Fibonacci oscillator’s and \((p,q)\)-deformed lorentz transformations

Abstract

The two-parameter quantum calculus used in the construction of Fibonacci oscillators is briefly reviewed before presenting the \((p,q)\)-deformed Lorentz transformations which leave invariant the Minkowski spacetime interval \(t^2 - x^2 - y^2 - z^2\). Such transformations require the introduction of three different types of exponential functions leading to the \((p,q)\)-analogs of hyperbolic and trigonometric functions. The composition law of two successive Lorentz boosts (rotations) is no longer additive \(\xi_1 \neq \xi_1 + \xi_2\). We finalize with a discussion on quantum groups, noncommutative spacetimes, \(K\)-deformed Poincare algebra and quasi-crystals\(^1\).

Keywords: Fibonacci oscillators, quantum groups, golden mean, noncommutative geometry

Introduction: the Fibonacci and \((p,q)\) oscillators

Fibonacci oscillators\(^1\) offer a natural unification of quantum oscillators which are related to quantum groups\(^2-8\). They are the most general oscillators having the property of spectrum degeneracy and invariance under the quantum group. The quantum algebra with two deformation parameters may have a greater flexibility when it comes to applications in realistic phenomenological physical models\(^9-11\). One of the main problems in the theory of quantum groups and algebras is to interpret the physical meaning of the deformation parameters\(^1\). In this respect, one possible explanation for the deformation parameters was accomplished by a relativistic quantum mechanical model\(^12-14\).

In such a model, the multi-dimensional Fibonacci oscillator can be interpreted as a relativistic oscillator corresponding to the bound state of two particles with masses \(m_1, m_2\). Therefore, the additional parameter has a physical significance so that it can be related to the mass of the second bosonic particle in a two particle relativistic quantum harmonic oscillator bound state.

Most recently, the two-parameter-deformed Hermite polynomials were computed in Marinho & Brito\(^15\) by replacing the quantum harmonic oscillator problem for Fibonacci oscillators, and by changing the ordinary derivative for the Jackson derivative. The deformed energy spectrum was found in terms of these parameters. The ordinary quantum mechanics case was easily recovered when \(p = q = 1\). Although, any quantum algebra with one or more deformation parameters may be mapped onto the standard single-parameter case\(^16,17\), it has been argued that the physical results obtained from a two-parameter deformed oscillator system are not the same\(^18-20\). Before embarking into a discussion of the Fibonacci and \((p,q)\) oscillators we shall follow closely the definitions and results about quantum calculus and \((p,q)\)-numbers found in Duran et al\(^21\), Kac & Cheung\(^22\) where many references can be found. The \((p,q)\) number is defined for any natural number \(n\) as

\[
[n]_{p,q} = [n]_{q,p} = \frac{p^n - q^n}{p - q} = p^{n-1} + p^{n-2}q + \ldots + pq^{n-2} + q^{n-1}
\]

which is a natural generalization of the \(q\)-number

\[
[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + \ldots + q^{n-2} + q^{n-1}
\]

The \((p,q)\)-derivative of a function \(f(x)\) is

\[
D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p-q)x}, \quad x \neq 0
\]

A very important function is the \((p,q)\)-Gauss Binomial defined by

\[
(x \otimes y)^n_{p,q} = (x+y)(px+qy)(px^2+qy^2)\ldots(px^{n-2}+qy^{n-2})(px^{n-1}+qy^{n-1}), \quad n \geq 1
\]

\[
(x \otimes y)^n = 1, \quad \text{for } n = 0, \quad \text{and the } (p,q)\text{-Gauss Binomial coefficient is given by}
\]

\[
\begin{align*}
\left[\begin{array}{c} n \\ k \end{array}\right]_{p,q} &= \frac{[n]_{p,q}!}{[n-k]_{p,q}![k]_{p,q}!}, \quad n \geq k \\
[n]_{p,q}! &= [n]_{p,q} [n-1]_{p,q} [n-2]_{p,q} \ldots [2]_{p,q} [1]_{p,q}, \quad n \in \mathbb{N}
\end{align*}
\]

There are three types of \((p,q)\)-exponential functions

\(^1\)Dedicated to the loving memory of Diana Eaton Riggle, a wonderful human being
Fibonacci oscillator's and \((p,q)\)-deformed lorentz transformations

\begin{align}
e_{p,q}(x) &= \sum_{n=0}^{\infty} p^{n} \frac{x^n}{[n]_{p,q}!} \\
E_{p,q}(x) &= \sum_{q=0}^{\infty} q^{n} \frac{x^n}{[n]_{p,q}!} \\
\tilde{e}_{p,q}(x) &= \sum_{n=0}^{\infty} \frac{x^n}{[n]_{p,q}!} \\
\tilde{E}_{p,q}(x) &= \sum_{q=0}^{\infty} \frac{x^n}{[n]_{p,q}!}
\end{align}

which satisfy the basic identities

\begin{align}
e_{p,q}(x)E_{p,q}(y) &= \tilde{e}_{p,q}(x \otimes y) = \sum_{n=0}^{\infty} \frac{(x \otimes y)_n}{[n]_{p,q}!}, \\
e_{p,q}(x)E_{p,q}(y) &= \tilde{e}_{p,q}(x)(\tilde{E}_{p,q}(y) = 1)
\end{align}

\[e \frac{1}{p \times q} = E_{p,q}(x), \quad E \frac{1}{p \times q} (x) = e_{p,q}(x), \]

The \((p,q)\) hyperbolic functions are defined by

\[
sinh_{p,q}(x) = \frac{e_{p,q}(x) - e_{p,q}(-x)}{2}, \quad \sinh_{p,q}(x) = E_{p,q}(x) - E_{p,q}(-x),
\]

\[
\cosh_{p,q}(x) = \frac{e_{p,q}(x) + e_{p,q}(-x)}{2}, \quad \cosh_{p,q}(x) = E_{p,q}(x) + E_{p,q}(-x).
\]

In particular, they obey the key identity

\[
\cos_{p,q}(x) \cos_{p,q}(x) - \sin_{p,q}(x) \sin_{p,q}(x) = 1
\]

Similar definitions hold for the trigonometric functions which obey

\[
\cos_{p,q}(x) \cos_{p,q}(x) + \sin_{p,q}(x) \sin_{p,q}(x) = 1
\]

For further details we refer to.

When \(p,q\) are given by the Golden Mean, and its Galois conjugate, respectively

\[
p = \tau = \frac{1 + \sqrt{5}}{2}, \quad q = -\tau^{-1} = \frac{1 - \sqrt{5}}{2}
\]

the \(p,q\) numbers \([n]_{p,q}\) coincide precisely with the Fibonacci numbers as a result of Binet’s formula

\[
[n]_{p,q} = [n]_{q,p} = \frac{\tau^n - (-\tau)^{-n}}{\sqrt{5}} = F_n
\]

Furthermore, the powers of \(\tau^n\) and \(\tau^{-n}\) can be expressed themselves in terms of \(\tau\) and the Fibonacci numbers as follows

\[
\tau^n = F_{n+1} \frac{\tau^2}{\tau}, \quad \tau^{-n} = (-1)^n F_{n+1} + (1)^{n+1} \frac{\tau}{\tau}
\]

Consequently, the powers of \(\tau\) are just Dirichlet integers which have the form \(m + n\sqrt{5}\), with \(m,n\) integers, and the \((p,q)\)-factorial

\[
[n]_{p,q}! = F_n F_{n-1} F_{n-2} \ldots .
\]

becomes a product of descending Fibonacci numbers. Therefore, all the numerical factors which define the hyperbolic and trigonometric \((p,q)\)-functions will simplify enormously in this special case (1.17).

An early \((p,q)\) oscillator realization (a la Jordan-Schwinger) of two parameter quantum algebras, \(su_{p,q}(2), su_{p,q}(1,1), osp_{p,q}(2|1)\), and the centerless Virasoro algebra was constructed.

\[
\mathcal{A} = [N + 1]_{p,q}, \quad \mathcal{A}^\dagger \mathcal{A} = [N]_{p,q}, \quad [N, \mathcal{A}] = -A, \quad [\mathcal{A}, \mathcal{A}^\dagger] = \mathcal{A}^\dagger
\]

\[
\mathcal{A}^\dagger \mathcal{A} = q A^\dagger - p A = p^N, \quad \mathcal{A}^\dagger - p A = q^N
\]

Furthermore, \([n]_{p,q}\) is the unique solution of the generalized Fibonacci recursion relation

\[
[n+1]_{p,q} = (p+q)[n]_{p,q} - pq[n]_{p,q}, \quad [1]_{p,q} = 1, [0]_{p,q} = 0, n \ge 1
\]

when \(p = \tau, q = -\tau^{-1}\), the above equation (1.23) reduces to the standard recursion relation of the Fibonacci numbers when \(p = q = 0\). The relations (1.22) reduce to the (anti) commutation relations of bosonic (fermionic) \(q\)-oscillators. The special case \((q = 0, p \ne 0)\), or \((q \ne 0, p = 0)\) gives a deformation of a single mode of the oscillators exhibiting “infinite statistics”.

These hypothetical particles of “infinite-statistics” were coined quons. The \((p,q)\) analogs of the fermionic, parafemionic and parabosonic oscillators were also identified.

A generating function for the \((p,q)\)-numbers \([n]_{p,q}\)

\[
\sum_{n=0}^{\infty} [n]_{p,q} z^n = \frac{z}{(1-qz)(1-pz)}
\]

The \(\tilde{e}_{p,q}(z)\) exponential allows to construct the \((p,q)\)-coherent states, for \(z\) complex:

\[\text{References:}\]

The mathematician Hemachandra and the Sanskrit poets like Virahanka, Gopala many centuries before Fibonacci were aware of these numbers that should be properly called Hemachandra numbers. See the Fields Institute Lectures on “Patterns of Numbers in Nature” by Manjul Bhargava
Fibonacci oscillator’s and (p,q)-deformed lorentz transformations

1-Lorentz boost transformations along the
(2.1)
(2.11)
(2.3)
(2.8b)
(2.8a)

The inner product is⁹¹¹
< z₁ | z₂ > = N(z₁) N(z₂) eₚₜ (ξξ')
(1.26)

The non-extensive Tsallis entropy of bosonic Fibonacci oscillators was studied in where connections between the thermo-statistical properties of a gas of the two-parameter deformed bosonic particles called Fibonacci oscillators and the properties of the Tsallis thermostatics was found. It was shown that the thermo-statistics of the two-parameter deformed bosons can be studied by the formalism of Fibonacci calculus.

Having presented this brief tour of the (p,q)-oscillator and its connection to the generalized Fibonacci recursion relations and its role in deformations of Special Relativity.

(p,q) -Lorentz transformations

In this section we shall construct the (p,q)-Lorentz transformations based on the deformed trigonometric and hyperbolic functions associated with the (p,q)-quantum calculus. These transformations reflect the nature of the two parameter deformed Lorentz algebra so(1,3) p,q.¹¹ The (p,q) -Lorentz boost transformations along the x -direction in 4D that we propose are given by

\[t' = t \sqrt{\cosh_{p,q}(\xi) \cosh_{p,q}(\xi') - \sinh_{p,q}(\xi) \sinh_{p,q}(\xi')} \]
(2.1)

\[x' = x \sqrt{\cosh_{p,q}(\xi) \cosh_{p,q}(\xi') - \sinh_{p,q}(\xi) \sinh_{p,q}(\xi')} - t \sqrt{\sinh_{p,q}(\xi) \sinh_{p,q}(\xi')} \]
(2.2)

\[y' = y, \ z' = z \]
(2.3)

due to the identity

\[\cosh_{p,q}(\xi) \cosh_{p,q}(\xi') - \sinh_{p,q}(\xi) \sinh_{p,q}(\xi') = 1 \]
(2.4)

It follows that under (p,q)-Lorentz transformations the Minkowski spacetime interval remains invariant

\[(t')^2 - (x')^2 - (y')^2 - (z')^2 = (t)^2 - (x)^2 - (y)^2 - (z)^2 \]
(2.5)

Because

\[(\cosh_{p,q}(A))^2 - (\sinh_{p,q}(A))^2 \neq 1 \]
(2.6)

the (p,q) -Lorentz transformations do not have the form

\[t' = t \cosh_{p,q}(\xi) - x \sinh_{p,q}(\xi) \]
(2.7a)

\[x' = x \cosh_{p,q}(\xi) - t \sinh_{p,q}(\xi) \]
(2.7b)

but must have the form indicated by eqs-(2.1-2.2). Therefore,

\[t' \neq t \cosh_{p,q}(\xi) - x \sinh_{p,q}(\xi) \]
(2.8a)

\[x' \neq x \cosh_{p,q}(\xi) - t \sinh_{p,q}(\xi) \]
(2.8b)

The composition law of two successive (p,q) -Lorentz transformations with boost parameters ξ₁, ξ₂ is given by an ordinary matrix product leading to

\[t'' = t \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1) + \sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1)} \]
(2.9)

\[x'' = x \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1) - \sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1)} \]
(2.10)

\[y'' = y, \ z'' = z \]
(2.11)

If the above composition is consistent with a group composition law, one should have

\[t'' = t \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1) - x \sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1)} \]
(2.12)

\[x'' = x \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1) - t \sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1)} \]
(2.13)

\[y'' = y, \ z'' = z \]
(2.14)

where the resulting boost parameter ξ₂ is now a complicated function ξ₂(ξ₁, ξ₂) of ξ₁ and ξ₂ as shown below. It will no longer be given by the naive addition law ξ₂ + ξ₂. Once again, from eqs-(2.12-2.14) one can see the invariance of the Minkowski spacetime interval

\[(t'')^2 - (x'')^2 - (y'')^2 - (z'')^2 = (t)^2 - (x)^2 - (y)^2 - (z)^2 \]
(2.15)

Equating eqs-(2.9, 2.10) with eqs-(2.12, 2.13) yields

\[\sqrt{\sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1)} = \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1)} \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \]
(2.16)

\[\sqrt{\sinh_{p,q}(\xi_2) \sinh_{p,q}(\xi_1)} = \sqrt{\cosh_{p,q}(\xi_2) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_1)} \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_1) \]
(2.17)

Citation: Perelman CC. Fibonacci oscillator’s and (p,q)-deformed lorentz transformations. Phys Astron Int J. 2018;2(4):341-347.
DOI: 10.15406/paij.2018.02.00108

©2018 Perelman
Dividing equation (2.16) by equation (2.17) gives in the left hand side:
\[\sqrt{\tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} = \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2). \]
As a result of the identities:
\[\tanh_{p,q}(A) = \tanh_{p,q}(A) \Rightarrow \sinh_{p,q}(A) \cosh_{p,q}(A) = \cosh_{p,q}(A) \sinh_{p,q}(A) \]
this left-hand side becomes
\[\sqrt{\tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} = \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2) = \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2) \]
\[= \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2) \]
(2.18)
The right-hand side is of the form
\[A + B = (A + C) + (B + C) \]
(2.20)
where \(A, B, C, D \) are the square roots of products of four hyperbolic functions. Due to the identities (2.18) it allows to eliminate the square roots in equation (2.20), and finally one arrives at
\[\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2) = \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2) \]
(2.21)
\[= \frac{\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)}, \xi_1 \neq \xi_1 + \xi_2 \]
(2.22)
It remains to explain that when \((p, q) \neq (1, 1) \Rightarrow \xi_1 \neq \xi_1 + \xi_2 \). Therefore, the composition rule for the boost parameters is no longer additive. The reason behind this is because now the actual addition laws for the \((p, q)\)-hyperbolic functions are of the form
\[\cosh_{p,q}(\xi_1 + \xi_2) = \cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_2) + \sinh_{p,q}(\xi_1) \sinh_{p,q}(\xi_2) \]
(2.23)
\[= \sinh_{p,q}(\xi_1) \cosh_{p,q}(\xi_2) + \cosh_{p,q}(\xi_1) \sinh_{p,q}(\xi_2) \]
(2.24)
The functions
\[\cosh_{p,q}(\xi_1 + \xi_2), \sinh_{p,q}(\xi_1 + \xi_2), \tanh_{p,q}(\xi_1 + \xi_2) \] a d m i t
a power series expansion in terms of the \((p, q)\)-Gauss binomial \((\xi_1 + \xi_2)^p_{p,q}\), and defined by equations (1.4,1.5).
Due to the identity \(\tanh_{p,q}(A) = \tanh_{p,q}(A) \), one can see that the expressions in equations (2.21, 2.24) are both the same and one ends up with
\[\tanh_{p,q}(\xi_1 + \xi_2) = \tanh_{p,q}(\xi_1) = \tanh_{p,q}(\xi_2) = \tanh_{p,q}(\xi_1) \]
(2.25a)
and
\[\frac{\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} = \frac{\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} \]
(2.25b)
Because of the following inequalities
\[\tanh_{p,q}(A) \neq \tanh_{p,q}(A) = \tanh_{p,q}(A) \]
(2.25c)
one learns that
\[\xi_1 \neq \xi_1 + \xi_2 \]
(2.26c)
this last inequality in (2.26b) can be deduced by a simple inspection of the equalities in equation (2.25). Since the function \(\tanh_{p,q} \)
appearing in the first term of equation (2.25a) is not the same as \(\tanh_{p,q} \), and \(\tanh_{p,q} \), the argument \(\xi_1 \) cannot be the same as the argument \(\xi_1 + \xi_2 \). Therefore, when \((p, q) \neq (1, 1) \Rightarrow \xi_1 \neq \xi_1 + \xi_2 \). It is only when \(p = q = 1 \) that the boost parameters are additive
\[\xi_3 = \xi_1 + \xi_2 \]
Concluding, the complicated expression for \(\xi_3 = \xi_3(\xi_1, \xi_2) \) is explicitly given by evaluating the \(\text{arctanh}_{p,q}, \text{ARCTANH}_{p,q} \) of the right hand side of equations (2.25), respectively. Both results lead to the same \(\xi_3 \)
\[\xi_3 = \text{arctanh}_{p,q} \left(\frac{\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} \right) \]
(2.26a)
\[\xi_3 = \text{ARCTANH}_{p,q} \left(\frac{\tanh_{p,q}(\xi_1) + \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} \right) \]
(2.26b)
Furthermore, because
\[(\cosh_{p,q}(A))^2 - (\sinh_{p,q}(A))^2 \neq 1 \]
(2.26c)
a careful inspection of eqs-(2.8) reveals that
\[\sinh_{p,q}(\xi_1 \xi_2) = \sqrt{\sinh_{p,q}(\xi_1) \text{sinh}_{p,q}(\xi_2)} \]
(2.27a)
\[\cosh_{p,q}(\xi_1 \xi_2) = \sqrt{\cosh_{p,q}(\xi_1) \cosh_{p,q}(\xi_2)} \]
(2.27b)
but their ratio is equal:
\[\frac{\tanh_{p,q}(\xi_1 \xi_2)}{\tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} = \frac{\tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)}{1 + \tanh_{p,q}(\xi_1) \tanh_{p,q}(\xi_2)} \]
(2.28a)
\[\frac{\beta_1}{c} = \tanh_{p,q}(\xi_1) = \tanh_{p,q}(\xi_1) \]
(2.28b)
Fibonacci oscillator’s and (p,q)-deformed lorentz transformations

\[\beta_i = \frac{v_i}{c} = \tanh_{p,q}(\xi_i) = TANH_{p,q}(\xi_i), \quad \xi_i \neq \xi_1 + \xi_2 \] \hspace{1cm} (2.28c)

the addition law is

\[\beta_3 = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2} \] \hspace{1cm} (2.9)

similarly one can obtain the subtraction law

\[\beta_3 = \frac{\beta_1 - \beta_2}{1 - \beta_1 \beta_2} \] \hspace{1cm} (2.30)

such that \(\beta_3 \) never exceeds 1 when \(\beta_1, \beta_2 \leq 1 \). So far we have studied the \((p,q)\)-Lorentz boosts transformations. A \((p,q)\)-rotation transformation along the \(z\)-direction gives

\[x' = x \cos_{p,q}(\theta) - y \sin_{p,q}(\theta) \] \hspace{1cm} (2.31a)

\[y' = y \cos_{p,q}(\theta) + x \sin_{p,q}(\theta) \] \hspace{1cm} (2.31b)

\[t' = t, \quad z' = z \] \hspace{1cm} (2.31c)

and leaves invariant the Minkowski spacetime line interval (2.5) due to the identity

\[\cos_{p,q}(\theta) \cos_{p,q}(\theta) + \sin_{p,q}(\theta) \sin_{p,q}(\theta) = 1 \] \hspace{1cm} (2.32)

The following relations among hyperbolic and trigonometric \((p,q)\) functions\(^2\):

\[\sinh_{p,q}(x) = -i \sin_{p,q}(ix), \quad \sin_{p,q}(x) = -i \sin_{p,q}(ix), \] \hspace{1cm} (2.33)

\[\cosh_{p,q}(x) = \cos_{p,q}(ix), \quad \cosh_{p,q}(x) = \cos_{p,q}(ix), \quad \cosh_{p,q}(x) = \cos_{p,q}(ix) \] \hspace{1cm} (2.34)

will allow to evaluate the composition rule for two successive rotations with angles \(\theta_1, \theta_2\) about the \(z\)-axis. The composition rule for the angles is

\[\tan_{p,q}(\theta_1 \oplus \theta_2) = \tan_{p,q}(\theta_1) + \tan_{p,q}(\theta_2) = \frac{\tan_{p,q}(\theta_1) \tan_{p,q}(\theta_2)}{1 - \tan_{p,q}(\theta_1) \tan_{p,q}(\theta_2)} \] \hspace{1cm} (2.35)

where \(\theta_1 \neq \theta_1 \oplus \theta_2 = \theta_1 + \theta_2\). The composition law of two successive \((p,q)\)-Lorentz boosts transformations along two different axis directions are more complicated. The same occurs with a \((p,q)\)-Lorentz boost transformation along any arbitrary direction. In general, the ordinary Lorentz transformations can be written in terms of the Pauli spin \(2 \times 2\) matrices \(\sigma_1, \sigma_2, \sigma_3\), and the unit matrix \(1\) as follows. Let us firstly define the \(2 \times 2\) matrix

\[X = x^n \sigma_n = t1 + x \sigma_1 + y \sigma_2 + z \sigma_3 = \left(\begin{array}{cc} t + z & x - iy \\ x + iy & t - z \end{array} \right) \] \hspace{1cm} (2.36)

One can show that an ordinary Lorentz boost with parameter \(\xi\) along any direction can be realized in terms of three parameters defined as \(\xi = (\xi_1, \xi_2, \xi_3)\); \(\xi = \|\xi\| = \sqrt{(\xi_1)^2 + (\xi_2)^2 + (\xi_3)^2}\) \hspace{1cm} (2.37)

and associated with the three directions \(x, y, z\), respectively. The Lorentz boost in this general case is

\[X = \exp\left(\frac{\xi_1}{2} \sigma_1 + \frac{\xi_2}{2} \sigma_2 + \frac{\xi_3}{2} \sigma_3\right) X \exp\left(-\frac{\xi_1}{2} \sigma_1 - \frac{\xi_2}{2} \sigma_2 - \frac{\xi_3}{2} \sigma_3\right) \] \hspace{1cm} (2.38)

Due to \(\exp(A) \exp(-A) = 1\), and because the determinant of a product of matrices is equal to the product of the determinants of the matrices, one then has

\[\det(X) = \det(\exp(A)) \det(X) \det(\exp(-A)) = \det(X) = 1 \] \hspace{1cm} (2.39)

so that the transformations (2.38) leave the Minkowski spacetime interval invariant as expected. Given the unit vector

\[\hat{e}_p q^\pm(\xi_1, \xi_2, \xi_3) = (1, 0, 0, 0) \] \hspace{1cm} (2.40)

upon performing a Taylor series expansion one arrives at

\[\exp\left(\frac{\xi_1}{2} \sigma_1 + \frac{\xi_2}{2} \sigma_2 + \frac{\xi_3}{2} \sigma_3\right) = \cosh\left(\frac{\xi_1}{2}\right) \sigma_1 + \frac{\xi^2_1}{2} \sigma_1 \sinh\left(\frac{\xi_1}{2}\right) \] \hspace{1cm} (2.41a)

\[\exp\left(-\frac{\xi_1}{2} \sigma_1 - \frac{\xi_2}{2} \sigma_2 - \frac{\xi_3}{2} \sigma_3\right) = \cosh\left(-\frac{\xi_1}{2}\right) 1 - \frac{\xi^2_1}{2} \sigma_1 \sinh\left(-\frac{\xi_1}{2}\right) \] \hspace{1cm} (2.41b)

and after evaluating the matrix product (2.38) one can read-off the expressions for \(t', x', y', z'\) in terms of \(t, x, y, z\) and the boost parameters.

Guided by the above construction, a \((p,q)\)-Lorentz boost along any direction can be realized in terms of the \((p,q)\) deformed Pauli spin algebra generators \(\sigma^{(p,q)}_{i}\), and the \((p,q)\) exponentials (1.8-1.10) as follows\(^3\):

\[X = e_{p,q}(\xi_1 \sigma^{(p,q)}_1 + \xi_2 \sigma^{(p,q)}_2 + \xi_3 \sigma^{(p,q)}_3) X E_{p,q}(\xi_1 \sigma^{(p,q)}_1 - \xi_2 \sigma^{(p,q)}_2 - \xi_3 \sigma^{(p,q)}_3) \] \hspace{1cm} (2.42)

Due to the key relations

\[e_{p,q}(A) E_{p,q}(-A) = 1 \Rightarrow e_{p,q}(A) = M, \quad E_{p,q}(-A) = M^{-1} \] \hspace{1cm} (2.43a)

\(^3\)Alternatively, one could flip the location of the \(e_{p,q}, E_{p,q}\) exponentials in eq- (2.42)
one will have\(^4\)
\[
det(X) = \det(M) \det(X) \det(M^{-1}) = \det(X) =
\]
\[
t^2 - x^2 - y^2 - z^2 = t^2 - x^2 - y^2 - z^2 \quad (2.43b)
\]
and such that the Minkowski spacetime interval\(^5\) remains invariant under the transformations (2.42). One may notice that in the \((p, q)\)-deformed case the relations in equation (2.40) are no longer obeyed,
\[
(\xi^i_{pq}(t^r)) (\xi^j_{pq}(t^r)) \neq 1 \quad \text{consequently the exponentials of the deformed generators}
\]
\[
e_{p,q}(\xi^i_{pq}) \equiv \cosh_{p,q}(\xi^i_{pq}) + \frac{q}{2} \sigma^i_{pq} \sinh_{p,q}(\xi^i_{pq}) \quad (2.44a)
\]
\[
E_{p,q}(\xi^i_{pq}) \equiv \cosh_{p,q}(\xi^i_{pq})1 + \frac{q}{2} \sigma^i_{pq} \sinh_{p,q}(\xi^i_{pq}) \quad (2.44b)
\]
\[
e_{p,q}(\xi^i_{pq}) \equiv \cosh_{p,q}(\xi^i_{pq})1 + \frac{q}{2} \sigma^i_{pq} \sinh_{p,q}(\xi^i_{pq}) \quad (2.44c)
\]
cannot longer be written in the Euler form, and this is one of the reasons behind the inequalities in equation (2.8).

Concluding remarks

We finalize with a brief discussion on quantum groups, noncommutative spacetimes, \(\kappa\)-deformed Poincare algebra and quasi-crystals. In the case of \(\kappa\)-deformed Poincare algebra it is not the deformation of the algebra that really matters, but the co-algebra (coproduct) and the associated non-commutative spacetime structure.\(^6\)\(^7\)\(^8\)\(^9\) The phase space as a whole does not have the Hopf algebra structure. In order to deform the space, one presumably has to make use of more general structures, like the one of Hopf algebroid. The momentum space associated with \(\kappa\)-deformation is curved.\(^4\)\(^2\)\(^4\)\(^2\)\(^3\)\(^\text{It remains to extend this work to the case of noncommutative spacetimes involving noncommuting coordinates, and to find the corresponding co-algebraic structures; i.e. the coproduct, antipode, counit.}\)

It is known that with quantum groups one can introduce a form of coordinate quantization while preserving, continuously, all group symmetries.\(^2\)\(^4\) One can introduce coordinate quantization using discrete lattices, but prior to quantum groups no one could achieve quantization without breaking the continuous spacetime symmetries.\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\) We saw earlier that for the special values \(p = \tau, q = -\tau^{-3}\), the \(p, q\) integers \([n]_{p,q}\) reduce to the Fibonacci numbers. The Golden mean \(\tau\) is ubiquitous in the construction of quasi-crystals, and their associated non-crystallographic groups. Quasi-crystals (like the Penrose tiling with five-fold symmetry) can be constructed via the cut-and-projection mechanism of higher dimensional regular lattices; i.e. the projection onto lower dimensions is performed along directions with irrational slopes. It is warranted to explore further the results of this work within the context of coordinate quantization and Noncommutative geometry that will help us cast some light into Quantum Gravity.

\^4\(^\text{The determinant here is the ordinary one and not the quantum determinant of a quantum matrix with non commuting entries}\)

\^5\(^\text{Deformations of the Minkowski spacetime interval (like the quantum determinant) will be the subject of future investigation}\)

Acknowledgments

We are indebted to M. Bowers for assistance, and to the referee for suggestions to improve this work.

Conflict of interest

Author declares there are no conflict of interest.

References

