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Brief overview of the development of the 
weak measurement protocol

 The weak measurement protocol1, (or just ‘weak measurement’ 
for short) has gained fairly wide prominence since its early, rather 
abstract, beginnings and has found important practical applications. 
Here, I give a brief overview of the weak measurement protocol 
introduced by Aharonov et al.,1 and offer some comments. Early 
ideas that eventually led to the weak measurement protocol began 
in a 1964 article by Aharonov, Bergmann and Lebowitz.1 In this 
article the idea of time asymmetry in quantum mechanics was 
examined. The authors suggested that time symmetric ensembles 
could be obtained by first measuring an observable represented by 
the operator2 A  at time 0t  (preselection) and then, at a later time B
, measuring an observable B  (postselection), where A  and B  may 
or may not commute. Preselection puts all members of the ensemble 
into an eigenstate | ,A a〉  , with eigenvalue a , of the operator A , 
while postselection places the ensemble in an eigenstate | ,B b〉  , with 
eigenvalue b , of operator B . They also derived a formula for the 
probability of finding eigenvalues 1 2, , kd d d  of a set of observables 

1 2
, ,

k
D D D , where the observables are either measured in sequence 
or simultaneously between the preselection measurement and the 
postselection measurement. They operators 

1 2
, ,

k
D D D  may 

or may not commute. For the case of a complete set of commuting 
observables, collectively represented by c , with eigenvalues 
collectively represented by c , the formula for the probability ( )jP c  
of obtaining eigenvalues jc  becomes 

1The weak measurement protocol consists of a weak interaction followed by 
a strong interaction followed by a final irreversible (in the statistical sense), 
amplified detection. Commonly used terminology refers to the weak and 
strong interactions as measurements. Though, perhaps, it is well understood, 
it is still worth noting that neither the weak nor the strong interaction fulfill 
even a no rigorous statistical definition of a measurement and should, strictly, 
be referred to as interactions. The final irreversible detection certainly 
satisfies the conditions for a measurement, and hence, so does the whole weak 
measurement protocol. A discussion of what constitutes a measurement may 
be found in reference.2 However, since the terminology is widespread we will 
also use “measurement" to refer to the weak and strong interactions.
2In what follows we will use the term observable to also refer to the operator 
representing the observable. The same letter representing the observable will, 
therefore, also be used to represent the operator.
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Concerning the time-asymmetry of quantum mechanics they 
concluded that quantum mechanics is not time symmetric despite 
the fact that, just like the classical equations of motion, the quantum 
mechanical equations of motion, either in the form of the Schrödinger’s 
equation or Heisenberg’s equations, are time symmetric. They 
attribute the time-asymmetry to the inevitable interaction of quantum 
systems with macroscopic systems which lead to the collapse of the 
wave function, a collapse which is generally viewed as irreversible3.

Much later in 1985, the 1964 ideas concerning the values of 
observables in the interval between two measurements were developed 
further by Albert, Aharonov and D’Amato.3 They began by noting 
that formula (1) leads to the result that if the preselection operator B  
or the postselection operator B  is measured in the interval between 
the preselection and postselection measurements, the probability of 
obtaining the result a  or A is ( )= ( )=1P a P b , even if A and B do 
not commute. This result, led Aharonov and his group to conclude 
that in this interval a quantum system has simultaneously well defined 
values (i.e., dispersion free values) of both observables B  and B , 
irrespective of whether or not A  and B  commute (I will comment 
on this below). This conclusion, the authors pointed out, appears to 
be contradicted by the arguments against hidden variable theories 
provided by Gleason4 and Kochin and Specker5 (refinements of Von 
Neumann’s impossibility proof6) in which they claim that certain 
sets of noncommuting observables can never be simultaneously well 
defined. Albert, Aharonov and D’Amato went on to show, which 
was the purpose of their article, that an assumption involved in the 
arguments of Gleason, Kochin and Specker, an assumption about 
the results of measurement of certain projection operators, was not 
satisfied in the interval between two measurements. This allowed 

3The causal interpretation offers a description of the measurement process 
which does not involve collapse. The measurement process is, by virtue of 
involving macroscopic devices, still viewed as irreversible but only in the 
statistical sense.2
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them to maintain their conclusion that even two non-commuting 
obervables can have well defined values between two measurements.

The ideas above initiated a motivation to develop an experimental 
method for measuring observables of a system between two 
measurements. This led to the concept of a weak measurement, 
first suggested in a 1987 article by Aharonov, Albert, Casher and 
Vaidmann.7 In this article, the authors claimed to show that weak 
measurements can result in values of quantum observables far outside 
their eigenvalue spectra (we will comment on this claim below). In 
a later 1988 article,8 Aharonov, Albert and Vaidman developed the 
earlier ideas further and introduced an explicit weak measurement 
protocol, a definition of a weak value of a quantum observable, and 
proposed a specific experiment for the measurement of the weak value 
of the spin of a particle, concluding that the weak value of the spin can 
be a 100, far outside the eigenvalue spectrum. In their mathematical 
analysis leading to the definition of weak value wA , 
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A number of assumptions were made, so that formula (2) is only 
approximate, and it is important to keep this point in mind. These 
assumptions were explicitly pointed out by Duck, Stevenson and 
Sudarshan9 in an excellent article in which they also provided a very 
clear and detailed mathematical analysis of the weak measurement 
protocol. They agreed with Aharonov et al.,1 that weak values of 
quantum observables can lie far outside, even far outside, their 
eigenvalue spectra. An important practical aspect of the weak 
measurement protocol, pointed out by Aharonov et al.,8 at the end of their 
1988 article , is that it could be used for amplification measurements. 
Since this suggestion, numerous amplification experiments using the 
weak measurement protocol have been successfully performed. One 
example, is the measurement of ultrasensitive beam deflection by 
Dixon et al.10

In a later 1990 article,11 Aharonov and Vaidman provided a 
more detailed theoretical justification for the concept of a weak 
measurement by considering a description of quantum systems using 
two wave functions. This two wave function formalism was later 
called the two-state vector formalism, a detailed description of which 
can be found in reference).12 Their idea was to describe a quantum 
system not only by a preselected eigenstate | ,A a〉  moving forward 
in time, but also by a postselected state | ,B b〉  moving backward in 
time. Based on this description of a quantum system, which they 
considered to be a time-symmetric description (though, in our view, 
because the backward-in-time wave function is entirely fictitious, the 
time symmetry is purely mathematical, in the sense that calculated 
probabilities are symmetrical. In other words, in our view, the time 
symmetry does not have physical reality), they provided a more 
rigorous derivation of their weak value formula (2). They emphasised 
again, that for each individual member of the preselected and 
postselected ensemble a measurement of either observable A  or a  in 
the intermediate interval between the measurements would yield the 
corresponding eigenvalue a  or b  with probability ( )= ( )=1P a P b  . 
In fact, they asserted a stronger statement, namely, that, each member 
of the preselected and postselected ensemble has definite values of 
A  and B  in the intermediate interval, whether or not A  and a  

commute, and that these definite values are a and z, respectively. 
They also once again emphasised that observables other than those 
used for preselection and postselection can have values far outside 

their eigenvalue spectrum. They tried to justify the reality of weak 
values by arguing that there is a physical variable in the measuring 
device that reflects the weak value of the measured variable11 (we will 
comment on this below).

In reference, Aharonov et al.,8 suggested an experiment (hereafter 
the AAV-experiment) to measure the real part of the weak value of 
the z -component of a spin-half particle. Actually, for simplicity, they 
considered the Pauli observable zσ  rather than the spin observable 

=
2z zS σ . The idea is to couple the particles spin to its trajectory using 

magnetic fields produced by pairs of Stern-Gerlach magnets. Here, 
the apparatus pointer is the z -component of the trajectory described 
by its z -coordinate and its conjugate momentum =z z zp p p′ ±∆ , where 

zp  is the initial z -component of momentum, 
z

p∆ is the momentum 
after the weak measurement and 

z
p∆ is the small momentum shift 

due to the weak measurement. The trajectory, whose bending in the z
-direction is determined by

z
p′ , registers at a point z on the detecting 

screen. From many such detections the real part of the weak value of 
y  can be determined.

A beam (ensemble) of particles moving in the positive y -direction 
(the xy -plane is horizontal, with the z-axis vertical forming a right-
hand set) with a well defined velocity is prepared in a spin eigenstate 
| , 1ξσ + 〉  (preselection), with eigenvalue +1. In this state, the spin is in 
the direction of the unit vector ξ̂  lying in the α -plane at an angle 
α , 90 < <180α  , from the positive x -axis. A key point of the weak 
measurement protocol is that the initial value zp is very uncertain 
(unlike a strong von Neumann measurement which requires the initial

zp to be known precisely), and is described by a broad Gaussian wave 
function. This means that particles can have large values of zp in the 

z± -direction, so that by the time the beam reaches the detecting 
screen, it spreads considerably in the zp -direction. However, 
because large values of zp  correspond to the Gaussian tails, only 
very few particles will have large values of 

z
p and hence only a few 

particles will spread widely.

After preselection, the beam is passed through a weak magnetic 
field pointing in the z -direction. This constitutes the weak 
measurement. The affect is to rotate the spin-direction very slightly 
and to add a small zp±∆  to the initial

z
p of the particle to give a new 

momentum z zp p±∆ , the sign depending on the initial direction of zσ
. Note that the weak measurement has to be sufficiently weak so that 
the preselected eigenstate is hardly changed. Except for particles with 
initial value <z zp p∆  or with <z zp p∆ , the initial 

z
p dominates, so that 

a weak measurement revealed by a “spot” on the final detecting screen 
will neither indicate the size nor the sign of the original value of zσ
. For the cases =0zp  or <z zp p∆  , the “spot” on the detecting screen 
will be close to =0z  (relatively speaking, since the amount of bending 
by the time of detection depends on the distance from the magnets the 
detecting screen is placed) on the correct ±  side, thus indicating a 
true magnitude and sign of the value of 

z
p . But, even for these cases, 

no conclusion can be drawn from a single detection, or even from a 
few detections, since an exactly similar detection will be produced by 
a particle with opposite spin and appropriate sign and magnitude of 

z
p . For example, two particles of opposite spins with z -momentum 

values 1=z z zp p p′ +∆  and 2=z z zp p p′ −∆ , with 2 1= 2z z zp p p+ ∆  , after 
the weak measurement will produce the same spot on the detecting 
screen. Very many repeated measurements will reveal an average shift 
from which the weak value of zσ is determined. We have traced the 
motion of the particles in some, perhaps obvious, detail, since it is 
needed for our later comments.
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The particles reaching the screen are postselected after the weak 
measurement by a strong magnetic field in the x+ -direction. This 
strong field divides the particle beam into the +  and +  directions. 
Whether a particle bends into the + beam or the -beam depends on zσ
. The z -motion carrying the weak measurement remains unaffected. 
The beam (subensemble) moving in the positive x -direction (out of 
the page) is postselected and directed to the detecting screen.

If the postselected state is equal to the preselected state, the result 
of the weak measurement will be equal to the usual expectation value, 
as is obvious from Equation (2). The less orthogonal the postselected 
and preselected states are, the closer the measured weak value will 
be to the expectation value, while the more orthogonal the states 
are, the farther away will be the measured weak value from the 
expectation value. For a sufficiently orthogonal postselected state, the 
weak value may lie far outside the observables eigenvalue spectrum, 
as Aharonov et al.,11 emphasised. In their experiment, they showed 
that the measured weak value of z+  could be 100 (a result that we 
will query in our comments later). Aharonov et al.,11 also pointed 
out that the probability of a result decreases the more orthogonal the 
postselected state is, so that the probability of obtaining a result far 
outside the eigenvalue spectrum is very small. The physical reason for 
the low probability is, that the more orthogonal the postselected state, 
the smaller the number of systems reaching the detecting screen, and 
hence, the smaller the postselected ensemble. Though, later, we will 
argue that certain choices of the postselected ensemble may give weak 
values never possessed by any member of the preselected ensemble 
(fictitious weak values), measurements with appropriately chosen 
postselected ensembles can lead to novel and interesting insights into 
the behaviour of a quantum system between measurements. Weak 
measurements have also proved to be of important practical value in 
amplification measurements.

The first experiment using the weak measurement protocol was 
performed by Ritchie et al.13 Instead of particles and Stern-Gerlach 
magnets, they used an optical setup suggested by Duck et al.,9 in which 
polarisors were used to produce the preselected and postselected states 
and a birefringent crystal was used to perform the weak measurement. 
More than a decade later, a number of experiments using the weak 
measurement protocol to amplify weak signals were performed.14–18 
In 2011 Lundeen et al.,21 performed an experiment to directly measure 
a wavefunction19 following a procedure suggested by Aharonov et 
al.20 Weak measurements have also found application to quantum 
paradoxes. An interesting example is the experimental investigation 
of Hardy’s paradox.21–23

An experiment of particular interest using weak measurements, 
due to Kocsis et al.,24 was presented in 2011. They used the weak 
measurement protocol, based on a theoretical proposal due to 
Wiseman,25 to experimentally determine average photon trajectories 
leading to interference fringes in a two-slit experiment. Photons 
emitted from a quantum dot in single photon states are divided by 
a 50-50 fiber beam splitter into two beams and then preselected in a 
diagonal linearly polarised state. The photons move forward in the 

z+ -direction, while interference is along the z -directions (the z
-axis is horizontal with the xk -axis vertical). The weak measurement 
is performed by a birefringent calcite crystal which introduces a small 

xk -dependent phase change between the ordinary and extraordinary 
beams which slightly changes the linearly polarisation state to 
an elliptically polarised state. The photon polarisation acts as the 
apparatus pointer which indicates the xk -value of the photons. The 

photons are postselected according to their x -position on the final 
detector (a cooled charge-coupled device).

A quarter waveplate converts the elliptically polarised state 
produced by the weak measurement to a circularly polarised state. 
The conversion to a circularly polarised state allows a beam displacer 
to separate the ordinary and extraordinary rays in each of the two 
photon beams by about 2 mm vertically. This separation produces two 
separated interference patterns on the CCD detector from which the 
x value can be determined at each x -position on the CCD detector. 

A three lens combination with the middle lens movable along the 
z -axis is positioned between the quarter waveplate and the beam 

displacer. The movable lens images the slit system at different z
-positions thereby changing the slits-to-CCD distance, while the CCD 
detector remains fixed. This allows k , hence the k -vector, to be 
measured at varies x -positions along numerous =z  constant lines. 
Averaging and joining the “dots” produces the photon trajectories. 
The trajectories have just the form predicted by the Bohm-de Broglie 
causal interpretation.26–29

Kocsis et al.24 interpreted the average trajectories as the average 
paths of photon particles. It should be noted, however, that the 
Bohm-de Broglie interpretation is nonrelativistic and does not 
correctly describe the behaviour of the electromagnetic field. The 
electromagnetic field is properly described by quantum optics based 
on the second quantisation of Maxwell’s equations. The causal 
interpretation of the electromagnetic field (CIEM), based on the 
second quantised Maxwell equations, was developed by Kaloyerou.34 

In this interpretation, the electromagnetic field is viewed much like 
the classical concept of a field, except for additional quantum features 
(e.g., the field is highly nonlocal). There are no photon particles. The 
term “photon” in CIEM refers to a discrete quantum of energy ω  
distributed in space in the same way as any another field. At a beam-
splitter, for example, a photon is split into two beams. Therefore, 
as Flack and Hiley have suggested,31 the average trajectories in the 
Kocsis et al.,24 experiment are more correctly viewed as flow lines of 
the electromagnetic field.

The weak value defined in Equation (2) is a complex quantity. 
The physical meaning of the imaginary part is not very clear. For 
the case of a weak measurement of momentum, Flack and Hiley32 
interpreted the real part of its weak value as the ordinary momentum 
(as defined in the causal interpretation),26 while in the imaginary part 
is interpreted as the osmotic momentum (as defined in the stochastic 
interpretation of quantum mechanics).33 Also of interest, is the 
experimental measurement of both the real, eR ( )z wσ , and imaginary 
part, Im( )z wσ , of the weak value of a neutron’s Pauli spin operator, 
Im( )z wσ , by Sponar et al.34 It is important to note that Im( )z wσ is 
measured in a separate modified experiment. Sponar et al.,34 offered 
an interpretation of eR ( )z wσ and Im( )z wσ in terms of their affect 
on the total postselected state vector representing the neutron’s spin 
and the apparatus pointer (the apparatus pointer system consists of 
two paths produced in a triple Laue neutron interferometer): they 
asserted that Im( )z wσ acts as an additional phase in the state vector, 
while Im( )z wσ affects the amplitude. This interpretation does not, 
however, offer a physical meaning of Im( )z wσ in terms of a quantum 
observable. For example, eR ( )z wσ represents the spin observable 
(after multiplication by /2  ), which, in the causal interpretation of 
the Pauli equation35 can be pictured in terms of a spinning particle, but 
there is no such immediate interpretation of Im( )z wσ  . Aharonov et 
al.,11 assert that the imaginary part of the weak value “... affects the 
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distribution of the canonical variable q .” This again does not offer a 
physical meaning of the imaginary part of the weak value.

Some questions and comments
A conclusion of Aharonov et al’s is that all observables, commuting 

or otherwise, have definite (dispersion free) values at each instant 
of time, contrary to Bohr’s principle of complementarity (BPC)4. 
Whether or not it is believed that all of these values can be known 
simultaneously, anyone who accepts the objective reality of the wave 
function will probably have held this view even prior to the work of 
Aharonov et al.11 Certainly, those, like the present author, who are 
supporters of the Bohm-de Broglie causal interpretation certainly 
believe that a quantum system simultaneously has well defined values 
(not necessarily eigenvalues) of all observables. Thus, in our view, the 
conclusion that a quantum system has simultaneously well defined 
values of all observables is entirely reasonable. Hereafter, therefore, 
we adopt the view that a quantum system has well defined values of 
all observable. What we will question, however, is what these values 
can be.

Though the mathematical results are consistent with the standard 
quantum formalism, since they were derived from it, the Aharonov 
et al.,11 prescription for attributing definite values to all observables 
simultaneously is an extrapolation of the usual formalism. Such an 
extrapolation is not unreasonable, since any interpretation of the 
quantum theory, such as the Bohm-de Broglie causal interpretation, 
which is mathematically consistent with the standard quantum 
formalism, necessarily extrapolates beyond the standard formalism 
in terms of interpretation. A question we wish to take up below is 
whether or not Aharonov et al.,11 extrapolation is justified. The causal 
interpretation also provides a prescription for attributing definite values 
to all observables simultaneously, indeed, it provides more than just 
a prescription, it provides rigorous formula for this purpose. We saw 
above, that the experimentally determined trajectories (more correctly, 
electromagnetic field flow lines) in the Kocsis experiment are in very 
good agreement with those calculated from the causal interpretation. 
But, we will see below that definite values of observables attributed to 
systems between measurements by Aharonov et al.11 prescription will 
sometimes differ from the values given by the causal interpretation. 
The second, perhaps more substantial, issue we want to take up 
concerns the reality of weak values that lie outside an observables 
eigenvalue spectrum.

To be specific, we ask and comment on the following questions, 
and note that our discussion, as in the AAV-experiment, refers to the 
real part of the weak value. 

Question and comment 1

In reference,3 as we saw above, Aharonov et al.,1 concluded from 
their formula (1) that for an ensemble preselected in state | ,A a〉  
and postselected in state | ,B b〉  , measuring A  in the time interval 
( )i ft t−  between preselection and postselection would give the result 
a  with probability ( )P a  , while, if instead, B  is measured in the 
interval ( )i ft t− , the result would be ( )P b with probability ( )P b . Since 
formula (1) is derived from the quantum theory, this conclusion does 
not go beyond the usual formalism. But, in reference, Aharonov et 
al.,1 made the stronger assertion that each member of an ensemble 
simultaneously has well defined values throughout the time interval 
4See reference2 for this authors view of BPC and for further references.

( )i ft t− between measurements. The latter is an extrapolation beyond 
the usual quantum formalism. We therefore ask, “Is this extrapolation 
justified?”.

Every system of the preselected ensemble is in the state | ,A a〉
by construction, so that every system has the value a  throughout 
the interval ( )i ft t− . With the exception of strict Bohrians (recall the 
famous Wheeler assertion, “No phenomenon is a phenomenon until it 
is an observed phenomenon,”38), few would argue with this view. It is 
also reasonable to accept that each member of the preselected ensemble 
in state | ,A a〉  has a definite value of B , though this value will vary 
from system to system. There is nothing in the usual formalism 
that necessarily restricts system values between measurements to 
eigenvalues of b . Two descriptions consistent with the outcome b  
when B is measured in the interval ( )i ft t−

 
are possible:

Measurement of B forces each member of the preselected 
ensemble into an eigenstate of B . Therefore, except for some chance 
cases where a particular system happened to have an eigenvalue of B
, the value of B  for all other systems must change upon measurement 
of B . Those systems with eigenvalue b are postselected.

Aharonov et el’s description: During the interval , | ,B b A a〈 〉 systems 
in the fraction , | ,B b A a〈 〉  of the preselected ensemble in state | ,A a〉
have eigenvalue b of B , and this fraction becomes the postselected 
ensemble after measurement and selection. Since, after measurement 
of B all systems of the preselected ensemble are eigenstates of B
with various eigenvalues of B , and since an eigenstate of B with 
an eigenvalue other than | ,A a〉could be postselected, then, according to 
Aharonov et al.,11 description, all systems of the preselected ensemble 
in state | ,A a〉 must have eigenvalues of ( )i ft t− during the interval ( )i ft t− .

The standard formalism of quantum mechanics cannot distinguish 
between these two descriptions. But, two arguments suggest that 
description (II) is implausible, perhaps even wrong.

First, the causal interpretation is mathematically consistent with 
quantum theory and adds well defined formulae for the values of 
observables between measurements. Except for some special cases, 
such as eigenstates of an operator, the values of observables for a 
general state are certainly not restricted only to their eigenvalues. 
Thus, the predictions of the causal interpretation contradict the 
assertion that well defined values of B  of systems in the preselected 
ensemble are restricted only to eigenvalues of ( )i ft t− in the interval 
( )i ft t− . Moreover, the value of observables incompatible with A  
may also vary with time, and this variation is given by the formulae 
of the causal interpretation, but not by Aharonov et al’s description.

Second, for any system in the preselected state | ,A a〉 , observable 
A  and all observables compatible with A  will have precise values 

and these values will be their eigenvalues. This is standard quantum 
mechanics. But if, as asserted by Aharonov et al, these systems 
also have well defined eigenvalues of the postselected observable 
B , and since instead of C , we postselect with an observable C  
compatible with B , then by Aharonov et al’s reasoning, the systems 
in the preselected state must also have well defined values which are 
eigenvalues of C . Now, if A does not commute with A , Aharonov et 
al’s reasoning forces the conclusion that all systems in the preselected 
state | ,A a〉 will not only have well defined eigenvalues of A and of 
all obervables compatible with A , but will also have well defined 
eigenvalues of B  and of all observables compatible with B . Again, 
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this contradicts the causal interpretation predictions. Further, for 
nearly orthogonal preselected and postselected states, both Duck, 
Aharonov et al.,9,11 assert that the weak measurement can lie outside 
the eigenvalue spectrum. Now, if the observable being measured is 
compatible with either B  or B , then the weak value will contradict 
the assertion that systems of the preselected ensemble have values 
restricted to eigenvalues of this observable.

We should emphasise that the above discussion focuses on a very 
specific aspect of Aharonov et al’s analysis, an aspect which is not 
required for the correctness of the weak measurement protocol. We 
also emphasise that the arguments above in no way challenge the very 
different assertion of Aharonov et al that an actual measurement of 
A or B in the interval ( )i ft t−  results in the eigenvalues a  or b , 

with probabilities ( )= ( )P a P b . This conclusion holds good even for 
observables whose values vary with time, since the probabilities for 
particular eigenstate outcomes are time independent.

Question and comment 2

Above, it was pointed out that the more orthogonal the preselected 
and postselected states are, the further from the expectation value 
the measured weak value will be, and that weak values far outside 
the eigenvalue spectrum arise for nearly orthogonal preselected and 
postselected states. As we saw above, the latter result was graphically 
demonstrated by the AAV-experiment. That the apparatus pointer 
genuinely indicates weak values outside the eigenvalue spectrum is 
not in doubt. The question is, “ Does any member of the preselected 
or postselected ensemble (or, generally, any quantum system) actually 
possess a measured weak value outside the eigenvalue spectrum?”.

We base our answer on the AAV-experiment. The key feature in 
our answer is the uncertainty in the initial zp  of the apparatus pointer, 
an essential element of a weak measurement.

We argued above that for particles in the preselected ensemble 
with =0zp  or <z zp p∆  the final detections will indicate a correct 
or nearly correct value of zp± . On the other hand, for particles 
with large zp± , the large zp± masks the small 

z
p∆  shifts. If the 

entire preselected ensemble is considered, positive values of 
z

p∆

, large or small, cancel (in the statistical sense, for a large enough 
ensemble) with corresponding negative values. This means that over 
many detections, the average shift, from which the weak value is 
determined, is produced entirely by the 

z
p∆ momentum shifts, shifts 

which correctly reflect the real value of zσ . Thus, in this case, the 
weak value correctly gives the expectation value of zσ . The same 

zp  cancellations will also occur for a postselected ensemble formed 
from a subensemble of the preselected ensemble consisting of particles 
with values of zp symmetrical distributed about the central peak of the 
Gaussian function representing the zp distribution of the preselected 
ensemble. We shall call such an ensemble a “symmetric postselected 
ensemble”. Thus, a symmetric postselected ensemble will also lead to 
a correct expectation value. Such symmetric postselected ensembles 
arise when the postselected state is equal to the preselected state.

Unsymmetric postselected ensembles are formed when the 
postselected state is different from the preselected state. An 
unsymmetric ensemble is one made from a subensemble of the 
preselected ensemble composed of particles with a zp -distribution 
corresponding to an off-center portion of the zp -distribution of the 
preselected ensemble. The more the postselected state differs from the 
preselected state, the more unsymmetric the postselected ensemble 
will be. For such an ensemble, the zp−  values will not balance 

the zp−  values, so that either positive or negative zp values will 
dominate, producing a contribution to the average shift in detections 
in addition to that due to zp∆ . Since the zp∆ shifts reflect the true 

zσ  value, the affect of the additional zp  contribution is to distort 
the true value. The weak value therefore begins to deviate from the 
expectation value. For nearly orthogonal preselected and postselected 
states, the postselected ensemble is drawn from the tails of zp
-Gaussian, and hence is made up of particles with either a very large 

zp+ or a very large zp+ , depending on which side of the central peak 
the particles are drawn. In this case, the average shift in the detections 
is completely dominated by the large values of zp+ or zp− , with 
the zp∆ making little contribution, and, hence, is also large. This 
large average shift in detections corresponds to a large weak value 
which can lie far outside the eigenvalue spectrum. We see that this 
large average shift is caused by the large values of the initial 

z
σ of 

the apparatus pointer, which do not in anyway reflect the true value 
of 

z
σ . We conclude, that not all postselected states lead to measured 

weak values that indicate the true values possessed by systems of the 
preselected or postselected ensemble. In particular, weak values that 
lie outside the eigenvalue spectrum are caused by large values of the 
initial pointer zp , and not by the true values of zp∆ .

A further argument against the reality of weak values outside the 
eigenvalue spectrum is by comparison with the predictions of the 
causal interpretation. For symmetrical postselected ensembles that 
give rise to weak values of observables equal to their expectation 
values, the variation in the values of these observables for each 
system (weak measurements cannot, of course, reveal these individual 
values) of either the preselected or postselected ensemble can be 
assumed to lie within the eigenvalue spectrum. For such cases, the 
values of observables calculated from the causal interpretation will 
be consistent with the results of a weak measurement. However, 
measured weak values outside, especially far outside, the eigenvalue 
spectrum necessarily means that some or many individual systems of 
the preselected or postselected ensemble had values also outside the 
eigenvalue spectrum. Such “far out” values would contradict values 
calculated from the causal interpretation.

Aharonov et al.11 argue for the reality of weak values by 
emphasising that following the interaction between the system and 
the measuring devices “... there is a physical variable of the measuring 
devices that reflects the weak value of the measured variables.” 
That, following the interactions, there is a physical variable of the 
measuring device that reflects the weak value is certainly true, and, 
as we saw above, this variable is the momentum shift zp∆ . The 
problem with Aharonov et al’s argument is, that, for unsymmetrical 
ensembles, as we argued above, this zp∆ is masked by the higher 
values of z

σ
. They cannot therefore conclude, that all weak values 

reflect true values possessed by individual systems. Thus, Aharonov 
et al’s argument justifies the reality of some weak values, but not all.

Conclusion
Our comments above arose from a desire to gain an intuitive 

understanding of the already existing detailed mathematical analysis 
of the weak measurement protocol. A big part of the motivation was to 
gain an intuitive understanding of how weak values that lie outside the 
eigenvalue spectrum arise. This led to the conclusion that the apparatus 
pointer genuinely can register weak values outside, even far outside, 
the eigenvalue spectrum, but that these values are consequence 
of the uncertainty in the initial zp of the apparatus pointer, and do 
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not correspond to the true values of observables possessed by any 
individual system of either the preselected or postselected ensemble.

A second conclusion is, that, an individual quantum system has 
simultaneously well defined values of all observables, compatible and 
incompatible, in agreement with Aharonov et al.11 But, contrary to 
Aharonov et al.,11 these values are not restricted only to eigenvalues 
of the observables (but do lie within the eigenvalue spectra).

Our comments above only suggest that some weak values are 
fictitious, but by no means all. The weak measurement protocol, with 
appropriately chosen postselected ensembles, is, without doubt, a 
powerful tool allowing, for the first time, a fairly complete description 
of a quantum system from measurement. This allows experimental 
probing of quantum paradoxes, various foundational experiments, and 
even alternative interpretations of the quantum theory. Though, we 
have suggested that the causal interpretation can be used to discredit 
“far out” weak values, with a careful choice of the postselection state, 
the shoe, so to speak, is on the other foot, and weak measurements 
can be used investigate the causal interpretation. We saw above that 
the remarkable experiment of Kocsis et al.,24 produced results in 
very close agreement with the predictions of the causal interpretation, 
thus providing strong preliminary evidence for the correctness of the 
causal interpretation. We may note that the Kocsis experiment is an 
experiment in which the postselected state produces a symmetrical 
postselected ensemble so that the weak values indicate true system 
values.

Finally, the restrictions expressed in Our above comments, also 
do not in any way affect the use of the weak measurement protocol 
in“practical” amplification experiments. Already, numerous such 
experiments have been performed with impressive results.
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