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Brief overview of the development of the
weak measurement protocol

The weak measurement protocol!, (or just ‘weak measurement’
for short) has gained fairly wide prominence since its early, rather
abstract, beginnings and has found important practical applications.
Here, I give a brief overview of the weak measurement protocol
introduced by Aharonov et al.,! and offer some comments. Early
ideas that eventually led to the weak measurement protocol began
in a 1964 article by Aharonov, Bergmann and Lebowitz.! In this
article the idea of time asymmetry in quantum mechanics was
examined. The authors suggested that time symmetric ensembles
could be obtained by first measuring an observable represented by
the operator® 4 at time #, (preselection) and then, at a later time B
, measuring an observable B (postselection), where 4 and B may
or may not commute. Preselection puts all members of the ensemble
into an eigenstate |4,a) , with eigenvalue a, of the operator A4,
while postselection places the ensemble in an eigenstate |B,b) , with
eigenvalue b, of operator B. They also derived a formula for the
probability of finding eigenvalues d,,d,,...d, of a set of observables
D1 ,D_,...D ,where the observables are either measured in sequence
or simultaneously between the preselection measurement and the
postselection measurement. They operators D1’D ,...D  may
or may not commute. For the case of a complete set of commuting
observables, collectively represented by ¢, with eigenvalues
collectively represented by ¢, the formula for the probability P(c;)
of obtaining eigenvalues c¢; becomes

'The weak measurement protocol consists of a weak interaction followed by
a strong interaction followed by a final irreversible (in the statistical sense),
amplified detection. Commonly used terminology refers to the weak and
strong interactions as measurements. Though, perhaps, it is well understood,
it is still worth noting that neither the weak nor the strong interaction fulfill
even a no rigorous statistical definition of a measurement and should, strictly,
be referred to as interactions. The final irreversible detection certainly
satisfies the conditions for a measurement, and hence, so does the whole weak
measurement protocol. A discussion of what constitutes a measurement may
be found in reference.2 However, since the terminology is widespread we will
also use “measurement” to refer to the weak and strong interactions.

’In what follows we will use the term observable to also refer to the operator
representing the observable. The same letter representing the observable will,
therefore, also be used to represent the operator.
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Concerning the time-asymmetry of quantum mechanics they
concluded that quantum mechanics is not time symmetric despite
the fact that, just like the classical equations of motion, the quantum
mechanical equations of motion, either in the form of the Schrodinger’s
equation or Heisenberg’s equations, are time symmetric. They
attribute the time-asymmetry to the inevitable interaction of quantum
systems with macroscopic systems which lead to the collapse of the
wave function, a collapse which is generally viewed as irreversible?.

Much later in 1985, the 1964 ideas concerning the values of
observables in the interval between two measurements were developed
further by Albert, Aharonov and D’Amato.> They began by noting
that formula (1) leads to the result that if the preselection operator B
or the postselection operator B is measured in the interval between
the preselection and postselection measurements, the probability of
obtaining the result ¢ or A4 is P(a)=P(b)=1, even if 4and Bdo
not commute. This result, led Aharonov and his group to conclude
that in this interval a quantum system has simultaneously well defined
values (i.e., dispersion free values) of both observables B and B,
irrespective of whether or not 4 and B commute (I will comment
on this below). This conclusion, the authors pointed out, appears to
be contradicted by the arguments against hidden variable theories
provided by Gleason* and Kochin and Specker® (refinements of Von
Neumann’s impossibility proof®) in which they claim that certain
sets of noncommuting observables can never be simultaneously well
defined. Albert, Aharonov and D’Amato went on to show, which
was the purpose of their article, that an assumption involved in the
arguments of Gleason, Kochin and Specker, an assumption about
the results of measurement of certain projection operators, was not
satisfied in the interval between two measurements. This allowed

>The causal interpretation offers a description of the measurement process
which does not involve collapse. The measurement process is, by virtue of
involving macroscopic devices, still viewed as irreversible but only in the
statistical sense.2
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them to maintain their conclusion that even two non-commuting
obervables can have well defined values between two measurements.

The ideas above initiated a motivation to develop an experimental
method for measuring observables of a system between two
measurements. This led to the concept of a weak measurement,
first suggested in a 1987 article by Aharonov, Albert, Casher and
Vaidmann.” In this article, the authors claimed to show that weak
measurements can result in values of quantum observables far outside
their eigenvalue spectra (we will comment on this claim below). In
a later 1988 article,® Aharonov, Albert and Vaidman developed the
carlier ideas further and introduced an explicit weak measurement
protocol, a definition of a weak value of a quantum observable, and
proposed a specific experiment for the measurement of the weak value
of'the spin of a particle, concluding that the weak value of the spin can
be a 100, far outside the eigenvalue spectrum. In their mathematical
analysis leading to the definition of weak value 4, ,

4= _(g,141¢,.) )
C Gl

A number of assumptions were made, so that formula (2) is only
approximate, and it is important to keep this point in mind. These
assumptions were explicitly pointed out by Duck, Stevenson and
Sudarshan’ in an excellent article in which they also provided a very
clear and detailed mathematical analysis of the weak measurement
protocol. They agreed with Aharonov et al.,! that weak values of
quantum observables can lie far outside, even far outside, their
eigenvalue spectra. An important practical aspect of the weak
measurement protocol, pointed outby Aharonov etal.,® atthe end of their
1988 article , is that it could be used for amplification measurements.
Since this suggestion, numerous amplification experiments using the
weak measurement protocol have been successfully performed. One
example, is the measurement of ultrasensitive beam deflection by
Dixon et al.!

In a later 1990 article,"! Aharonov and Vaidman provided a
more detailed theoretical justification for the concept of a weak
measurement by considering a description of quantum systems using
two wave functions. This two wave function formalism was later
called the two-state vector formalism, a detailed description of which
can be found in reference).'? Their idea was to describe a quantum
system not only by a preselected eigenstate |4,a) moving forward
in time, but also by a postselected state |B,b) moving backward in
time. Based on this description of a quantum system, which they
considered to be a time-symmetric description (though, in our view,
because the backward-in-time wave function is entirely fictitious, the
time symmetry is purely mathematical, in the sense that calculated
probabilities are symmetrical. In other words, in our view, the time
symmetry does not have physical reality), they provided a more
rigorous derivation of their weak value formula (2). They emphasised
again, that for each individual member of the preselected and
postselected ensemble a measurement of either observable 4 or @ in
the intermediate interval between the measurements would yield the
corresponding eigenvalue a or b with probability P(a)=P(b)=1 .
In fact, they asserted a stronger statement, namely, that, each member
of the preselected and postselected ensemble has definite values of
A and B in the intermediate interval, whether or not 4 and @
commute, and that these definite values are a and Z, respectively.
They also once again emphasised that observables other than those
used for preselection and postselection can have values far outside

Copyright:

©2017 Kaloyerou 173

their eigenvalue spectrum. They tried to justify the reality of weak
values by arguing that there is a physical variable in the measuring
device that reflects the weak value of the measured variable!! (we will
comment on this below).

In reference, Aharonov et al.,® suggested an experiment (hereafter
the AAV-experiment) to measure the real part of the weak value of
the z -component of a spin-half particle. Actually, for simplicity, they
considered the Pauli observable o, rather than the spin observable

S, :Eo-z . The idea is to couple the particles spin to its trajectory using

magnetic fields produced by pairs of Stern-Gerlach magnets. Here,
the apparatus pointer is the z -component of the trajectory described
by its z -coordinate and its conjugate momentum p’=p_+Ap, , where
p. is the initial z-component of momentum, Apis the momentum
after the weak measurement and Ap is the small momentum shift
due to the weak measurement. The trajzectory, whose bending in the z

-direction is determined by p' , registers at a point z on the detecting
screen. From many such detections the real part of the weak value of
y can be determined.

Abeam (ensemble) of particles moving in the positive y -direction
(the xy -plane is horizontal, with the z-axis vertical forming a right-
hand set) with a well defined velocity is prepared in a spin eigenstate
log,+1) (preselection), with eigenvalue +1. In this state, the spin is in
the direction of the unit vector cf lying in the & -plane at an angle
a , 90°<a<180°, from the positive x -axis. A key point of the weak
measurement protocol is that the initial value p, is very uncertain
(unlike a strong von Neumann measurement which requires the initial
p. to be known precisely), and is described by a broad Gaussian wave
function. This means that particles can have large values of p, in the
* z -direction, so that by the time the beam reaches the detecting
screen, it spreads considerably in the p. -direction. However,
because large values of p, correspond to the Gaussian tails, only
very few particles will have large values of p, and hence only a few
particles will spread widely.

After preselection, the beam is passed through a weak magnetic
field pointing in the z-direction. This constitutes the weak
measurement. The affect is to rotate the spin-direction very slightly
and to add a small +Ap, to the initial p, of the particle to give a new
momentum p_+Ap, , the sign dependlng on the initial direction of o,

. Note that the weak measurement has to be sufficiently weak so that
the preselected eigenstate is hardly changed. Except for particles with
initial value , <n, or with p, <Apz , the initial p, dominates, so that
a weak measurement revealed by a “spot” on the final detecting screen
will neither indicate the size nor the sign of the original value of o,

. For the cases p,=0 or p,<Ap, , the “spot” on the detecting screen
will be close to z=0 (relatively speaking, since the amount of bending
by the time of detection depends on the distance from the magnets the
detecting screen is placed) on the correct + side, thus indicating a
true magnitude and sign of the value of p_ . But, even for these cases,
no conclusion can be drawn from a single detection, or even from a
few detections, since an exactly similar detection will be produced by
a particle with opposite spin and appropriate sign and magnitude of
p_ . For example, two particles of opposite spins with z -momentum
values pi=p,+Ap, and p.=p_,—Ap. , with p_,=p. +2Ap, , after
the weak measurement will produce the same spot on the detecting
screen. Very many repeated measurements will reveal an average shift
from which the weak value of o, is determined. We have traced the
motion of the particles in some, perhaps obvious, detail, since it is
needed for our later comments.
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The particles reaching the screen are postselected after the weak
measurement by a strong magnetic field in the +x -direction. This
strong field divides the particle beam into the + and + directions.
Whether a particle bends into the + beam or the -beam depends on o,

. The z-motion carrying the weak measurement remains unaffected.
The beam (subensemble) moving in the positive x -direction (out of
the page) is postselected and directed to the detecting screen.

If the postselected state is equal to the preselected state, the result
of the weak measurement will be equal to the usual expectation value,
as is obvious from Equation (2). The less orthogonal the postselected
and preselected states are, the closer the measured weak value will
be to the expectation value, while the more orthogonal the states
are, the farther away will be the measured weak value from the
expectation value. For a sufficiently orthogonal postselected state, the
weak value may lie far outside the observables eigenvalue spectrum,
as Aharonov et al.,'" emphasised. In their experiment, they showed
that the measured weak value of . could be 100 (a result that we
will query in our comments later). Aharonov et al.,'' also pointed
out that the probability of a result decreases the more orthogonal the
postselected state is, so that the probability of obtaining a result far
outside the eigenvalue spectrum is very small. The physical reason for
the low probability is, that the more orthogonal the postselected state,
the smaller the number of systems reaching the detecting screen, and
hence, the smaller the postselected ensemble. Though, later, we will
argue that certain choices of the postselected ensemble may give weak
values never possessed by any member of the preselected ensemble
(fictitious weak values), measurements with appropriately chosen
postselected ensembles can lead to novel and interesting insights into
the behaviour of a quantum system between measurements. Weak
measurements have also proved to be of important practical value in
amplification measurements.

The first experiment using the weak measurement protocol was
performed by Ritchie et al.!’® Instead of particles and Stern-Gerlach
magnets, they used an optical setup suggested by Duck et al.,’ in which
polarisors were used to produce the preselected and postselected states
and a birefringent crystal was used to perform the weak measurement.
More than a decade later, a number of experiments using the weak
measurement protocol to amplify weak signals were performed.!'+ '3
In 2011 Lundeen et al.,*! performed an experiment to directly measure
a wavefunction'® following a procedure suggested by Aharonov et
al.®® Weak measurements have also found application to quantum
paradoxes. An interesting example is the experimental investigation
of Hardy’s paradox.?%

An experiment of particular interest using weak measurements,
due to Kocsis et al.,** was presented in 2011. They used the weak
measurement protocol, based on a theoretical proposal due to
Wiseman,” to experimentally determine average photon trajectories
leading to interference fringes in a two-slit experiment. Photons
emitted from a quantum dot in single photon states are divided by
a 50-50 fiber beam splitter into two beams and then preselected in a
diagonal linearly polarised state. The photons move forward in the
+z -direction, while interference is along the Z -directions (the z
-axis is horizontal with the «, -axis vertical). The weak measurement
is performed by a birefringent calcite crystal which introduces a small
k. -dependent phase change between the ordinary and extraordinary
beams which slightly changes the linearly polarisation state to
an elliptically polarised state. The photon polarisation acts as the
apparatus pointer which indicates the &, -value of the photons. The
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photons are postselected according to their x -position on the final
detector (a cooled charge-coupled device).

A quarter waveplate converts the elliptically polarised state
produced by the weak measurement to a circularly polarised state.
The conversion to a circularly polarised state allows a beam displacer
to separate the ordinary and extraordinary rays in each of the two
photon beams by about 2 mm vertically. This separation produces two
separated interference patterns on the CCD detector from which the
X value can be determined at each x -position on the CCD detector.
A three lens combination with the middle lens movable along the
z -axis is positioned between the quarter waveplate and the beam
displacer. The movable lens images the slit system at different z
-positions thereby changing the slits-to-CCD distance, while the CCD
detector remains fixed. This allows f , hence the k -vector, to be
measured at varies x -positions along numerous z= constant lines.
Averaging and joining the “dots” produces the photon trajectories.
The trajectories have just the form predicted by the Bohm-de Broglie
causal interpretation.’*%

Kocsis et al.** interpreted the average trajectories as the average
paths of photon particles. It should be noted, however, that the
Bohm-de Broglie interpretation is nonrelativistic and does not
correctly describe the behaviour of the electromagnetic field. The
electromagnetic field is properly described by quantum optics based
on the second quantisation of Maxwell’s equations. The causal
interpretation of the electromagnetic field (CIEM), based on the
second quantised Maxwell equations, was developed by Kaloyerou.**
In this interpretation, the electromagnetic field is viewed much like
the classical concept of a field, except for additional quantum features
(e.g., the field is highly nonlocal). There are no photon particles. The
term “photon” in CIEM refers to a discrete quantum of energy /i@
distributed in space in the same way as any another field. At a beam-
splitter, for example, a photon is split into two beams. Therefore,
as Flack and Hiley have suggested,’' the average trajectories in the
Kocsis et al.,* experiment are more correctly viewed as flow lines of
the electromagnetic field.

The weak value defined in Equation (2) is a complex quantity.
The physical meaning of the imaginary part is not very clear. For
the case of a weak measurement of momentum, Flack and Hiley®
interpreted the real part of its weak value as the ordinary momentum
(as defined in the causal interpretation),’® while in the imaginary part
is interpreted as the osmotic momentum (as defined in the stochastic
interpretation of quantum mechanics).** Also of interest, is the
experimental measurement of both the real, Re(o,),, , and imaginary
part, Im(o,),, , of the weak value of a neutron’s Pauli spin operator,
im(c,),» Dy Sponar et al** It is important to note that Im(o,),, is
measured in a separate modified experiment. Sponar et al.,* offered
an interpretation of Re(o,), and Im(o,), in terms of their affect
on the total postselected state vector representing the neutron’s spin
and the apparatus pointer (the apparatus pointer system consists of
two paths produced in a triple Laue neutron interferometer): they
asserted that Im(o,),, acts as an additional phase in the state vector,
while Im(o,),, affects the amplitude. This interpretation does not,
however, offer a physical meaning of Im(o,),, in terms of a quantum
observable. For example, Re(o,), represents the spin observable
(after multiplication by %/2 ), which, in the causal interpretation of
the Pauli equation®® can be pictured in terms of a spinning particle, but
there is no such immediate interpretation of Im(o,),, . Aharonov et
al.,'" assert that the imaginary part of the weak value ... affects the
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distribution of the canonical variable ¢ .” This again does not offer a
physical meaning of the imaginary part of the weak value.

Some questions and comments

A conclusion of Aharonov et al’s is that all observables, commuting
or otherwise, have definite (dispersion free) values at each instant
of time, contrary to Bohr’s principle of complementarity (BPC)*.
Whether or not it is believed that all of these values can be known
simultaneously, anyone who accepts the objective reality of the wave
function will probably have held this view even prior to the work of
Aharonov et al.!' Certainly, those, like the present author, who are
supporters of the Bohm-de Broglie causal interpretation certainly
believe that a quantum system simultaneously has well defined values
(not necessarily eigenvalues) of all observables. Thus, in our view, the
conclusion that a quantum system has simultaneously well defined
values of all observables is entirely reasonable. Hereafter, therefore,
we adopt the view that a quantum system has well defined values of
all observable. What we will question, however, is what these values
can be.

Though the mathematical results are consistent with the standard
quantum formalism, since they were derived from it, the Aharonov
et al.,'" prescription for attributing definite values to all observables
simultaneously is an extrapolation of the usual formalism. Such an
extrapolation is not unreasonable, since any interpretation of the
quantum theory, such as the Bohm-de Broglie causal interpretation,
which is mathematically consistent with the standard quantum
formalism, necessarily extrapolates beyond the standard formalism
in terms of interpretation. A question we wish to take up below is
whether or not Aharonov et al.,'" extrapolation is justified. The causal
interpretation also provides a prescription for attributing definite values
to all observables simultaneously, indeed, it provides more than just
a prescription, it provides rigorous formula for this purpose. We saw
above, that the experimentally determined trajectories (more correctly,
electromagnetic field flow lines) in the Kocsis experiment are in very
good agreement with those calculated from the causal interpretation.
But, we will see below that definite values of observables attributed to
systems between measurements by Aharonov et al.!' prescription will
sometimes differ from the values given by the causal interpretation.
The second, perhaps more substantial, issue we want to take up
concerns the reality of weak values that lie outside an observables
eigenvalue spectrum.

To be specific, we ask and comment on the following questions,
and note that our discussion, as in the AAV-experiment, refers to the
real part of the weak value.

Question and comment |

In reference,’ as we saw above, Aharonov et al.,' concluded from
their formula (1) that for an ensemble preselected in state |4,a)
and postselected in state |B,b) , measuring A4 in the time interval
(#;—t;) between preselection and postselection would give the result
a with probability P(a) , while, if instead, B is measured in the
interval (#;—,), the result would be pq with probability P(b) . Since
formula (1) is derived from the quantum theory, this conclusion does
not go beyond the usual formalism. But, in reference, Aharonov et
al.,! made the stronger assertion that each member of an ensemble
simultaneously has well defined values throughout the time interval

“See reference? for this authors view of BPC and for further references.
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(#,—t ) between measurements. The latter is an extrapolation beyond
the usual quantum formalism. We therefore ask, “Is this extrapolation
justified?”.

Every system of the preselected ensemble is in the state |4,a)
by construction, so that every system has the value « throughout
the interval (,—,). With the exception of strict Bohrians (recall the
famous Wheeler assertion, “No phenomenon is a phenomenon until it
is an observed phenomenon,”*), few would argue with this view. It is
also reasonable to accept that each member of the preselected ensemble
in state |4,a) has a definite value of B, though this value will vary
from system to system. There is nothing in the usual formalism
that necessarily restricts system values between measurements to
eigenvalues of b . Two descriptions consistent with the outcome b
when B is measured in the interval (#,—¢,) are possible:

Measurement of B forces each member of the preselected
ensemble into an eigenstate of B . Therefore, except for some chance
cases where a particular system happened to have an eigenvalue of B
, the value of B for all other systems must change upon measurement
of B . Those systems with eigenvalue b are postselected.

Aharonov et el’s description: During the interval (B,/4,q) systems
in the fraction (B,b|4,a) of the preselected ensemble in state | 4, a)
have eigenvalue b of B, and this fraction becomes the postselected
ensemble after measurement and selection. Since, after measurement
of Ball systems of the preselected ensemble are eigenstates of B
with various eigenvalues of B, and since an eigenstate of B with
an eigenvalue other than |, could be postselected, then, according to
Aharonov et al.,'! description, all systems of the preselected ensemble
in state | 4,a) must have eigenvalues of . during the interval (¢,—,).

The standard formalism of quantum mechanics cannot distinguish
between these two descriptions. But, two arguments suggest that
description (IT) is implausible, perhaps even wrong.

First, the causal interpretation is mathematically consistent with
quantum theory and adds well defined formulae for the values of
observables between measurements. Except for some special cases,
such as eigenstates of an operator, the values of observables for a
general state are certainly not restricted only to their eigenvalues.
Thus, the predictions of the causal interpretation contradict the
assertion that well defined values of B of systems in the preselected
ensemble are restricted only to eigenvalues of «-in the interval
(#;—t;) . Moreover, the value of observables incompatible with 4
may also vary with time, and this variation is given by the formulae
of the causal interpretation, but not by Aharonov et al’s description.

Second, for any system in the preselected state | A4, a) , observable
A and all observables compatible with 4 will have precise values
and these values will be their eigenvalues. This is standard quantum
mechanics. But if, as asserted by Aharonov et al, these systems
also have well defined eigenvalues of the postselected observable
B, and since instead of C, we postselect with an observable C
compatible with B, then by Aharonov et al’s reasoning, the systems
in the preselected state must also have well defined values which are
eigenvalues of C . Now, if 4 does not commute with 4 , Aharonov et
al’s reasoning forces the conclusion that all systems in the preselected
state | 4, a) will not only have well defined eigenvalues of 4 and of
all obervables compatible with 4, but will also have well defined
eigenvalues of B and of all observables compatible with B . Again,
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this contradicts the causal interpretation predictions. Further, for
nearly orthogonal preselected and postselected states, both Duck,
Aharonov et al.,”!! assert that the weak measurement can lie outside
the eigenvalue spectrum. Now, if the observable being measured is
compatible with either B or B, then the weak value will contradict
the assertion that systems of the preselected ensemble have values
restricted to eigenvalues of this observable.

We should emphasise that the above discussion focuses on a very
specific aspect of Aharonov et al’s analysis, an aspect which is not
required for the correctness of the weak measurement protocol. We
also emphasise that the arguments above in no way challenge the very
different assertion of Aharonov et al that an actual measurement of
Aor Bin the interval (f,—t,) results in the eigenvalues a or b,
with probabilities P(a)=P(b) . This conclusion holds good even for
observables whose values vary with time, since the probabilities for
particular eigenstate outcomes are time independent.

Question and comment 2

Above, it was pointed out that the more orthogonal the preselected
and postselected states are, the further from the expectation value
the measured weak value will be, and that weak values far outside
the eigenvalue spectrum arise for nearly orthogonal preselected and
postselected states. As we saw above, the latter result was graphically
demonstrated by the AAV-experiment. That the apparatus pointer
genuinely indicates weak values outside the eigenvalue spectrum is
not in doubt. The question is, “ Does any member of the preselected
or postselected ensemble (or, generally, any quantum system) actually
possess a measured weak value outside the eigenvalue spectrum?”.

We base our answer on the AAV-experiment. The key feature in
our answer is the uncertainty in the initial p, of the apparatus pointer,
an essential element of a weak measurement.

We argued above that for particles in the preselected ensemble
with p.=0 or p_.<Ap. the final detections will indicate a correct
or nearly correct value of 1, . On the other hand, for particles
with large *p,, the large +p, masks the small Ap shifts. If the
entire preselected ensemble is considered, positive “values of Ap.
, large or small, cancel (in the statistical sense, for a large enough
ensemble) with corresponding negative values. This means that over
many detections, the average shift, from which the weak value is
determined, is produced entirely by the Ap momentum shifts, shifts
which correctly reflect the real value of o-j . Thus, in this case, the
weak value correctly gives the expectation value of o, . The same
P cancellations will also occur for a postselected ensemble formed
from a subensemble of the preselected ensemble consisting of particles
with values of p, symmetrical distributed about the central peak of the
Gaussian function representing the p, distribution of the preselected
ensemble. We shall call such an ensemble a “symmetric postselected
ensemble”. Thus, a symmetric postselected ensemble will also lead to
a correct expectation value. Such symmetric postselected ensembles
arise when the postselected state is equal to the preselected state.

Unsymmetric postselected ensembles are formed when the
postselected state is different from the preselected state. An
unsymmetric ensemble is one made from a subensemble of the
preselected ensemble composed of particles with a p,_ -distribution
corresponding to an off-center portion of the p_ -distribution of the
preselected ensemble. The more the postselected state differs from the
preselected state, the more unsymmetric the postselected ensemble
will be. For such an ensemble, the —p_ values will not balance
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the —p, values, so that either positive or negative p, values will
dominate, producing a contribution to the average shift in detections
in addition to that due to Ap_ . Since the Ap_ shifts reflect the true
o. value, the affect of the additional P, contribution is to distort
the true value. The weak value therefore begins to deviate from the
expectation value. For nearly orthogonal preselected and postselected
states, the postselected ensemble is drawn from the tails of p,

-Gaussian, and hence is made up of particles with either a very large
+p, or avery large +p, , depending on which side of the central peak
the particles are drawn. In this case, the average shift in the detections
is completely dominated by the large values of +p,or —p,, with
the Ap, making little contribution, and, hence, is also large. This
large average shift in detections corresponds to a large weak value
which can lie far outside the eigenvalue spectrum. We see that this
large average shift is caused by the large values of the initial & of
the apparatus pointer, which do not in anyway reflect the true value
of o . We conclude, that not all postselected states lead to measured
weak values that indicate the true values possessed by systems of the
preselected or postselected ensemble. In particular, weak values that
lie outside the eigenvalue spectrum are caused by large values of the
initial pointer p, , and not by the true values of Ap.

A further argument against the reality of weak values outside the
eigenvalue spectrum is by comparison with the predictions of the
causal interpretation. For symmetrical postselected ensembles that
give rise to weak values of observables equal to their expectation
values, the variation in the values of these observables for each
system (weak measurements cannot, of course, reveal these individual
values) of either the preselected or postselected ensemble can be
assumed to lie within the eigenvalue spectrum. For such cases, the
values of observables calculated from the causal interpretation will
be consistent with the results of a weak measurement. However,
measured weak values outside, especially far outside, the eigenvalue
spectrum necessarily means that some or many individual systems of
the preselected or postselected ensemble had values also outside the
eigenvalue spectrum. Such “far out” values would contradict values
calculated from the causal interpretation.

Aharonov et al.11 argue for the reality of weak values by
emphasising that following the interaction between the system and
the measuring devices “... there is a physical variable of the measuring
devices that reflects the weak value of the measured variables.”
That, following the interactions, there is a physical variable of the
measuring device that reflects the weak value is certainly true, and,
as we saw above, this variable is the momentum shift Ap Z. The
problem with Aharonov et al’s argument is, that, for unsymmetrical
ensembles, as we argued above, this Pz is masked by the higher
values of . They cannot therefore conclude, that all weak values
reflect true values possessed by individual systems. Thus, Aharonov
et al’s argument justifies the reality of some weak values, but not all.

Conclusion

Our comments above arose from a desire to gain an intuitive
understanding of the already existing detailed mathematical analysis
of the weak measurement protocol. A big part of the motivation was to
gain an intuitive understanding of how weak values that lie outside the
eigenvalue spectrum arise. This led to the conclusion that the apparatus
pointer genuinely can register weak values outside, even far outside,
the eigenvalue spectrum, but that these values are consequence
of the uncertainty in the initial Pz of the apparatus pointer, and do
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not correspond to the true values of observables possessed by any
individual system of either the preselected or postselected ensemble.

A second conclusion is, that, an individual quantum system has
simultaneously well defined values of all observables, compatible and
incompatible, in agreement with Aharonov et al.11 But, contrary to
Aharonov et al.,11 these values are not restricted only to eigenvalues
of the observables (but do lie within the eigenvalue spectra).

Our comments above only suggest that some weak values are
fictitious, but by no means all. The weak measurement protocol, with
appropriately chosen postselected ensembles, is, without doubt, a
powerful tool allowing, for the first time, a fairly complete description
of a quantum system from measurement. This allows experimental
probing of quantum paradoxes, various foundational experiments, and
even alternative interpretations of the quantum theory. Though, we
have suggested that the causal interpretation can be used to discredit
“far out” weak values, with a careful choice of the postselection state,
the shoe, so to speak, is on the other foot, and weak measurements
can be used investigate the causal interpretation. We saw above that
the remarkable experiment of Kocsis et al.,24 produced results in
very close agreement with the predictions of the causal interpretation,
thus providing strong preliminary evidence for the correctness of the
causal interpretation. We may note that the Kocsis experiment is an
experiment in which the postselected state produces a symmetrical
postselected ensemble so that the weak values indicate true system
values.

Finally, the restrictions expressed in Our above comments, also
do not in any way affect the use of the weak measurement protocol
in“practical” amplification experiments. Already, numerous such
experiments have been performed with impressive results.
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