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Introduction
The Ising model is useful to simulate the behavior of people in a 

community, where each person can be influenced by the neighbors, 
or influences these neighbors. However, the neighbors at home differ 
from the neighbors in the workplace except when everybody works at 
home. Thus the home neighborhood and the workplace neighborhood 
can be approximated by using two chains of L sites each, the home 
chain and the workplace chain. In the workplace chain, the people 
are numbered consecutively from i=1 to i=L with toroidal boundary 
conditions. So the same people i also appear in the home chain but 
in different order P(i), which is a random permutation of the order in 
the workplace chain. Thus each person has exactly one place in the 
home chain, and each site in the home chain is occupied by exactly 
one person, just as the case for the workplace chain. The same person 
occupies two entirely different sites i and P(i) in the two chains of L 
size lattice with N=2L sites.

Such a network of two lattices (in our case two chains) is called 
a Solomon network.1 In these networks each person is equally shares 
by two lattices, just as in the biblical story of King Solomon; also 
the model was suggested by Sorin Solomon2,3 Within each chain we 
have the usual type of interaction like Ising, MVM, Sznajd model and 
others and added to it the interaction of each person with the neighbors 
of its own image in the other chain. Thus in a chain of people i with 
nearest neighbor interaction, the variables at site i interacts with the 
variable at sites 1i ±  as well as with the neighbors ( ) 1P i ±  of the site 
P(i) of the other chain, where P is the permutation of the numbers i 
=1, 2, . . . , N.

This Solomon network is close to small-world networks.4,5 One 
could, of course, introduce some correlation between residence 
and workplace, making P(i) not completely random when people 
select works closer to their homes. We do not discuss here higher-
dimensional lattices instead of our chains.

The Potts model in two-dimension (d=2) present phase transition 
at finite temperature T, for any number of states q. However in d=2 
there are a second-order phase transition and a first-order transition 

4q ≤ and 5q ≥ , respectivelly.6

Silva et al.,7 have studied through Monte Carlo simulations a 
two-dimensional Potts models with q=3 and q=4 states on a directed 

small-world network. From this study they found both, a first-order 
and second order phase transition for q=3 depending on the rewiring 
probability p. Otherwise, for q=4 the system shows only a first-order 
phase transition for any value of a rewiring probability p.

Recently, Lima FWS8 studied the three-states ferromagnetic Potts 
model on Erdös-Rènyí random graphs.9 Their results showed that this 
model presents only a first-order phase transition. In this paper we 
consider the Potts model with q=3 states on Solomon networks (Sns). 
On this system, we perform a set of Monte Carlo simulations using the 
spin-flip heat bath algorithm to update the spins.

Model and simulations: potts model on SNs
The time evolution of the system is given by a single spin-flip like 

dynamics6 with a probability iP described by

                   
( )1 / 1 exp 2 /i i BP = + E K T                                                        (1)

Where T is the temperature, BK  is the Boltzmann constant, and 
iE  is the energy of the configuration obtained from 

                                                                                                           
 (2)

Where the sum is carried out over the k neighbors of site i. In 
the above equation J is the exchange coupling. The simulations have 
been performed on different SNs comprising a number N=2000, 
10000, 20000, 40000, 60000, 80000, 120000 and 160000 of sites. For 
each system size quenched averages over the connectivity disorder 
are approximated by averaging over independent realizations. For 
each simulation, we have started with a uniform configuration of 
spins. We ran 53 10x Monte Carlo steps (MCS) per spin with 52 10x
configurations discarded for thermalization using the “perfect” 
random-number generator.10 We do not see any significant change by 
increasing the number of replicas (R) (for example R=50 ) and MCS. 
So, we keep these values constant once they seem to give reasonable 
results for all simulations.

Results and discussions
Here, we have employed the heat bath algorithm11 and for every 

MCS, the energy per spin, e=E/N, and the magnetization per spin, 
m=M/N with M=(q. max[ in ]-N)/(q-1), were evaluated. Where 

in N≤ denotes the number of spins with “orientation” i=1,...,q.
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Abstract

We study the behavior critical of the Potts model with 3 states on Solomon networks using 
Monte Carlo simulations. Our results show that this presents a first-order phase transition. 
These results are different of the Potts model with 3 states on a square lattice that present 
a second-order phase transition. However, these are consistent with the results of the Potts 
model on Erdös–Rényi random graphs.
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From the energy measurements we can compute the average 
energy, specific heat, and also the fourth-order Binder cumulant of the 
energy, given respectively by

                                 
( ) ( (

av
/u T = e N   ,                                                                        (3)
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In the above equations ...< >  stands for thermodynamic averages 
and [ ]

av
...

 
for averages over different realizations. Similarly, we 

can derive from the magnetization measurements the average 
magnetization, the susceptibility, and the fourth-order magnetic 
cumulant,
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A more quantitative analysis can be carried out through the FSS 
of the specific heat maxC  , the susceptibility maxima max÷ and the 
minima of the Binder parameter i,minB . If the hypothesis of a first-
order phase transition is correct, we should then expect, for large 
system sizes, an asymptotic FSS behavior of the form,12,13

                                  max =a +b N+...÷ ÷÷                                                                         (9)

                                     max =a +b N+...÷ ÷÷                                                                             (10)

                             i,min =a +b / N+...B Bi i
B

                                                                      (11)

The ( )eB T (equation (5)) also known as the Binder parameter, 
gives a qualitative as well as a quantitative description of the order of 
the transition. It is known13 that this parameter takes a minimum value

i,mB at the effective transition temperature ( )cT N .

In the Figure 1, we plot the magnetization and energy versus 
temperature for q=3 and N=120000 sites. Both magnetization and 
energy show a discontinuity near the critical point indicating that the 
system presents a first-order phase transition.

Figure 2 displays the fourth- order Binder cumulant ( )4U versus 
temperature. We find that there is a crossing point and the cT  
shows a negative dip for the system sizes (N=2000 and 160000 sites). 
These are typical indications of a first-order phase transition.13 To 
confirm whether a first-order transition is really taking place, we also 
plot the distribution of the magnetization very close to cT  (Figure 
3). Here, we calculate cT as being the temperature where the peak of 
the specific heat is maximum ( )maxC (Figure 4). Here, we found out

( )1.133 2cT = .

Figure 1 Magnetization and energy versus temperature for N=120000 sites.

Figure 2 Bindercumulant versus temperature for N=2000 and 160000 sites.

As depicted in Figure 3, we show the probability density function 
(PDF) of the order parameter. From this PDF, one can see that the 
phase transition is discontinuous or first-order for q=3 and N=160000 
sites. In the Figure 4, we plot the specific heat versus temperature 
for N=160000 sites. In the Figure 5, we show the Binder parameter 
minima versus temperature and again the first-order phase transition 
is verified. The critical temperature estimate for the largest N is

( )1.133 3cT = , that is identical to cT of the specific heat.

Figure 3 PDF of m for q=3 and N=160000 sites. The double peak in the 

magnetization distribution indicates that the transition is of the first-order.

https://doi.org/10.15406/paij.2017.01.00040


Potts model with Q=3 on directed Erdös-Rènyi random graphs 222
Copyright:

©2017 Lima 

Citation: Lima FWS. Potts model with Q=3 on directed Erdös-Rènyi random graphs. Phys Astron Int J. 2017;1(6):220‒222. DOI: 10.15406/paij.2017.01.00040

Figure 4 Plot of the Specific heat versus temperature for N=1600000 sites. 
Here, ( )1.133 2cT = .

Figure 5 Plot of the energetic Binder versus temperature N=160000 sites

( )1.133 3cT = .

Conclusion
In the present work, we have shown that, by considering the three-

states ferromagnetic Potts model on Solomon networks there is a 
phase trasition. Different from the Potts model with q=3 on square 
lattice that presents a second-order phase transition, here, we show 
that this same model on Solomon networks presents a first-order 
phase transition. Therefore, our results agree with the Harris-Luck 
criterion for Solomon networks.
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