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Abstract

In this paper, we propose a novel method to treat the electroweak symmetry braking.
In this method, a conformal metric is employed and the Higgs field is scaled owing
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to the conformal function and the mass parameters of the quadratic term of the Higgs

potential has a time dependence through the conformal function, and it induces
the phase transition. Quantization of the Higgs field is induced associated with the
canonical quantization of general relativity. The cosmic inflation and the electroweak
phase—transition are discussed in a framework of the scaled field. The Friedmann
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equations are numerically solved and an example of a possible solution to match with

the cosmic inflation scenario is given in this research.
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Introduction

After the discovery of the Higgs boson'? in 2012, the standard
theory of particle physics (SM) is established as the canon of
a fundamental physics. According to the SM, the electroweak
symmetry is spontaneously broken owing to the Higgs mechanism,*>
and the current universe is considered to be filled with the Higgs filed
which has a finite vacuum expectation—value. On the other hand, the
electroweak symmetry is expected to be in the unbroken phase in the
early universe before the cosmic inflation. A standard scenario of the
big—bang cosmology is that the electroweak phase—transition from the
unbroken to the broken phases might occur during (or at the beginning
of) the cosmic inflation, and the universe was re—heated after the
cosmic inflation, and then the big—bang started.

The cosmic inflation was proposed to solve the flatness and
horizon problems by several authors independently®® in 1980. In
these “old” models, the cosmic inflation is induced by the Higgs filed
(or some scalar filed which is referred to as the inflaton field), and it
is terminated when the electroweak phase—transition of the first-kind
occurred. These models are suffered by the vacuum—bubble problem
which destroyed isotropy of the universe. In 1982, the “new” inflation
models'*'? are proposed which utilize the phase—transition of second—
kind to avoid the vacuum-bubble problem. The inflation terminated
moderately in the “new” models. Although these “new’ models can
solve the vacuum-bubble problem, they require a fine tunning of
initial parameters to realize the cosmic inflation for a enough time
duration. Yet other models of the cosmic inflation was proposed
such as the chaotic inflation,” the Higgs inflation with non—minimal
coupling to gravity'* and so on.

In any inflation scenario, the electroweak phase—transition is
critical to induce and terminate the cosmic inflation. However, a
widely accepted mechanism to induce the symmetry braking is
not established yet. The early scenario’ of the symmetry braking
using higher—order radiative corrections is now excluded in precise
measurements of the SM parameters. The radiative braking scenario
is re—examined and concluded that it is still viable if an additional
scalar field is introduced.'® This scenario is intensively investigated
in literatures.'”!'® Recently, this scenario is extended using the
classically conformal B — £ extension of the SM.%

We propose a new and novel mechanism of the electroweak
symmetry braking in this study. In the proposed method, which is
referred to as the “scaled scalar—field method”, a conformal metric
is employed, and the Higgs field is scaled owing to the conformal
function. Quantization of the Higgs field is induced due to the
canonical quantization of general relativity. In consequence, a mass
parameter of the Higgs field (a quadratic term of the Higgs potential)
has the time dependence through the conformal function, and it causes
the phase transition. The scaled scalar—field method is introduced in
section 2 after a brief explanation of our geometrical setups. The
Friedmann equation which governs the cosmic inflation is formulated
using the scaled scalar—field method in section 3.1. After some
appropriate approximation, the Friedmann equations are numerically
solved and an existence of a possible solution to match with the cosmic
inflation scenario is shown in section 3.2. A summary of the method
and consequences on the inflation scenario is provided in section 4.

Scalar field in conformal metric

Geometrical setups

A scalar field defined on a four dimensional space time manifold
Mwith aGL(1,3) symmetry is considered in this study. First,
classical general relativity and the scalar field defined on M
are summarized using a vierbein formalism. The formalism and
terminology in this study follow our previous works.?'"> At each

point on M, a local Lorentz manifold M with a Poincaé¢ symmetry
1SO(1,3) = SO(1,3)x T is
dimensional translation group. On a open neighborhood around

associated, where T *is a four—
any pointx € U € M, a trivial frame vector is expressed asx”
, and a trivial vector bundle (frame bundle) can be introduced. An
orthonormal basis of 9, in TManddx" inT" M are also introduced.
A short-hand notations of 6/4 =0/ ox" are used through out this
study. The Einstein’s equivalent theorem insists an existence of an
isomorphism M — M at any point in M. A metric tensor g,, in
a b
abSﬂSy .
An orthogonal basis in7 M and TM are respectively expressed as

Mis mapped tor,,in M using a vierbein 5: asg,, =1

dx" = Sdey and0, = S:BH using a vierbein and its inverse. The
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Einstein convention for repeated indices is used though out this study.
In addition, Greek and Roman indices are used for a coordinate on

M and M , respectively. A local Lorentz metric and the Levi Civita
tensor are respectively defined as n,, = diag(1,-1,-1,-1)and ¢,,,,
with &;,,, = 1. Dummy Roman-indices are often abbreviate to dots
(or asterisks), when the mdex pairing of the Einstein convention is
obvious, such as nabé'ﬂé'v 77..8”5‘/' When multiple dots appear
in an expression, pairing must be a left—to-right order at both
upper and lower indices, e.g. a Ab =a ab NN principal
connection of the fiber bundle so(1,3) > M is represented as @ b
, which is referred to as the spin connection. The spin cbonnectlon
satisfies a metric compatlblhty condition asw ‘n” =" =-w

. A vierbein fore’ = £'dx" and a GL(1,3) invariant volume form
v=¢c ¢ Ane Ae Ae /4] are introduced. Similarly, the three—
dimensional volume form and two—dimensional surface form are
also introduced as g, = ¢, e ne ae /3 andG, =&, ¢ Ae /2
, respectively. The Volume form Y is a three—dlmensmnal volume
perpendicular toe” , and the surface formG » 18 a two—dimensional
plane perpendicular to bothe’ ande” Fraktur letters are used for
differential forms. A unit ofc =11is used while the reduced Planck
constant # and Newtonian gravitational constant G (or the Einstein
constant ¥ = 47G in our convention) written explicitly. In this units,
there are two physical dimensions, the length and mass dimensions,
which are denoted as L and M , respectively.

The Lagrangian for pure gravity without the cosmological term
and matter fields is expressed as

1 )

£, =—6. AR, (1)
2

R’ = dw” + ' An”, )

wheretw'"is the spin one—form, which is defined as
ab a b, opu o .
e =wo,.n dx” . A two formR  is referred to as the curvature

form, that is a rank—2 Lorentz tensor on M .

A Lagrangian of a scalar field ¢(x) can be expressed in the vierbein
formalism as

11
Ly=——6, /\(n 1,5 ALs —V(p)e /\e) 3)
2 3!

where V' (p)is a potential energy. A scalar—field two—form s is
defined as

s =dpnae = (8,(p) ¢ Ae’. 4

Herez, =1, is a contraction operator with respect to the trivial
¢

coordinate—vector field £* = "€ ”6/4. A physical dimension of the

scalar field is set as L' in this study. In consequence, a Lagrangian
form has null physical dimension as
. -1
4 I:z.s ] =L
p|l=L — _ ->1L,]=1, %)
el= 4T 0 L]

where[e] shows the physical dimension of a quantitye. On the
other hand, the gravitational Lagrangian has a length square dimension
[£;1= I’ . An action integral is defined as

1
I=[(—g,+28,). (6)
xh
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Physical constants in front of the gravitational and scalar—
field Lagrangian are chosen to adjust the physical dimension of he
action integral to be null. Owing to require a stationary condition on
a variation of the action integral with respect to the vierbein form
6,Z = 0, one can obtain the Euler—Lagrange equation as

1 .

—&, R Ae =-xht, 7
2

where t is the energy-momentum three—form of the scalar field,

which can be represented as

1 .. .
t,=——e¢, (L5)A@s)ne +V ()Y, ®)
!

a

Here, rising and lowering Roman indices are performed using

. b < b . ..
a Lorentz metric tensor, e.g. s’ = 77“ te . A torsionless condition

and Klein—Gordon equation can be obtained from S, dm)I =0 and

5(‘”%1 = 0, respectively.

The scalar-filed Lagrangian £ given in (3) can be expressed
using a trivial frame vector in M or M as

1.
(Q—U[2U&¢a¢—VWJ,

1
= —gdx0 Adx' Adx Adx —gﬂlﬂzé’ 90, o=V(p) |, (9)
2 )

where g is a determinant of a metric tensor g . Here a relation

b b. Lo . .
1,e =0, is used. The Einstein equation (7) can be expressed using
components of a trivial basis on M as

1
R, —gnabR =-2xhT,, (10)

T, :E)’u(pf}bq)——naba,(pﬁlgo+7yabV, (11)
where R, and R are the Ricci and scalar curvature, respectively.
An energy—momentum tensor 7, is defined through the relation

t, =97, .
Conformal metric and scaled field method

The Friedmann-Lemaitre—Robertson—Walker (FLRW) metric**?’
is considered in the homogeneous and isotropic universe using a
coordinate (¢, , 0, ¢) on M such as;

ds’ =di’ - Q° (t)(f’z(r)arr2 +r°de’ + rzsin20d¢2), (12)

where f g (ry=1- K’ , and K is a constant related the space—
time curvature. This metric can be expressed using a conformal time
o(t) = Jdi / Q(f) as

(12) = Qz(‘r)(dz'z — (M = F2de —rzsmzedqf).
(13)
From the metric (13) and the torsion—less condition, the spin form
can be obtained as

0 Hf 'dr Hrd0 Hrsin0dg
o —fdO ~—fsin0d¢
W = 0 —cos@dg |, (14)
0
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where H = ((dQ / dr) / Q)(r) . The lower half is omitted because it is obvious due to antisymmetry of the spin form. From (14) and the

surface form, we can obtain the classical Hamiltonian as?

2
I . 2 2 S dr .
Dprw =~ — MW, A0 AG =Q7|3H —| — dt A— A (rd8) A (rsin 0d @), (15)
2 r f
and the Liouville form as 1 , cotd dr
—w AG =Q7[- dt A— A (rsin 8d¢)
2 S
2f . dr .
+—dr A(rd@) A (rsin 8dg¢) +3H — A (rd0) A (rsin 8dg)]. (16)
r J
A canonical quantization of general relativity requires the in the Cartesian coordinate for three—dimensional space
commutation relation between the spin form and surface from as?
~ N . ) la .a,] 2 _ 2 2 1)? 2)? 3)?
v (0,8, () | = -inGe (x - )8, 16,2, (17 ds* =@ (¢)|dr —(dx) —(dx ) —(dx ) 23)
(I

: Loy )] RN |
..and otherwise zero, whered, '6,° =06, 9,° —9,79, . Here,
o and G.. are operators respectively corresponding to the spin and
surface forms, which are formally described as

Ao
oo

) =t ,
~ 5 (18)
Ge = ilG—— .

o

The commutation relation (17) can be represented using terms of
the FLRM metric. The metric tensor is a functional of two functions
Q(r)and f(r)other than the integration measure. On the other
hand, the Liouville—form (16) includes a derivative Q, and it does
not have a term df (r) / dr . Therefore, quantization of the system can
be performed. by replacing a scale faction Q by the corresponding
operator asQ. The conformaltime derivative! Q = dQ/dris
included only in the last term of (16). Thus, a non—zero component of
the commutation relation can be obtained from (16) and (17) as

[;“ ), 6. (r')J =23 [f:(r), é(r)] &y (19)

where r = (z,r),r' = (z',r)andr , r'are three—dimensional
spacial vectors. The three—dimensional integration can be expressed
as

’

dr
A (r'd8) A (r'sin Od ).
(")

v =

(20)

On the other hand, the tight hand side of (17) is represented as

(17) = —i(2hG)3’ (r — ). @21)
Therefore, the commutation relation is obtained as
~ ~ hG
|:Q(r), Q(r):| v =—i— & (r-r). (22)
3

This can be understood as the equal-time commutation relation
of the conformal metric. While this commutation relation is obtained
from the commutation relation (17), one can obtain the same result
based on quantization by Nakanishi?® as shown in Appendix A.

The scalar field can be defined in the conformal metric with K = 0

"I’ this work, while the conformal-time derivative is denoted by a dot as

e = d e /dr, the proper-time derivative is always written explicitly as d ® /dt .

Instead of a polar—coordinate because virbeins are now independent
of . The action integral of a scalar Lagrangian (9) in the conformal
FLRW metric can be obtained as®

1 14
I = JES = jdr/\dx1 N |:17" (6,;()(0.;()+—flz —V(Z)}
2 2Q
(24)

using a local conformal coordinate, where y(x) = Q(7)p(x). We

note that \/—det{g,,} = Q" for the conformal metric (23). For further
discussions, we specify the potential energy as the Higgs—type field

as; )
1 A
v(z)=0' () = 2(92’) S 25)

where & and A > 0 is real constants. Here the physical dimension
of each term is given as;

Qu
—

y7;

[u]=m.[n] =m0 | = |=C", - (26)

This field y is provided owing to scale the scalar field ¢ by the
conformal function Q(z), which is referred to as the scaled scalar

field (SSF). While a quartic term has no corrections, a quadratic term

receives corrections from the conformal function and its second
derivative. According to a standard procedure for field quantization
(canonical quantization), the field and its conjugate momentum are
replaced by corresponding operators. Here, the non—zero component
of equal-time commutation relations of the SSF are naturally
introduced from (21) as;

[ 2.0, 20.3%) | = ot 00,9 0,00 |,

"G~
—i— o) [ 6% (x-x) > s (x-x), @7
3

where ¢(x) is a scaler field operator. The overall factor 4G /3
can absorbed by re—definition of the scalar field. Although the ¢ is an
operator, it is assumed to commutes each other as[¢, ] = 0. Non—
commutativity of y and 7 is induced by that of Q and 3 .

~ Since the commutation relation (27) for the scaled—field operator
x is the same as the standard Klein—-Gordon field—operator, the
standard procedure of the field quantization in a momentum space
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using the Fock Hilbert—space can be performed as usual. We note that,
in the SSF formalism, the commutation relation is required only on
the space—time metric (vierbein). Any observers in the local space
time cannot observe the scalar field independently form the space time
metric. This is one of a realization of the concept given in Kurihara®
such that “Classical mechanics in the stochastic space is equivalent to
quantum mechanics on the standard space time manifold”. According
to this concept, only the vierbein is quantized using the quantum
commutation relations with keeping the scalar field classical. Even if
the local observer is in the flat space—time, one may observe the SSF
which is quantized due to the quantum space time. From equations
(24) and (25), the effective potential can be obtained as;

2
it L p 2 A,
Vi =-—|—| x +—x
2\ h 4

where

(-5

An effective mass of the SSF has time dependence through the
relation (29), and the electroweak phase—transition from unbroken to
broken phases can occur through it. Although the SSF mass was very
small, which corresponds to the unbroken phase, owing to a small
value of Q and 3 / Q at the early universe, it can be large as the same
as that in the current universe after the inflation due to the second
term with a large value of Q . In the current universe, the first term of
(29) is negligibly small compared with the second term, and the time
dependence of the mass term through Q(¢) is much smaller than the
current accuracy of Higgs mass measurements.

(28)

29

A vacuum expectation valuev, = /1/\/; and higgs mass

m, = \/5 fi can be extracted from the effective potential. The Klein—
Gordon equation obtained from the action (24) with respect to the
scaled field y can be expressed as
. oV
X—Ay+—=0,
o
where A = %, , 50,0, . For the uniform and isotoropic universe,
one can set Ay = 0. In this case, the energy—momentum tensor (11)
is represented as

(30)

L, -~

Ty =—x +V, 31
2
L, =~

T,=—x -V, i=1,2,3(not summed), (32)
2

and other components are zero. This energy—momentum tensor
can be interpreted as a density ( p ) and pressure ( p ) of a perfect
fluidasT,, = pandT, = p, respectively.

Cosmic inflation due to the scaled scalar field

Friedmann equation

The Einstein equation (10) for perfect fluid with the conformal
metric (13) can be expressed as follows:
3(H’ +K) = +xh p, (33)
2H+H’ +K = —«xh p, (34)

where the curvature K is put buck in this subsection. These
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equations, refereed to as the Friedmann equations, can be rearranged

as

5 2Kh
H =—p-K,
3

H =—K—h(p+3p).

When the density and pressure are provided from the SSF, the
Friedmann equations have a form

(335)

(36)

) 2k (1 5, =~
H =+—| -4y +V |-K, 37)
3 2
2kh (5, =
-7 -7) (38)

If appropriate initial conditions are given, the history of the
universe can be obtained by solving equations (30), (37) and (38),
simultaneously. Further simplification is possible in this case as
follows: A conformal-time derivative of (37) provides a equation

5 ~ ~2
2xh oV

dH . Kk du
S|\ xt— |Xx-— X
dr 3 oy 3h dr
~2
2kh . xk duy
AV 7 A x5 (39)
3 3n dr

where the Klein—Gordon equation (30) is used. Under the
assumption that the SSF is the uniform and isotoropic, a spacial
derivative are set to zero again as Ay = 0. Therefore, the equation
(39) can be expressed as
~2
dH’ kdy
=—-— x . (40)
dr 3n dr
Due to definitions of [12 in (29), its conformal time derivative is
expressed as

~2
h d(Qj +2004°.
dr dr \ Q

Under the assume that higher derivatives of the scale function
Q are much smaller than both the scale function itself and first
derivative of that, the first term on the righthand side can be ignored
compared with the second term. The validity of this assumption will
be confirmed later in this section. In this case, the equation (40) can
be approximated as

Q / K
—(0) = |1 Q) 2(2),
Q 3h

where H (7) > 0 is assumed through any 7 . This equation can be
express using the proper time ¢ using a relation Q(z)dz = dt as

YOS
= \/7# Q) x(0).
dt 3h

The second Friedmann equation (38) can be approximated under
the same assumptions as

1
2 2 N
dQ(t)=J; o)’ 2(”’””) +(#z(t)j ol
dt 3 dt h 2

(44)

(41)

(42)

(43)
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Above two Friemann equations (43) and (44) must be consistent
each other within the approximation. It leads a following differential
equation

A
#(@) = rjz(r)z,

with respect to the conformal time 7 . This equation can be solved
as

(45)

-1

(46)

where y, = y(r = 0) . This solution does not give any oscillating
fields because of the requirement Ay =0 .

Numerical calculations

Next the scaling function for the cosmic inflation era is treated in this
section. During the cosmic inflation, a conditiondQ / dt > d y / dt
is expected naturally. Due to the definition of the SSF, this condition
can be satisfied if ¢ < landde/dt < (dQ/dt)/Q during the
cosmic inflation. A validity of this assumption will be discussed later
in this section. The Friedmann equation (43) can be solved under the
assumption as;

Q1) = @, exp(H,yt), (47)

20

15+

t=0
s Detet,
N =

X (Mpx107")

Figure | The potential energy of the SSF before the inflation (solid line),
during the inflation (dotted line), and at the end of the inflation (dashed line).

where H =k /3h uy,with an initial  condition  of
Q(t = 0) = Q. Due to the assumption above, the SSF stays constant
at y(0 <t <t,) = y,during the inflation. An inflation starting time is
set toz = 0. An initial value of the SSF may be given by a quantum
fluctuation of the field, which is naturally expected to be an order
unity. Here the initial value y; = lin the Planck units is assumed.
On the other hand, the Higgs potential parameters, # and A, at the
beginning of the universe are set to be the same as the current universe
at the tree level for simplicity. From the recent measurement of the
Higgs mass,’' the quadratic term can be obtained as Qu / i = 90 GeV
and 4 = 0.134. Therefore, the initial value / is obtaineg in the
Planck units as H; =90/ ( 3mp), wherem, =122x10 " GeV is
the Planck mass in the natural units. In order to make the inflation
scenario working well, the e-folding number N, defined as
exp(N,) = Q(¢z,) / Q, must be greater than or around 70. When
the normalization Q(#,) =l and the e-folding number N, = 70 are
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required, the initial value of the scaling function can be obtained as
Q, = ¢ The inflation terminatiorzlztime can be obtained by solving
the )(z,) = lsuchasz, = 0.89x10 = second. In our scenario, a speed
of changing a vacuum expectation value was very high, and thus,
the SSF vacuum is staying at the origin ¥ (y(¢ = 0)) = 0 for a short
period. Then, delayed explosion of the SSF field y caught the vacuum
expectation value up and the inflation was terminated. Therefore, the
electroweak phase—transition must be the second kind.

5 T 1 ; T

Y]

volvo (SM)

-24055  -24050  -24.045

Logig(t(sec))

-24.060

Figure 2 The potential-energy term of the SSF normalized using the SM value
in the current universe. If we require that the cosmic inflation terminated
when the potential-energy term of the SSF arrived at the current value
(Vo =V, (SM) = 1) ,a duration of the in ation is 0.89 x 10 2* second.

Ng-T0

M I S
-24.060 -24.055

L | R
-24050  -24,045
Logyp(t(sec))

Figure 3 The e—folding number different from nominal value N, —70 is
shown with respect to the duration time of the ination. When the ination
duration changed £1% around its nominal value, the e—folding number varied

about+2.
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The evolution of the scaling function can be fixed completely
using above parameters under the approximations. Before a starting
time of the inflation, the first term of (29) was much smaller than the
second term. At that period, the potential energy of the SSF had a
minimum at y = 0 as shown in Figure 1 (¢ = 0) . During the inflation,
the SSF had a finite vacuum expectation value (Figure 1 (0 <t <t,)
). At the end of the inflation, the vacuum expectation value arrived
at the same value as that in the current universe (Figure 1(¢ =1¢,)
). Although the vacuum expectation value stayed almost constant at
the beginning inflation, it grew very rapidly after the second term of
(29) became dominant in the potential energy as shown in Figure 2.
The inflation was terminated when the SSF arrived at the vacuum
expectation value, and it fixed the e—folding number. A precise value
of the inflation ending time must be evaluated by solving equations
(43) and (45) (or equivalently (46)), simultaneously. We note that the
relation between the conformal and proper times can be fixed only
after the solution of the scaling function is obtained. One cannot
solve equations analytically without the approximation that the SFF
is constant during the inflation. When the inflation duration changed
+1% around its nominal value, the e—folding number varied about
+2 as shown in Figure 3. On the other hand, the same variation for
the duration of the inflation affects the vacuum expectation value
about 50% to 500% , as shown in Figure 2. A tolerance of the inflation
duration is rather narrow to realize a current observed value of the
vacuum expectation value.

1.' LRI UL _____'__...'.'..'..'_..'.'._'..'..!_.'.!.'_.'..|_
3% S
| ¢ 10-15 T R TTI LU TT LTI TILTITIT TIITTITI LT Toree
. i i i i i ;
=270 =265 =260 =255 =250 -245 =240
Logio(t(sec))

Figure 4 A term (t / ;()d}( /dt is shown with respect to the inflation
duration.The approximation used in this report requires a value must be small
compare with unity.

The solution (47) is obtained under the assumption of
dQ/dt > dy/dt. The validity of this assumption during the
cosmic inflation must be confirmed. If the time \c}.apmdﬁnce of the
SSF is put back in the solution as H, — H(t) = NV« /37 uy(t), the
time derivative of the scaling function becomes

@ _ QH@)| 1+ Y10

dt 20 dt

t lexp(H(o)t). (48)

In calculations for the cosmic inflation, the time derivative term in
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the right hand side is neglected. The validity of this approximation can
be examined using the equation of motion. The time evolution of the
SSF is governed by the equation (46) with respect to the conformal
time. For a conversion from the conformal time to the proper time,
the approximated solution of (47) is used for a numerical calculation.
A numerical result of a time evolution of the tern(dy / dt)t/ y is
shown in Figure 4. It is shown that that term is less than unity during
the cosmic inflation, and thus the effect on the result is a factor of two
on Q) at most.

Summary

We propose a novel method to treat the electroweak symmetry
braking, which is named the scaled scalar—field method. In this
method, a conformal metric is employed and the Higgs field is scaled
owing to the conformal function. In consequence, a mass parameter
of the Higgs field (a quadratic term of the Higgs potential) has the
time dependence through the conformal function, and it causes the
phase transition. Quantization of the Higgs field is induced associated
with the canonical quantization of general relativity. In the context of
the scaled field, only the vierbein is quantized owing to the quantum
commutation relations with keeping the scalar field classical.

The cosmic inflation and the electroweak phase—transition are
investigated in a framework of the scaled field. The Friedmann
equations and their appropriate approximations are provided using
the scaled field method. The Friedmann equations are numerically
solved and an example of a possible solution to match with the
cosmic inflation scenario is shown. The electroweak phase—transition
induced by the scaled field is the second kind, and thus, the fine—
tuning problem is still exists.
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