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We study the behavior critical of the Potts model with 3 states on Solomon networks using

Monte Carlo simulations. Our results show that this presents a first-order phase transition.
These results are different of the Potts model with 3 states on a square lattice that present
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a second-order phase transition. However, these are consistent with the results of the Potts

model on Erdos—Rényi random graphs.

Keywords: potts, networks, spins

Correspondence: Francisco Welington De Sousa Lima,
Department of Physics, Dietrich Stauffer Computational Physics
Lab, Federal University of Piaui, 64049-550, Teresina-PI, Brazil, Tel
++55-86 3237 1424, Email fwslima@gmail.com

Received: November 29,2017 | Published: December 28,
2017

Introduction

The Ising model is useful to simulate the behavior of people in a
community, where each person can be influenced by the neighbors,
or influences these neighbors. However, the neighbors at home differ
from the neighbors in the workplace except when everybody works at
home. Thus the home neighborhood and the workplace neighborhood
can be approximated by using two chains of L sites each, the home
chain and the workplace chain. In the workplace chain, the people
are numbered consecutively from /=1 to /=L with toroidal boundary
conditions. So the same people i also appear in the home chain but
in different order P(i), which is a random permutation of the order in
the workplace chain. Thus each person has exactly one place in the
home chain, and each site in the home chain is occupied by exactly
one person, just as the case for the workplace chain. The same person
occupies two entirely different sites i and P(i) in the two chains of L
size lattice with N=2L sites.

Such a network of two lattices (in our case two chains) is called
a Solomon network.! In these networks each person is equally shares
by two lattices, just as in the biblical story of King Solomon; also
the model was suggested by Sorin Solomon?® Within each chain we
have the usual type of interaction like Ising, MVM, Sznajd model and
others and added to it the interaction of each person with the neighbors
of its own image in the other chain. Thus in a chain of people i/ with
nearest neighbor interaction, the variables at site / interacts with the
variable at sites i # 1 as well as with the neighbors P(i)#1 of the site
P(i) of the other chain, where P is the permutation of the numbers 7
=1,2,...,N.

This Solomon network is close to small-world networks.** One
could, of course, introduce some correlation between residence
and workplace, making P(i) not completely random when people
select works closer to their homes. We do not discuss here higher-
dimensional lattices instead of our chains.

The Potts model in two-dimension (d=2) present phase transition
at finite temperature T, for any number of states q. However in d=2
there are a second-order phase transition and a first-order transition
q <4andq >5, respectivelly.®

Silva et al.,” have studied through Monte Carlo simulations a
two-dimensional Potts models with g=3 and q=4 states on a directed

small-world network. From this study they found both, a first-order
and second order phase transition for g=3 depending on the rewiring
probability p. Otherwise, for g=4 the system shows only a first-order
phase transition for any value of a rewiring probability p.

Recently, Lima FWS? studied the three-states ferromagnetic Potts
model on Erdés-Rényi random graphs.’ Their results showed that this
model presents only a first-order phase transition. In this paper we
consider the Potts model with =3 states on Solomon networks (Sns).
On this system, we perform a set of Monte Carlo simulations using the
spin-flip heat bath algorithm to update the spins.

Model and simulations: potts model on SNs

The time evolution of the system is given by a single spin-flip like
dynamics® with a probability P, described by

p=1/[1+exp(2E, /K,T)] 1)

Where 7 is the temperature, K, is the Boltzmann constant, and
E, is the energy of the configuration obtained from

i =-J% SS. 2)

Where the sum is carried out over the k neighbors of site i. In
the above equation J is the exchange coupling. The simulations have
been performed on different SNs comprising a number N=2000,
10000, 20000, 40000, 60000, 80000, 120000 and 160000 of sites. For
each system size quenched averages over the connectivity disorder
are approximated by averaging over independent realizations. For
each simulation, we have started with a uniform configuration of
spins. We ran 3x10° Monte Carlo steps (MCS) per spin with 2x10°
configurations discarded for thermalization using the “perfect”
random-number generator.'” We do not see any significant change by
increasing the number of replicas (R) (for example R=50 ) and MCS.
So, we keep these values constant once they seem to give reasonable
results for all simulations.

Results and discussions

Here, we have employed the heat bath algorithm!' and for every
MCS, the energy per spin, e=E/N, and the magnetization per spin,
m=M/N with M=(q. max[n, ]-N)/(g-1), were evaluated. Where
n, < N denotes the number of spins with “orientation” i=/,...,q.
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From the energy measurements we can compute the average
energy, specific heat, and also the fourth-order Binder cumulant of the
energy, given respectively by

u(r)=[(e(] /N, 3)
)= 5 ([0, ] ) o

4
B T)zl(e(av. 5)
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In the above equations < ...> stands for thermodynamic averages
and [ ] for averages over different realizations. Similarly, we
can derive from the magnetization measurements the average
magnetization, the susceptibility, and the fourth-order magnetic
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A more quantitative analysis can be carried out through the FSS
of the specific heat C,___, the susceptibility maxima = _ and the
minima of the Binder parameter B, . . If the hypothesis of a first-
order phase transition is correct, we should then expect, for large

system sizes, an asymptotic FSS behavior of the form,'>!?

Fax = +b N+ )
+ =a_+b N+. (10
(1D

B =aBi +b3,- / N+.

i,min

The B, (T) (equation (5)) also known as the Binder parameter,
gives a qualitative as well as a quantitative description of the order of
the transition. It is known'? that this parameter takes a minimum value

B, ,, at the effective transition temperature T, (N ).

In the Figure 1, we plot the magnetization and energy versus
temperature for =3 and N=120000 sites. Both magnetization and
energy show a discontinuity near the critical point indicating that the
system presents a first-order phase transition.

Figure 2 displays the fourth- order Binder cumulant (U 4 ) versus
temperature. We find that there is a crossing point and the TC
shows a negative dip for the system sizes (N=2000 and 160000 sites).
These are typical indications of a first-order phase transition.”® To
confirm whether a first-order transition is really taking place, we also
plot the distribution of the magnetization very close to T, (Figure
3). Here, we calculate T, as being the temperature where the peak of
the specific heat is maximum (C,, ) (Figure 4). Here, we found out
T =1.133(2).
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Figure | Magnetization and energy versus temperature for N=120000 sites.
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Figure 2 Bindercumulant versus temperature for N=2000 and 160000 sites.

As depicted in Figure 3, we show the probability density function
(PDF) of the order parameter. From this PDF, one can see that the
phase transition is discontinuous or first-order for =3 and N=160000
sites. In the Figure 4, we plot the specific heat versus temperature
for N=160000 sites. In the Figure 5, we show the Binder parameter
minima versus temperature and again the first-order phase transition
is verified. The critical temperature estimate for the largest N is
T = 1.133(3) , that is identical to T, of the specific heat.
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Figure 3 PDF of |m| for q=3 and N=160000 sites. The double peak in the

magnetization distribution indicates that the transition is of the first-order.
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Figure 4 Plot of the Specific heat versus temperature for N=1600000 sites.
Here.7 =1.133(2)
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Figure 5 Plot of the energetic Binder versus temperature N=160000 sites
T, =1.133(3)-
Conclusion

In the present work, we have shown that, by considering the three-
states ferromagnetic Potts model on Solomon networks there is a
phase trasition. Different from the Potts model with q=3 on square
lattice that presents a second-order phase transition, here, we show
that this same model on Solomon networks presents a first-order
phase transition. Therefore, our results agree with the Harris-Luck
criterion for Solomon networks.
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