

Early publications about nonzero cosmological constant

Abstract

In 2011 the Nobel Prize in Physics was awarded for the 1998 discovery of the nonzero cosmological constant. This discovery is very important and surely worth to receive the Nobel Prize. However, years earlier several papers had been published about a very similar discovery from observational data.

Keywords: history of astronomy; cosmology: cosmological parameters; cosmological constant; dark energy; large scale structure of the Universe

Volume 2 Issue 1 - 2018

Horvath I

Department of Physics, National University of Public Service, Hungary

Correspondence: Istvan Horvath, Department of Physics, NUPS, Budapest, 2 Ludovika tÃ©r, H-1083, Hungary, Tel 36+1432-9154, Email horvath.istvan@uni-nke.hu

Received: February 09, 2018 | **Published:** February 19, 2018

2011 Nobel prize winners in physics

"The Nobel Prize in Physics 2011 was divided, one half awarded to Perlmutter S¹ the other half jointly to Schmidt BP² and Riess AG³ for the discovery of the accelerating expansion of the Universe through observations of distant supernovae." the nobelprize.org wrote¹.

Two research teams, Supernova Cosmology Project (SCP) lead by Saul Perlmutter and High-z Supernova Search Team (HZT) headed by Brian Schmidt, raced to map the Universe by locating the most distant supernovae. The two research teams found over 50 distant supernovae which were dimmer than expected - this was a sign that the expansion of the Universe was accelerating.^{1,2} However, HZT sent a paper for publication to the Astrophysical Journal on December 30, 1997 entitled "Measuring Cosmic Deceleration ..." calculating cosmological constant as zero in a one sigma level.³

Theoretically, this was not new idea since Albert Einstein came out the idea of cosmological constant (often marked Lambda).⁴ Einstein did that because he was guided by the paradigm of the day that the Universe was static. When he heard the Edwin Hubble discovery that the Universe was actually expanding⁵ he declared that the inclusion of the cosmological constant was his "biggest blunder"². Since there was no observation for cosmological constant after that most scientists assumed that Lambda is zero.⁶ However, series of papers were published in Astrophysics and Space Science in the early 90's calculated Ω_Λ from observed data.

Earlier publications about positive cosmological constant

Paál G et al.,⁷ used the so called pencil beam survey⁸ to find out whether the regularity found in the galaxy distribution is quasiperiodical or not. It was found that Q_0 was preferably negative.⁷

¹<http://www.nobelprize.org/nobelprizes/physics/laureates/2011/>

²As Kirshner R6 noted there was no evidence Einstein ever said that. G. Gamow was the first who suggested this without any citation.⁶

Therefore a nonzero Lambda term was needed. The preferred value was Ω_Λ equal 2/3. This is very close to the value that nowadays is accepted.

In the second paper⁹ a two parameter fit was made. The positive cosmological constant (negative Q_0) found to be still needed. In the third paper¹⁰ optical and radio quasars were also used to find the preferred cosmological parameters. Figure in that paper¹⁰ showed the results (Figure 1). As it was written the contour meant 80% confidence level. The preferred region is similar that today analysis suggests. For comparison please see this www page <http://vizion.galileowebcast.hu/HOI/Comparation.jpg>

Figure 1 This figure was published in Holba et al. 1994¹⁰ (Figure in that article). The red line represents the flat cosmological model.

The admissible region of regularity on the (λ_0, λ_0) plane. Solid: 80% significance border of regularity for galaxies. Long dash: same for radio quasars. Short dash: same for optical quasars. Dotted: lower density limit. Hatches: the admissible region.

The author thanks for his supervisors, Lukács B & Paál G^{7,9} to being part of these researches. Unfortunately, Paál G⁷ died in 1992. This was surely affected the fact that these results were almost unrecognized. However, lately many works (e.g)^{11–16} have recognized Paál's publications.

Acknowledgements

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

1. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. *The Astrophysical Journal*. 1999;517(2):565–586.
2. Schmidt BP, Suntzeff NB, Phillips MM, et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. *The Astrophysical Journal*. 1998;507(1):46–63.
3. Riess AG, Filippenko AV, Challis P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. *The Astronomical Journal*. 1998;116(3):1009–1038.
4. Einstein A. *Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie*. SPAW, Berlin, Germany, 1917. p. 142–152.
5. Hubble E. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. *Proceedings of the National Academy of Sciences*. 1929;15(3):168–173.
6. Kirshner RP. *The Extravagant Universe*, Princeton University Press, USA. 2002.
7. Paál G, Horváth I, Lukács B. Inflation and compactification from Galaxy redshifts? *Astrophysics and Space Science*. 2019;191(1):107–124.
8. Broadhurst TJ, Ellis RS, Koo DC, et al. Large-scale distribution of galaxies at the Galactic poles. *Nature*. 1990;343:726–728.
9. Holba A, Horváth I, Lukács B, et al. Cosmological parameters and redshift periodicity. *Astrophysics and Space Science*. 1992;198(1):111–120.
10. Holba A, Horváth I, Lukács B, et al. Once more on quasar periodicities. *Astrophysics and Space Science*. 1994;222(1–2):65–83.
11. Tank HK. Four alternative possibilities that the universe may not be expanding. *Advanced Studies In Theoretical Physics*. 2013;7(18): 867–872.
12. Meszaros A, Ripa J. A curious relation between the flat cosmological model and the elliptic integral of the first kind. *Astronomy and Astrophysics*. 2013;556(A13):1–2.
13. Seargent DAJ. *Weird Universe: Exploring the Most Bizarre Ideas in Cosmology*. Springer, Heidelberg, Germany. 2014.
14. Lawrence M. A Viscosity Hypothesis-That the Presence or Absence of Viscosity Separates Relativistic and Quantum Systems Based on the Simplest Possible Theory of Everything. *Journal of Physical Mathematics*. 2016;7:1–25.
15. Debono I, Smoot GF. General Relativity and Cosmology: Unsolved Questions and Future Directions. *Universe*. 2016;2(4):1–82.
16. Balazs L. *Meteor csillagászati évkönyv*. Hungarian Astronomical Association, Hungary. 2017.