0\), It implies that
\[
\mu = a_x,
\text{where} \ a_x \text{ is an integration constant. Using this value in Equations (43)–(46), we get}
\nu" - \nu' \lambda' &= 0, \\
\lambda^2 + \lambda" - 2\nu' &= 0, \\
\lambda^2 + \lambda" - \nu" &= 0.
\] (59) (60) (61) (62)

From the Equations (59) we have
\[
\nu" = \nu' \lambda'.
\] (63)

Using Equation (63) in Equations (60)–(62), we obtain
\[
\lambda^2 + \lambda" - 2\nu' = 0, \\
\lambda^2 + \lambda" + 2\nu" = 0.
\] (64) (65)

These equations can be simplified we get
\[
\lambda = \text{ln}(c_x r + c_y),
\nu = b_x r + b_y.
\] (66) (67)

Thus, we get the following non–vacuum solution
\[
ds^2 = a_x d\rho^2 - e^{2\theta(r+z)} d\rho^2 - (c_x r + c_y)^2 d\theta^2 - e^{2\theta(r+z)} dz^2.
\] (68)

Corresponding this solution has been evaluated as
\[
R = 0, \\
\rho = \frac{2b_x c_x F}{\kappa(1 + \omega)(c_x r + a_y)e^{2\theta(r+z)}}.
\]

Case III:

When \(\nu' = 0\) we get on integrating that
\[
\nu = b_z,
\text{where} \ b_z \text{ is an integration constant. Substituting this value of} \ \nu \text{ in Equations (40)–(46), we get}
\mu^2 + \mu" - \mu' \lambda" &= 0, \\
\mu^2 + \mu" + \lambda^2 + \lambda" &= 0, \\
\lambda^2 + \lambda" + \mu' \lambda' &= 0.
\] (69) (70) (71) (72) (73)

After making use of Equation (71) in (73), we get
\[
\mu' \lambda' = 0.
\] (74)

By using last equation in Equation (70) and Equation (72), we obtain
\[
\mu" + \mu^2 = 0, \\
\lambda^2 + \lambda" = 0,
\text{whose solutions can be easily obtained as}
\mu = \text{ln}(a_x r + a_y),
\lambda = \text{ln}(c_x r + c_y).
\] (75) (76) (77) (78)

Thus, the corresponding values of A, B and C are
\[
A = (a_x r + a_y)^2, \\
B = b_z, \\
C = (c_x r + c_y)^2.
\] (79) (80) (81)

When we use these values in Equation (14), we evaluate the Ricci scalar as
\[
R = \frac{2a_x c_x}{b_z (a_x r + a_y)(c_x r + c_y)},
\] (82)

which is not constant. For the sake of constant Ricci scalar, we must take either \(a_x = 0\) or \(c_y = 0\). In first case, we have
\[
A = a_x^2, \\
B = b_z, \\
C = (c_x r + c_y)^2.
\] (83) (84) (85)

Now for the second case, these turn out to be
\[
A = (a_x r + a_y)^2.
\] (86)
Finally, the corresponding solutions take the forms:

\[ds^2 = \frac{a^2}{c^2} \left(\psi^2 - b_d \rho^2 - \left(c_f + c_g \right) c_d^2 d^2 - b_d dz^2 \right), \quad (89) \]

\[ds^2 = \left(a_f + a_g \right) \left(\psi^2 - b_d \rho^2 - \left(c_f - c_g \right) c_d^2 d^2 - b_d dz^2 \right). \quad (90) \]

It is mentioned here that the energy density of these solutions vanish and hence these are the vacuum solutions. Energy Density of the Non–Vacuum Perfect Fluid Static Cylindrically Symmetric Solutions. In this portion, we calculate energy density of the non-vacuum perfect fluid static cylindrically symmetric solutions (32), (33), (34), (57) and (68), which is obtained in the context of \(f(R) \) theory of gravity in the last portion. We use generalized Landau–Lifshitz EMC in the framework of \(f(R) \) gravity for this purpose. By substituting the value of \(g^{00} \), the Equations (9), it will be

\[\tau_{00}^0 = f(R_0)c_{b}\frac{28}{k_2 k_f r^{12}} + \frac{1}{2 k_2 k_f r^8} \]

(91)

Now, by calculating the values of \(\tau_{00}^0 \) and \(\tau_{11}^0 \) from Equations (11) and (12) respectively and then using in Equation (10), the final expressions of \(\tau_{00}^0 \) for the solutions (32), (33), (34), (57) and (68), take the form

\[\tau_{00}^0 = k_2^2 k_f r^{12} (\rho - \frac{28}{k_2 kr^6}), \quad (92) \]

\[\tau_{11}^0 = k_2^2 k_f r^{12} (\rho - \frac{4}{k_2 kr^6}). \quad (93) \]

To get the final expression for energy density, we have to consider a suitable \(f(R) \) model. It is important to mention here that we must be careful in choosing the \(f(R) \) model specially when \(R = 0 \). It is because if the model contains the logarithmic function of Ricci scalar \(R \) or a linear superposition of \(R^n \), where \(n \) is positive integer, then we can not find this EMC. Hence, we consider the following \(f(R) \) model

\[f(R) = R + \epsilon R^2, \quad (102) \]

where \(\epsilon \) is a positive real number. Consequently, the Equations (32), (33), (34), (57) and (68), results the 00-component of generalized Landau–Lifshitz EMC as

\[\tau_{00}^0 = k_2^2 k_f r^{12} (\rho - \frac{28}{k_2 kr^6}). \quad (103) \]

\[\tau_{00}^0 = e^{4h_f r + 4h_b} (c_f + c_g) \left(\rho - \frac{c_f^2 + (2b_f^2 (c_f + c_g) + 4b_f c_g) (c_f + c_g)}{k_2 e^{2h_f r + 2h_b} (c_f + c_g)^2} \right) \]

(104)

\[\tau_{00}^0 = e^{4h_f r + 4h_b} (c_f + c_g) \left(\rho - \frac{c_f^2 + (2b_f^2 (c_f + c_g) + 4b_f c_g) (c_f + c_g)}{k_2 e^{2h_f r + 2h_b} (c_f + c_g)^2} \right) \]

(105)

\[\tau_{00}^0 = c_2 e^{4h_f r + 4h_b} (\rho - \frac{2b_f^2}{k_2 e^{2h_f r + 2h_b}}) \]

(106)

and

\[\tau_{00}^0 = e^{4h_f r + 4h_b} (c_f + c_g) \left(\rho - \frac{c_f^2 + (2b_f^2 (c_f + c_g) + 4b_f c_g) (c_f + c_g)}{k_2 e^{2h_f r + 2h_b} (c_f + c_g)^2} \right) \]

(107)

Furthermore, the stability condition for this \(f(R) \) model is also satisfied by all these solutions (as \(R = 0 \) for every solution) as

\[\frac{1}{\epsilon + 2e R_0} = \frac{1}{\epsilon} > 0. \]

(108)
Summary and conclusion

The objectives of this work are two folded: Firstly we explore the non–vacuum static cylindrically symmetric solutions in $f(R)$ gravity and the energy distribution of the obtain solution for the perfect fluid case, i.e., $\rho, p \neq 0$. For this purpose, we obtain the field equations of $f(R)$ gravity and solve these equations for static cylindrically symmetric spacetimes considering non–vacuum case while using assumption $R = R_0 = constant$. We use power law assumption, to solve these equation and obtain three non vacuum solutions as,

$$ds^2 = k_1 dt^2 - k_2 r^4 d\rho^2 - k_3 r^4 d\phi^2 - k_2 r^4 dz^2,$$

$$\mu_\nu - \omega = constant$$

and

$$ds^2 = k_1 r^4 dz^2 - k_2 \rho^2 - k_3 r^4 d\phi^2 - k_2 r^4 dz^2$$

(110)

We solve these equations again for exponential law assumption and examine three cases ($\mu = 0, \nu = 0, x = 0$) and get three solutions from which one is vacuum while the other two are non vacuum solutions, which are given respectively as,

$$ds^2 = (a_1 + a_2) r^4 dt^2 - e^{2b_1 r + 2b_2 d} \rho^2 - c_1 r^4 d\phi^2 - e^{2b_1 r + 2b_2 d} dz^2$$

(112)

and

$$ds^2 = a_4 r^4 dt^2 - e^{2b_1 r + 2b_2 d} \rho^2 - (c_4 + c_5) r^4 d\phi^2 - e^{2b_1 r + 2b_2 d} dz^2.$$

(113)

Secondly, we evaluate the energy density of these obtained solutions by using generalized Landau–Lifshitz ERM of $f(R)$ gravity for a suitable $f(R)$ model and we obtain a well–defined expression for components of energy densities of these solution in this case. Moreover, it is also checked that the stability conditions are fulfilled by these solutions.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

