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Introduction
After the discovery of the Higgs boson1,2 in 2012, the standard 

theory of particle physics (SM) is established as the canon of 
a fundamental physics. According to the SM, the electroweak 
symmetry is spontaneously broken owing to the Higgs mechanism,3–5 
and the current universe is considered to be filled with the Higgs filed 
which has a finite vacuum expectation–value. On the other hand, the 
electroweak symmetry is expected to be in the unbroken phase in the 
early universe before the cosmic inflation. A standard scenario of the 
big–bang cosmology is that the electroweak phase–transition from the 
unbroken to the broken phases might occur during (or at the beginning 
of) the cosmic inflation, and the universe was re–heated after the 
cosmic inflation, and then the big–bang started.

The cosmic inflation was proposed to solve the flatness and 
horizon problems by several authors independently6–9 in 1980. In 
these “old” models, the cosmic inflation is induced by the Higgs filed 
(or some scalar filed which is referred to as the inflaton field), and it 
is terminated when the electroweak phase–transition of the first–kind 
occurred. These models are suffered by the vacuum–bubble problem 
which destroyed isotropy of the universe. In 1982, the “new” inflation 
models10–12 are proposed which utilize the phase–transition of second–
kind to avoid the vacuum–bubble problem. The inflation terminated 
moderately in the “new” models. Although these “new’ models can 
solve the vacuum–bubble problem, they require a fine tunning of 
initial parameters to realize the cosmic inflation for a enough time 
duration. Yet other models of the cosmic inflation was proposed 
such as the chaotic inflation,13 the Higgs inflation with non–minimal 
coupling to gravity14 and so on.

In any inflation scenario, the electroweak phase–transition is 
critical to induce and terminate the cosmic inflation. However, a 
widely accepted mechanism to induce the symmetry braking is 
not established yet. The early scenario15 of the symmetry braking 
using higher–order radiative corrections is now excluded in precise 
measurements of the SM parameters. The radiative braking scenario 
is re–examined and concluded that it is still viable if an additional 
scalar field is introduced.16 This scenario is intensively investigated 
in literatures.17,18 Recently, this scenario is extended19 using the 
classically conformal −  extension of the SM.20

We propose a new and novel mechanism of the electroweak 
symmetry braking in this study. In the proposed method, which is 
referred to as the “scaled scalar–field method”, a conformal metric 
is employed, and the Higgs field is scaled owing to the conformal 
function. Quantization of the Higgs field is induced due to the 
canonical quantization of general relativity. In consequence, a mass 
parameter of the Higgs field (a quadratic term of the Higgs potential) 
has the time dependence through the conformal function, and it causes 
the phase transition. The scaled scalar–field method is introduced in 
section 2 after a brief explanation of our geometrical setups. The 
Friedmann equation which governs the cosmic inflation is formulated 
using the scaled scalar–field method in section 3.1. After some 
appropriate approximation, the Friedmann equations are numerically 
solved and an existence of a possible solution to match with the cosmic 
inflation scenario is shown in section 3.2. A summary of the method 
and consequences on the inflation scenario is provided in section 4.

Scalar field in conformal metric
Geometrical setups

A scalar field defined on a four dimensional space time manifold
with a (1, 3)GL symmetry is considered in this study. First, 
classical general relativity and the scalar field defined on
are summarized using a vierbein formalism. The formalism and 
terminology in this study follow our previous works.21–23 At each 
point on , a local Lorentz manifold M with a Poincaé symmetry

4(1, 3) = (1, 3)ISO SO T is associated, where 4T is a four–
dimensional translation group. On a open neighborhood around 
any point ∈ ⊂x U , a trivial frame vector is expressed as µx
, and a trivial vector bundle (frame bundle) can be introduced. An 
orthonormal basis of µ∂ in T and µdx in *T are also introduced. 
A short–hand notations of = / µ

µ∂ ∂ ∂x are used through out this 
study. The Einstein’s equivalent theorem insists an existence of an 
isomorphism → M at any point in . A metric tensor ••g in
 is mapped toη•• in M using a vierbein µ

a as =µν µ νη  a b
abg . 

An orthogonal basis in *T M and TM  are respectively expressed as
= µ

µ
a adx dx and = µ

µ∂ ∂a a using a vierbein and its inverse. The 
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Einstein convention for repeated indices is used though out this study. 
In addition, Greek and Roman indices are used for a coordinate on
 and M , respectively. A local Lorentz metric and the Levi Civita 
tensor are respectively defined as = (1, 1, 1, 1)η•• − − −diag and ε••••
with 0123 = 1ε . Dummy Roman–indices are often abbreviate to dots 
(or asterisks), when the index pairing of the Einstein convention is 
obvious, such as =µ ν µ νη η ⋅ ⋅

⋅⋅   a b
ab . When multiple dots appear 

in an expression, pairing must be a left–to–right order at both 
upper and lower indices, e.g. =⋅⋅

⋅⋅ ∧ ∧a b a b
ab

ab . A principal 
connection of the fiber bundle (1, 3) →so M  is represented as  

 µω
a
b

, which is referred to as the spin connection. The spin connection 
satisfies a metric compatibility condition as    = = µ µ µω η ω ω⋅ −⋅

a b ab ba

. A vierbein for = µ
µe a adx and a (1, 3)GL invariant volume form 

= / 4!ε⋅⋅⋅⋅
⋅ ⋅ ⋅ ⋅∧ ∧ ∧v e e e e  are introduced. Similarly, the three–

dimensional volume form and two–dimensional surface form are 
also introduced as = / 3!ε ⋅ ⋅ ⋅∧ ∧



V e e ea a  and = / 2ε ⋅⋅
⋅ ⋅∧S e eab ab

, respectively. The volume formVa is a three–dimensional volume 
perpendicular to ea , and the surface formSab is a two–dimensional 
plane perpendicular to both ea and eb . Fraktur letters are used for 
differential forms. A unit of = 1c is used while the reduced Planck 
constant  and Newtonian gravitational constant G (or the Einstein 
constant = 4κ πG in our convention) written explicitly. In this units, 
there are two physical dimensions, the length and mass dimensions, 
which are denoted as L and M , respectively.

The Lagrangian for pure gravity without the cosmological term 
and matter fields is expressed as

 1
= ,

2
⋅⋅

⋅⋅ ∧L S RG 				                 (1)

 = ,⋅
⋅+ ∧R w w w

ab ab a bd                                                             (2)

where ••
w is the spin one–form, which is defined as
 =  

µ
µω η⋅
⋅w

ab a bdx . A two form ••
R is referred to as the curvature 

form, that is a rank– 2  Lorentz tensor on M .

A Lagrangian of a scalar field ( )ϕ x can be expressed in the vierbein 
formalism as

( )1 1
= ( ) ,

2 3!
η ι ι ϕ∗∗ ⋅ ⋅ ⋅ ⋅

⋅⋅ ∗ ∗∧ ∧ − ∧L S s s e eS V                        (3)

where ( )ϕV is a potential energy. A scalar–field two–form •
s is 

defined as

( )= = .ϕ ϕ ⋅∧ ∂ ∧⋅s e e e
a a ad                                                   (4)

Here =
ξ

ι ιa a is a contraction operator with respect to the trivial 

coordinate–vector field = µ
µξ η ⋅

⋅ ∂
a a . A physical dimension of the 

scalar field is set as 1−L in this study. In consequence, a Lagrangian 
form has null physical dimension as

[ ] [ ] [ ]
1

1
4

=
= = 1,

=

ι
ϕ

• −
− •

−
→ →
  


s
LS

L
L

V L
                                    (5)

where [ ]• shows the physical dimension of a quantity • . On the 
other hand, the gravitational Lagrangian has a length square dimension

2[ ] =LG L . An action integral is defined as
1

= ( 2 ).
κ

+∫


L L G S                                                                 (6)

Physical constants in front of the gravitational and scalar–
field Lagrangian are chosen to adjust the physical dimension of he 
action integral to be null. Owing to require a stationary condition on 
a variation of the action integral with respect to the vierbein form

= 0δ
e
 , one can obtain the Euler–Lagrange equation as

1
=  ,

2
ε κ⋅⋅ ⋅

⋅⋅⋅ ∧ − R e ta a                                                              (7)

where t a  is the energy–momentum three–form of the scalar field, 
which can be represented as

1
= ( ) ( ) ( ) .

3!
ε ι ι ϕ⋅ ∗ ⋅ ⋅

∗− ∧ ∧ +


t s s e Va a aV                               (8)

Here, rising and lowering Roman indices are performed using 

a Lorentz metric tensor, e.g. =ι η ι⋅ ⋅s e
a b a b . A torsionless condition 

and Klein–Gordon equation can be obtained from ( , ) = 0δ
w w

d and

( , ) = 0ϕ ϕδ d , respectively.

The scalar–filed LagrangianLS given in (3) can be expressed 
using a trivial frame vector in M or as

1
(3) =  ( ) ,

2
η ϕ ϕ ϕ⋅⋅∂ ∂ −⋅ ⋅

 
  
v V

0 1 2 3 1 2

1 2

1
=  ( ) ,

2

µ µ

µ µϕ ϕ ϕ− ∧ ∧ ∧ ∂ ∂ −
 
  

gdx dx dx dx g V    (9)

where g is a determinant of a metric tensor ••g . Here a relation

=ι δe
b b

a a is used. The Einstein equation (7) can be expressed using 
components of a trivial basis on M as

1
= 2  ,

2
η κ− − ab ab abR R T                                                        (10)

1
=   ,

2
ϕ ϕ η ϕ ϕ η⋅∂ ∂ − ∂ ∂ +⋅ab a b ab abT V 	                            (11)

where ••R and R are the Ricci and scalar curvature, respectively. 
An energy–momentum tensor ••T is defined through the relation

 = ⋅
⋅t Va aT .

Conformal metric and scaled field method

The Friedmann–Lemaître–Robertson–Walker (FLRW) metric24–27 
is considered in the homogeneous and isotropic universe using a 
coordinate ( , , , )θ φt r on such as;

( )2 2 2 2 2 2 2 2 22= ( ) ( ) ,sinθ θ φ−− Ω + +ds dt t f r dr r d r d      (12)

where 2 2( ) = 1−f r Kr , and K is a constant related the space–
time curvature. This metric can be expressed using a conformal time

( ) = / ( )τ Ω∫  t dt t as

( )2 2 2 2 2 2 2 22(12) = ( ) ( ) .sinτ τ θ θ φ−Ω − − −d f r dr r d r d 	                               	
						                   (13)

From the metric (13) and the torsion–less condition, the spin form 
can be obtained as

1

0

0     sin
   sin

= ,  0   cos
   0

θ θ φ
θ θ φ

θ φ

−

••
− −

−

 
 
 
 
  
 

w

Hf dr H rd H r d
f d f d

d                        (14)
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where = (( / ) / )( )τ τΩ ΩH d d . The lower half is omitted because it is obvious due to antisymmetry of the spin form. From (14) and the 
surface form, we can obtain the classical Hamiltonian as22

 2
2 2

FLRW  

1
= = 3  ( ) ( sin ),

2
τ θ θ φ⋅ ∗⋅

∗ ⋅⋅− ∧ ∧ Ω − ∧ ∧ ∧
  
  

   
H w w S

f dr
H d rd r d

r f
       				                    (15)

and the Liouville form as
21 cot

= [  ( sin )
2

θ
τ θ φ⋅⋅

⋅⋅∧ Ω − ∧ ∧w S
dr

d r d
r f

2
  ( ) ( sin ) 3  ( ) ( sin )].τ θ θ φ θ θ φ+ ∧ ∧ + ∧ ∧

f dr
d rd r d H rd r d

r f
 				                                                    (16)

A canonical quantization of general relativity requires the 
commutation relation between the spin form and surface from as22

 

[1 2 (4) 1 2
1 2 1 2

]
( ), ( ) = ( ) ,δ δ δ− − 

  
w S

a a a a
b b b bx y i G x y                    (17)

and otherwise zero, where
[ ]1 2 1 2 2 1

1 2 1 2 1 2
=δ δ δ δ δ δ−

a a a a a a

b b b b b b . Here,


••

w and  ••S are operators respectively corresponding to the spin and 
surface forms, which are formally described as





= ,
  

= .
δ

δ

••
••

•• ••








w w

S
w

i G
                                                              (18)

The commutation relation (17) can be represented using terms of 
the FLRM metric. The metric tensor is a functional of two functions

( )τΩ and ( )f r other than the integration measure. On the other 
hand, the Liouville–form (16) includes a derivativeΩ , and it does 
not have a term ( ) /df r dr . Therefore, quantization of the system can 
be performed by replacing a scale factionΩ by the corresponding 
operator as Ω . The conformal–time derivative1 = / τΩ Ω d d is 
included only in the last term of (16). Thus, a non–zero component of 
the commutation relation can be obtained from (16) and (17) as

   

3
=( ), ( ) | = 2 3 ( ), ( ) 'τ τ τ τ

⋅⋅

′′ ⋅ Ω Ω⋅⋅   
   

w Sr r d r
                       

 (19)

where = ( , )τr r , = ( , ')τ′ ′r r and r , 'r are three–dimensional 
spacial vectors. The three–dimensional integration can be expressed 
as

3 ' = ( ) ( sin ).
( )

θ θ φ
′

′ ′∧ ∧
′

dr
d r d r d

f r
r                                        (20)

On the other hand, the tight hand side of (17) is represented as
3(17) = (2 ) ( ').δ− −i G r r  		                               (21)

Therefore, the commutation relation is obtained as
 

3 3( ), ( ) ' = ( ').
3

τ τ δΩ Ω − − 
 





G
d ir r r 		              (22)

This can be understood as the equal–time commutation relation 
of the conformal metric. While this commutation relation is obtained 
from the commutation relation (17), one can obtain the same result 
based on quantization by Nakanishi28 as shown in Appendix A.

The scalar field can be defined in the conformal metric with = 0K
1In this work, while the conformal-time derivative is denoted by a dot as

= / τ• • d d , the proper-time derivative is always written explicitly as /•d dt .

in the Cartesian coordinate for three–dimensional space

( ) ( ) ( ) ( )( )2 2 22 2 2 1 2 3= τ τΩ − − −ds d dx dx dx                    (23)

Instead of a polar–coordinate because virbeins are now independent 
of r . The action integral of a scalar Lagrangian (9) in the conformal 
FLRW metric can be obtained as29

( )( )1 2 3 21 1
= = ( )

2 2
τ η χ χ χ χ⋅⋅ Ω
∧ ∧ ∧ ∂ ∂ + −∫ ∫ ⋅ ⋅

Ω

 
  



Ls S d dx dx dx V  

						                     (24)

using a local conformal coordinate, where ( ) = ( ) ( )χ τ ϕΩx x . We 

note that 4{ } =••− Ωdet g for the conformal metric (23). For further 
discussions, we specify the potential energy as the Higgs–type field 
as;

( )
2

4 2 41
= ( ) = ,

2 4

µ λ
χ ϕ χ χΩ − Ω +

 
 
 

V V 	               (25)

where µ and > 0λ is real constants. Here the physical dimension 
of each term is given as;

[ ] [ ] 1 2= , = = , = .
µ µ

µ χ− −Ω
→
   
      



 

M LM L L 	             (26)

This field χ is provided owing to scale the scalar fieldϕ by the 
conformal function ( )τΩ , which is referred to as the scaled scalar 
field (SSF). While a quartic term has no corrections, a quadratic term 
receives corrections from the conformal function and its second 
derivative. According to a standard procedure for field quantization 
(canonical quantization), the field and its conjugate momentum are 
replaced by corresponding operators. Here, the non–zero component 
of equal–time commutation relations of the SSF are naturally 
introduced from (21) as;

   ( , ), ( , ') = ( , ) ( , ') ( ), ( ) ,χ τ χ τ ϕ τ ϕ τ τ τΩ Ω   
   





 x x x x

2 (3) (3)= | ( ) | ( ') ( '),
3

ϕ δ δ− → −




G
i ix x x x x 	                (27)

where ( )ϕ x is a scaler field operator. The overall factor / 3G
can absorbed by re–definition of the scalar field. Although theϕ is an 
operator, it is assumed to commutes each other as [ , ] = 0ϕ ϕ  . Non–
commutativity of χ and χ is induced by that ofΩ andΩ .

Since the commutation relation (27) for the scaled–field operator
χ is the same as the standard Klein–Gordon field–operator, the 

standard procedure of the field quantization in a momentum space 
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using the Fock Hilbert–space can be performed as usual. We note that, 
in the SSF formalism, the commutation relation is required only on 
the space–time metric (vierbein). Any observers in the local space 
time cannot observe the scalar field independently form the space time 
metric. This is one of a realization of the concept given in Kurihara30 
such that “Classical mechanics in the stochastic space is equivalent to 
quantum mechanics on the standard space time manifold”. According 
to this concept, only the vierbein is quantized using the quantum 
commutation relations with keeping the scalar field classical. Even if 
the local observer is in the flat space–time, one may observe the SSF 
which is quantized due to the quantum space time. From equations 
(24) and (25), the effective potential can be obtained as;



2
2 41

( ) = ,
2 4

µ λ
χ χ χ− +

 
 
 




V  			              (28)

where
2 2

= .
µ µΩ Ω

+
Ω

   
   
   





 

 			                (29)

An effective mass of the SSF has time dependence through the 
relation (29), and the electroweak phase–transition from unbroken to 
broken phases can occur through it. Although the SSF mass was very 
small, which corresponds to the unbroken phase, owing to a small 
value ofΩ and /Ω Ω at the early universe, it can be large as the same 
as that in the current universe after the inflation due to the second 
term with a large value ofΩ . In the current universe, the first term of 
(29) is negligibly small compared with the second term, and the time 
dependence of the mass term through ( )Ω t is much smaller than the 
current accuracy of Higgs mass measurements.

A vacuum expectation value 0 = /µ λv and higgs mass
= 2 µhm can be extracted from the effective potential. The Klein–

Gordon equation obtained from the action (24) with respect to the 
scaled field χ can be expressed as



= 0,χ χ
χ

∂
− ∆ +

∂


V
			                              (30)

where =1,2,3= ∑∆ ∂ ∂i i i . For the uniform and isotoropic universe, 
one can set = 0χ∆ . In this case, the energy–momentum tensor (11) 
is represented as



2
00

1
= ,

2
χ +T V 				                 (31)



21
= ,   = 1, 2, 3 (not summed),

2
χ −iiT V i

	                              
 (32)

and other components are zero. This energy–momentum tensor 
can be interpreted as a density ( ρ ) and pressure ( p ) of a perfect 
fluid as 00 = ρT and =iiT p , respectively.

Cosmic inflation due to the scaled scalar field
Friedmann equation

The Einstein equation (10) for perfect fluid with the conformal 
metric (13) can be expressed as follows:

23( ) =  ,κ ρ+ + H K  				              (33)
22 =  ,κ+ + −

H H K p  			             (34)

where the curvature K is put buck in this subsection. These 

equations, refereed to as the Friedmann equations, can be rearranged 
as

2 2
= ,

3

κ
ρ −



H K 				                (35)

( )= 3 .
3

κ
ρ− +



H p  				                (36)

When the density and pressure are provided from the SSF, the 
Friedmann equations have a form



2 22 1
= ,

3 2

κ
χ+ + −

 
 
 


H V K  			               (37)

( )22
= .

3

κ
χ− −





H V   		                                  (38)

If appropriate initial conditions are given, the history of the 
universe can be obtained by solving equations (30), (37) and (38), 
simultaneously. Further simplification is possible in this case as 
follows: A conformal–time derivative of (37) provides a equation

 

22
22

= ,
3 3

κ κ µ
χ χ χ

τ χ τ

∂
+ −
∂

 
 
 



 



dH V d

d d


2

2
2

= ,
3 3

κ κ µ
χχ χ

τ
∆ −







d

d 		                               
 (39)

where the Klein–Gordon equation (30) is used. Under the 
assumption that the SSF is the uniform and isotoropic, a spacial 
derivative are set to zero again as = 0χ∆ . Therefore, the equation 
(39) can be expressed as



22
2= .

3

κ µ
χ

τ τ
−


dH d

d d
 				                 (40)

Due to definitions of 2µ in (29), its conformal time derivative is 
expressed as



2

2 2= 2 .
µ

µ
τ τ

Ω
+ ΩΩ

Ω

 
 
 







d d

d d
			               (41)

Under the assume that higher derivatives of the scale function
Ω are much smaller than both the scale function itself and first 
derivative of that, the first term on the righthand side can be ignored 
compared with the second term. The validity of this assumption will 
be confirmed later in this section. In this case, the equation (40) can 
be approximated as

( ) =  ( ) ( ),
3

κ
τ µ τ χ τ

Ω
Ω

Ω



 	
		                (42)

where ( ) > 0τH is assumed through anyτ . This equation can be 
express using the proper time t using a relation ( ) =τ τΩ d dt  as

( )
=  ( ) ( ).

3

κ
µ χ

Ω
Ω



d t
t t

dt
			               (43)

The second Friedmann equation (38) can be approximated under 
the same assumptions as

1
2 2 2

2 4( ) ( )
= ( ) 2 ( ) ( ) .

3 2

κ χ µ λ
χ χ

Ω
Ω + −
                 

d t d t
t t t

dt dt
	

						                  (44)
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Above two Friemann equations (43) and (44) must be consistent 
each other within the approximation. It leads a following differential 
equation

2( ) = ( ) ,
2

λ
χ τ χ τ±  			                               (45)

with respect to the conformal timeτ . This equation can be solved 
as

1

0

1
( ) = ,

2

λ
χ τ τ

χ

−

+
 
 
 
 			                 (46)

where 0 = ( = 0)χ χ τ . This solution does not give any oscillating 
fields because of the requirement = 0χ∆ .

Numerical calculations

Next the scaling function for the cosmic inflation era is treated in this 
section. During the cosmic inflation, a condition / /χΩd dt d dt

is expected naturally. Due to the definition of the SSF, this condition 
can be satisfied if 1ϕ  and / ( / ) /ϕ Ω Ωd dt d dt during the 
cosmic inflation. A validity of this assumption will be discussed later 
in this section. The Friedmann equation (43) can be solved under the 
assumption as;

( )0 0( ) = exp ,Ω Ωt H t 				              (47)

Figure 1 The potential energy of the SSF before the inflation (solid line), 
during the inflation (dotted line), and at the end of the inflation (dashed line).

where 0 0= / 3  κ µχH with an initial condition of
0( = 0) =Ω Ωt . Due to the assumption above, the SSF stays constant 

at 0(0 < < ) =χ χet t during the inflation. An inflation starting time is 
set to = 0t . An initial value of the SSF may be given by a quantum 
fluctuation of the field, which is naturally expected to be an order 
unity. Here the initial value 0 = 1χ in the Planck units is assumed. 
On the other hand, the Higgs potential parameters, µ and λ , at the 
beginning of the universe are set to be the same as the current universe 
at the tree level for simplicity. From the recent measurement of the 
Higgs mass,31 the quadratic term can be obtained as / = 9  0µΩ  GeV  
and = 0.134λ . Therefore, the initial value oH is obtained in the 
Planck units as 0 = 90 / ( 3 )pH m , where 19= 1.22 1  0×mp GeV is 
the Planck mass in the natural units. In order to make the inflation 
scenario working well, the e–folding number eN defined as

0exp( ) = ( ) /Ω Ωe eN t must be greater than or around 70. When 
the normalization ( ) = 1Ω et and the e–folding number = 70eN are 

required, the initial value of the scaling function can be obtained as
70

0 = −Ω e . The inflation termination–time can be obtained by solving 
the ( ) = 1Ω et such as 24= 0.89 10−×et second. In our scenario, a speed 
of changing a vacuum expectation value was very high, and thus, 
the SSF vacuum is staying at the origin ( ( = 0)) = 0χV t for a short 
period. Then, delayed explosion of the SSF field χ caught the vacuum 
expectation value up and the inflation was terminated. Therefore, the 
electroweak phase–transition must be the second kind.

Figure 2 The potential–energy term of the SSF normalized using the SM value 
in the current universe. If we require that the cosmic inflation terminated 
when the potential–energy term of the SSF arrived at the current value

( )( )0 0 1V V SM= = , a duration of the in ation is 240.89 10−× second.

Figure 3 The e–folding number different from nominal value 70eN − is 
shown with respect to the duration time of the ination. When the ination 
duration changed 1%± around its nominal value, the e–folding number varied 
about 2± .
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The evolution of the scaling function can be fixed completely 
using above parameters under the approximations. Before a starting 
time of the inflation, the first term of (29) was much smaller than the 
second term. At that period, the potential energy of the SSF had a 
minimum at = 0χ as shown in Figure 1 ( = 0)t . During the inflation, 
the SSF had a finite vacuum expectation value (Figure 1 (0 < < )et t
). At the end of the inflation, the vacuum expectation value arrived 
at the same value as that in the current universe (Figure 1 ( = )et t
). Although the vacuum expectation value stayed almost constant at 
the beginning inflation, it grew very rapidly after the second term of 
(29) became dominant in the potential energy as shown in Figure 2. 
The inflation was terminated when the SSF arrived at the vacuum 
expectation value, and it fixed the e–folding number. A precise value 
of the inflation ending time must be evaluated by solving equations 
(43) and (45) (or equivalently (46)), simultaneously. We note that the 
relation between the conformal and proper times can be fixed only 
after the solution of the scaling function is obtained. One cannot 
solve equations analytically without the approximation that the SFF 
is constant during the inflation. When the inflation duration changed

1%±  around its nominal value, the e–folding number varied about
2± as shown in Figure 3. On the other hand, the same variation for 

the duration of the inflation affects the vacuum expectation value 
about 50% to 500% , as shown in Figure 2. A tolerance of the inflation 
duration is rather narrow to realize a current observed value of the 
vacuum expectation value. 

Figure 4 A term ( )/ /t d dtχ χ is shown with respect to the inflation 
duration. The approximation used in this report requires a value must be small 
compare with unity.

The solution (47) is obtained under the assumption of
/ /χΩd dt d dt . The validity of this assumption during the 

cosmic inflation must be confirmed. If the time dependence of the 
SSF is put back in the solution as 0 ( ) = / 3  ( )κ µχ→ H H t t , the 
time derivative of the scaling function becomes

( )0

( ) 1 ( )
= ( ) 1 exp ( ) .

( )

χ

χ

Ω
Ω +

 
 
 

d t d t
H t t H t t

dt t dt
	           (48)

In calculations for the cosmic inflation, the time derivative term in 

the right hand side is neglected. The validity of this approximation can 
be examined using the equation of motion. The time evolution of the 
SSF is governed by the equation (46) with respect to the conformal 
time. For a conversion from the conformal time to the proper time, 
the approximated solution of (47) is used for a numerical calculation. 
A numerical result of a time evolution of the tern ( / ) /χ χd dt t is 
shown in Figure 4. It is shown that that term is less than unity during 
the cosmic inflation, and thus the effect on the result is a factor of two 
on 0Ω at most.

Summary
We propose a novel method to treat the electroweak symmetry 

braking, which is named the scaled scalar–field method. In this 
method, a conformal metric is employed and the Higgs field is scaled 
owing to the conformal function. In consequence, a mass parameter 
of the Higgs field (a quadratic term of the Higgs potential) has the 
time dependence through the conformal function, and it causes the 
phase transition. Quantization of the Higgs field is induced associated 
with the canonical quantization of general relativity. In the context of 
the scaled field, only the vierbein is quantized owing to the quantum 
commutation relations with keeping the scalar field classical.

The cosmic inflation and the electroweak phase–transition are 
investigated in a framework of the scaled field. The Friedmann 
equations and their appropriate approximations are provided using 
the scaled field method. The Friedmann equations are numerically 
solved and an example of a possible solution to match with the 
cosmic inflation scenario is shown. The electroweak phase–transition 
induced by the scaled field is the second kind, and thus, the fine–
tuning problem is still exists.
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