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Introduction
The measurements studies associated with planetary orbits for our 

solar system has been casted as main task for many scientists and 
natural philosophers before Tycho Brahe and Johannes Kepler, but all 
of them used a geometric description in their works. However, from 
the XVII century, with the advent of Newtonian mechanical laws and 
differential and integral calculus, it was established the unification of 
geometry with the dynamical prescription, now known as celestial 
mechanics.1 Nowadays, the theory of special and general relativity 
are used to describe with greater precision the planets motion and 
cosmological entities. Motions that, in generally, given the nonlinear 
features of the differential equations involved seems to present 
chaotic behavior.2–7 The complexity of these systems, become more 
evident when numerical techniques are used to solve the nonlinear 
relativistic equations8,9 that arises for example at studies of galaxies 
dynamics; universe expansion; orbital precession; besides several 
other phenomena in different scales. In this article we revisited the 
Mercury perihelion issue. This problem is widely known and there are 
some works regarding this subject,10,11 as observed by Peters12 in 1987 
using only special relativity. In addition we take into account some 
information’s about the chaotic aspect of the system beyond the use of 
a Lagrangean formalism with a more simple mathematical approach 
considering an effective gravitational potential based on the classical 
gravitational potential, similar to the one proposed by Phipps13 inspire 
that for simplicity we considered that the system center of mass is 
coincident with the sun position.. In order to achieve this, our article 
is organized as: a brief overview on the Newtonian (non relativistic) 
problem, later we deal with the relativistic Lagrangean formulation 
of the problem, presenting the perturbative Lagrangean obtained and 
the correspondent motion equations that were numerically solved and 
discussed from the chaotic point of view.

Newtonian and relativistic lagrangean formal­
ism

The Newtonian model for objects under the action of a central 
potential has been known for centuries and can be found in 
appropriate literature14,15 The fundamental equation that is used in 
order to obtain orbits, and also for solving countless other problems 
in physics, is Newton’s, well-known, second law / .F dp dt=∑





 The 

solution of this equation under the influence of the gravitational 
potential gives us the equation for r( )θ (using polar coordinates 
with the sun or the most massive object at the center of the reference 
frame) and, consequently, Kepler’s 1st Law, the orbits law. We can 
note this by observing that the equation of r( )θ , which follows 
below and is a solution for the newtonian motion equation in this 
case, is an ellipse equation
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Where , ,A e θ are integration constants, L is the object (planet) 
conserved total angular momentum, G is the gravitational constant, 
M is most massive object mass, and m is the other(smaller) mass. 
This solution depends only on system constants, but we can 
write them from the elliptical geometrical parameters, as well as, 
eccentricity, semi major-axis and semi minor-axis. Thus, applying 
NASA website planetary data of our solar system16 on equation (1) 
and adjusting the respective parameters, the graphic in Figure 1 is 
obtained. Einstein’s Special Relativity (SR), established since 1905, 
shows that the orbits of the planets, which are very close to highly 
massive objects, as our sun, cannot be described as perfect ellipses. 
The success of the SR is detected by its application in various fields of 
modern technology, such as in telecommunications, mobile devices, 
supercomputers, the Internet, even in the great theories of elementary 
particles, currently tested in the LHC-CERN. Einstein established that 
the velocity of light in the vacuum c = 299.792.458m/s,  is a limiting 
speed of the universe, and nothing could travel with a velocity higher 
than it, and no massive bodies can be accelerated to this value. In 
order to carry out this information the Lorentz transformations of 
coordinates must be used. At that configuration, the Lorentz factor,17,18 
plays an important role. We have considered a conservative system 
where the relativistic Lagrangean associated with the classical 
Newtonian potential is written as

( )
1/2

2
2

2
1 .                                                           1

GMmvmc
rc

 
 = − − +
  



Here v is the module of its velocity. Here again the most massive 
object is at rest, positioned at the system center of mass, and the other 
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Abstract

In this article we have revisited the orbital calculations for a celestial mechanical system 
using the relativistic Lagrangean formalism. The differential equations obtained through this 
procedure, involving a perturbative expansion of the relativistic Lagrangean constituted on 
an effective gravitational potential based on the classical gravitational potential, presented 
good solutions for planetary orbits at our solar system. The validity of the trajectories 
obtained was carefully observed for Mercury, interacting only with the sun, a typical two 
body problem. Its natural precession, predicted by general relativity, can be recovered with 
the perturbed Lagrangean, and Mercury trajectory seems to be chaotic in the sense of KAM 
theorem when we analyzed the Poincare Map in planet phase space.
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orbits around it. The proposed lagrangean implies on a correction to 
the original classical Lagrangean in similar terms to the one developed 
in perturbation theory.19,20 This type of derivation was previously 
performed in details by Lemmon21 and D’Elisio22 separately. 
Considering the following change of variables
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Converting the original Lagrangean into
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Figure 1 A typical elliptical planet orbit, for the case 
2
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Here, we assume that 
0

1 . .R AU= (Astronomical Unity-A.U.), 
hence the equation (2) is partially dimensionless since τ is the 
necessary time to the light to cover 1A.U. The normalized Lagrangean 
with respect to the rest energy of the planet ( , , ,x xθ θ

⋅
= 

�� was 
proposed in order to have the associated Euler-Lagrange equations 
where is possible to define the associated momentum with respect 

to the variableθ  as .P
θθ

∂
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For the proposed analysis we have 

set 2 2/ /P L mc l c
θ
= = , where /l L m= .Notice that, the angular 

equation associated with the motion can be casted as
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Hence,
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We may use this relation to adjust  as
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Now it is possible to determine the correspondent radial equation 
associated with the planet motion as
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And

The last procedure to convert the related equation into a pure 
dimensionless form is to redefine t=t=τ , then
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Now, the equations of motion can be written as
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The proposed differential equations are very similar to the first-
order orbit equations proposed by D’Eliseo22. In order to determine 
the initial values of *

θ
Ρ firstly, we must determine the correspondent 

module of the angular momentum
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where a is the semimajor-axis of the ellipse and b the semiminor-

axis, given by 21b a ε= − , with ε being the elongation of the ellipse. 

The initial associated radial velocity 0x = was determined as
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the initial position r(0) was considered as the perihelion where the 
velocity of the planet is maximum.

At the next section we shall determine some of the orbit trajectories 
associated with Mercury.

Results
The motion equations integration was performed using numerical 

techniques Runge Kutta Fehlberg (RKF-45)23 with variable integration 
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step. Given the nonlinearity of the obtained motion equations that are 
quite different from the ones obtained in literature, for example, by the 
first-order approximation method proposed by D’amour and Derelle.24 
The precision requirement for the RKF45 were chosen as maximum 
error 810− per step, and maximum number of iterations of 610 per 
step. The implementation and validation of the code produced was 
performed with an accurate comparison between the results obtained 
with similar nonlinear deferential equations solved by the function 
ODE2 from the WxMaxima software.25 Considering the parameters 
shown in Table 1 & Table 2 the motion equations were integrated 
until the planet complete one revolution1 (The integration starts at 
angular position (0)θ π= ). A typical result comparing the classical 
and the relativistic approximation can be observed at Figure 2 and a 
magnification of the radial difference at the trajectories is presented 
in Figure 3. We have also determined the radial difference defined 

( ) ( ) ( )
cla rel

R R Rδ θ θ θ≡ −  between the classical 
cla

R and relativistic 

corrected trajectories
rel

R . This result is shown in Figure 4. The 
difference between the two trajectories can be detected even for the 
polar plot of the associated radial position x (t) and at the angular 
position ( )tθ  as depicted in Figure 5. Another graphic where is 
possible to visualize the difference between the classical and the 
relativistic correction at the trajectories is the Phase Space associated 
with the variable x, this plot x x× can be seen in Figure 6. Notice that, 
for a typical elliptic trajectory the curve at the phase space would be 
approximately a circle that is completely different from the D-shaped 
curve observed in Figure 6.

Figure 2 Mercury orbit at Cartesian coordinates system, the red curve 
represents the classical elliptical orbit, and the black curve represents the 
orbit with the proposed relativistic correction.

Table 1 Fixed values used at the numerical simulations 

Parameter Value (I.S.)

c 2.99792458 x 108(m/s)

G 6.67384 x 10-11(m3kg-1s-2)

M 1.98855 x 1030kg

Ro 1A.U. = 1.495978707 x 1011m

Table 2 Mercury Parameters

Parameter Value

m 3.3022 x 1023kg

a 5.790905 x 1010m

ε 0.20563

r(0) 4.6 x 1010m

v(0) 5.989 x 104(m/s)

T 87.97days

Figure 3 Mercury orbit at cartesian coordinates system, the red curve 
represents the classical elliptical orbit, and the black curve represents the 
orbit with the proposed relativistic correction. It is shown a magnification 
at the region near of angular position 3 / 2π , where the separation and 
divergency between the two orbits are more visible.

Figure 4 Determination of the radial difference between the classical and 
the relativistic corrected trajectory, as a function of θ for one revolution of 
Mercury.

The mercury precession

The precession of a planet occurs taking into account the center 
of a reference frame, in this case the sun. Similar to the geometrical 
procedure observed at Figure 7, after some time T , given the 
influence of pure relativistic influence, the planet may change the 
plane of its trajectory realizing a certain precession, with respect to 
theφ angle. To determine this precession angle, we get the perihelion 
and the aphelion belonging to a line that contains the Sun, at the 
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initial orbit (first revolution) and at the final orbit (last revolution) and 
determine the relative inclination angle. For Mercury the angle φ as 
a function of the revolutions can be observed at Figure 8, where after 
400 revolutions are approximately 400 43 ''φ ≈ , which is a very close 
result when compared to the value predicted by general relativity. 
Hence, we could say that the perturbation procedure here proposed 
is a very good approximation to determine the influence of general 
relativity using a more simple mathematical approach from the point 
of view of theoretical physics. Considering the precession imposed by 
the relativistic correction term, we can observe that Mercury’s orbit 
is not intrinsic periodic, since the set of points associated with the 
Poincare’ map - see Figure 9 - related to the variables ( , )θ θ do not 
have a finite dimension, on other words, in spite of the huge number 
of revolutions computed, the object (Mercury) do not recover the 
exactly same dynamical configuration. As predicted by the KAM 
theorem,15 it is a purely chaotic dynamical system, even for just one 
interaction between the planet and the sun. These chaotic approaches 
have not been discussed by other studies.12,13,21,22 Otherwise, as can 
be observed, the present work gives rise for new investigations 
from the perspective of stability and nonlinear phenomena. A more 
precise approximation could be performed taking into account the 
interaction between more than two bodies. For example, considering 
the interactions with Saturn and Jupiter.

Figure 5 Graphic ( ) ( )x t tθ× for one revolution of Mercury. Here is 
possible to observe the none asymptotic behavior the trajectories. The red 
curve represents the classical trajectory and the black curve represents the 
relativistic corrected trajectory.

Concluding remarks
The relativistic celestial dynamic correction proposed by an 

effective relativistic Lagrangean, built with a proper classical 
gravitational potential, can recover, with a good numerical accuracy, 
the orbits obtained by general relativity, which calculations are quite 
more complex to perform. Given the proximity of Mercury to the Sun, 
the analysis of its perihelion precession through 100years achieved 
good agreement with the experimental result 43 ''sφ ≈ . In addition, 
from the perspective of nonlinear dynamic, the Poincare’ map with a 
huge number of points for the same angular orbit plane, shows a non 
periodic motion by a nonlinear as predicted by the KAM theorem, 
showing that is possible to investigate this nonlinear phenomena with 
other numerical and theoretical tools, even when classical interaction 
potentials are used.

Figure 6 Phase Space Diagram, associated with the variable x(t) one 
revolution of Mercury.

Figure 7 Schematic diagram to determine the precession effect at the planets 
orbits due to the relativistic correction of the orbits.

Figure 8 Determination of the precession angle φ as function of the number 
of revolutions n, for Mercury. The approximate value of (200) 43 ''φ ≈ quite 
agrees with the expected value predicted by general relativity 0.4.
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Figure 9 Determination of the Poincare Map for the Mercury trajectory over 
approximately 200 years. Under the position 0.42radθ ≈ .
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