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Abstract

In this article we have revisited the orbital calculations for a celestial mechanical system
using the relativistic Lagrangean formalism. The differential equations obtained through this
procedure, involving a perturbative expansion of the relativistic Lagrangean constituted on
an effective gravitational potential based on the classical gravitational potential, presented
good solutions for planetary orbits at our solar system. The validity of the trajectories
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obtained was carefully observed for Mercury, interacting only with the sun, a typical two

body problem. Its natural precession, predicted by general relativity, can be recovered with
the perturbed Lagrangean, and Mercury trajectory seems to be chaotic in the sense of KAM

theorem when we analyzed the Poincare Map in planet phase space.
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Introduction

The measurements studies associated with planetary orbits for our
solar system has been casted as main task for many scientists and
natural philosophers before Tycho Brahe and Johannes Kepler, but all
of them used a geometric description in their works. However, from
the XVII century, with the advent of Newtonian mechanical laws and
differential and integral calculus, it was established the unification of
geometry with the dynamical prescription, now known as celestial
mechanics.! Nowadays, the theory of special and general relativity
are used to describe with greater precision the planets motion and
cosmological entities. Motions that, in generally, given the nonlinear
features of the differential equations involved seems to present
chaotic behavior.>” The complexity of these systems, become more
evident when numerical techniques are used to solve the nonlinear
relativistic equations®’ that arises for example at studies of galaxies
dynamics; universe expansion; orbital precession; besides several
other phenomena in different scales. In this article we revisited the
Mercury perihelion issue. This problem is widely known and there are
some works regarding this subject,'®!! as observed by Peters'? in 1987
using only special relativity. In addition we take into account some
information’s about the chaotic aspect of the system beyond the use of
a Lagrangean formalism with a more simple mathematical approach
considering an effective gravitational potential based on the classical
gravitational potential, similar to the one proposed by Phipps'? inspire
that for simplicity we considered that the system center of mass is
coincident with the sun position.. In order to achieve this, our article
is organized as: a brief overview on the Newtonian (non relativistic)
problem, later we deal with the relativistic Lagrangean formulation
of the problem, presenting the perturbative Lagrangean obtained and
the correspondent motion equations that were numerically solved and
discussed from the chaotic point of view.

Newtonian and relativistic lagrangean formal-
ism

The Newtonian model for objects under the action of a central
potential has been known for centuries and can be found in
appropriate literature'*'> The fundamental equation that is used in
order to obtain orbits, and also for solving countless other problems
in physics, is Newton’s, well-known, second law ¥ F=dp/dt. The

solution of this equation under the influence of the gravitational
potential gives us the equation for r(@) (using polar coordinates
with the sun or the most massive object at the center of the reference
frame) and, consequently, Kepler’s 1st Law, the orbits law. We can
note this by observing that the equation ofr(8), which follows
below and is a solution for the newtonian motion equation in this
case, is an ellipse equation
2
GMm*
r(6)= 1+4cos(6-6,)°

Where A4,e,0 are integration constants, L is the object (planet)
conserved total angular momentum, G is the gravitational constant,
M is most massive object mass, and m is the other(smaller) mass.
This solution depends only on system constants, but we can
write them from the elliptical geometrical parameters, as well as,
eccentricity, semi major-axis and semi minor-axis. Thus, applying
NASA website planetary data of our solar system!® on equation (1)
and adjusting the respective parameters, the graphic in Figure 1 is
obtained. Einstein’s Special Relativity (SR), established since 1905,
shows that the orbits of the planets, which are very close to highly
massive objects, as our sun, cannot be described as perfect ellipses.
The success of the SR is detected by its application in various fields of
modern technology, such as in telecommunications, mobile devices,
supercomputers, the Internet, even in the great theories of elementary
particles, currently tested in the LHC-CERN. Einstein established that
the velocity of light in the vacuum ¢ =299.792.458m/s, is a limiting
speed of the universe, and nothing could travel with a velocity higher
than it, and no massive bodies can be accelerated to this value. In
order to carry out this information the Lorentz transformations of
coordinates must be used. At that configuration, the Lorentz factor,'”!3
plays an important role. We have considered a conservative system
where the relativistic Lagrangean associated with the classical
Newtonian potential is written as

1/2
2 v GMm
I— + .

(1)

L =—-mc
2 r

Here v is the module of its velocity. Here again the most massive
object is at rest, positioned at the system center of mass, and the other
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orbits around it. The proposed lagrangean implies on a correction to
the original classical Lagrangean in similar terms to the one developed
in perturbation theory.”? This type of derivation was previously
performed in details by Lemmon?' and D’Elisio® separately.
Considering the following change of variables

7 o )'c,i - E,a -
Ry R, mc?

GM R,
T =—
Ryc? ¢

Converting the original Lagrangean into

12
- . 1
L= —[l—rz(xzﬂczﬁzﬂ +a—

X

— 1
o D
T

_
nh o
T
1

y(A.U.)
S o©
T
| |

-1.0F —

‘E'U_| P PR B A R BT B |
-2.0-1.5-1.0-050.0 0.5 1.0 1.5 2.0
X (A.U))

2

=1.0and A

Figure | A typical elliptical planet orbit, for the case =
GMm’

=0.5.

Here, we assume that R =1A4.U. (Astronomical Unity-A.U.),
hence the equation (2) is partially dimensionless since 7is the

necessary time to the light to cover 1A.U. The normalized Lagrangean
with respect to the rest energy of the planet L= [I(x, g, x,0 was

proposed in order to have the associated Euler-Lagrange equations
where is possible to define the associated momentum with respect

of -
to the variable 8 asa—g = Pg . For the proposed analysis we have

setf’g =Lime =1/¢ , where! = L/ m Notice that, the angular
equation associated with the motion can be casted as

Hence,

. ~ (1—1255 ) 1
P P P e - (3)
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Now it is possible to determine the correspondent radial equation
associated with the planet motion as

1 xrz(l—)'czrz) 1—‘ P2 p? a(x212+[~3‘; )7/
X:T i + 6
I 72(x212+}3;) XJ(P;HZ)?) (}3;+r2x2)xr2 rix
Where
52 (1—1’2562)
y = [1-7%] i +P—‘97~
7’ [12x2+P92}
And

72 et ]392
The last procedure to convert the related equation into a pure
dimensionless form is to redefine t=t=7 , then
1d d° 1d .«
t=tf,—=——np—=—-—p -2
da tdt g2 P2gi2 ¢ 7
Now, the equations of motion can be written as

0~0.42rad

with
.2 2

2= (6)
7 xte P} 2

&)
o

The proposed differential equations are very similar to the first-
order orbit equations proposed by D’Eliseo?. In order to determine
the initial values of P _firstly, we must determine the correspondent
module of the angular momentum

L * 1
1= 2 op M o L
m a 4 '[Cz

where a is the semimajor-axis of the ellipse and b the semiminor-

2 %2
y= [I-| x"+F,

(7)

axis, given by b=aV1-g* , with & being the elongation of the ellipse.

The initial associated radial velocity X = 0 was determined as

1/2 -1/2
*2
PG

2, p*2
xX“+F,

2.2

2
VT F,

2 2, p*2
Ry x"+F,

the initial position r(0) was considered as the perihelion where the
velocity of the planet is maximum.

At the next section we shall determine some of the orbit trajectories
associated with Mercury.

Results

The motion equations integration was performed using numerical
techniques Runge Kutta Fehlberg (RKF-45)* with variable integration
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step. Given the nonlinearity of the obtained motion equations that are
quite different from the ones obtained in literature, for example, by the
first-order approximation method proposed by D’amour and Derelle.*
The precision requirement for the RKF45 were chosen as maximum
error 10~ per step, and maximum number of iterations of 10° per
step. The implementation and validation of the code produced was
performed with an accurate comparison between the results obtained
with similar nonlinear deferential equations solved by the function
ODE2 from the WxMaxima software.?> Considering the parameters
shown in Table 1 & Table 2 the motion equations were integrated
until the planet complete one revolution' (The integration starts at
angular position #(0) = 7z ). A typical result comparing the classical
and the relativistic approximation can be observed at Figure 2 and a
magnification of the radial difference at the trajectories is presented
in Figure 3. We have also determined the radial difference defined

OR(O) = Rdu ) - Rrel () between the classical Rda and relativistic

corrected trajectories Rre . This result is shown in Figure 4. The
difference between the two trajectories can be detected even for the
polar plot of the associated radial position x (t) and at the angular
position H(I) as depicted in Figure 5. Another graphic where is
possible to visualize the difference between the classical and the
relativistic correction at the trajectories is the Phase Space associated
with the variable x, this plot x x x can be seen in Figure 6. Notice that,
for a typical elliptic trajectory the curve at the phase space would be
approximately a circle that is completely different from the D-shaped
curve observed in Figure 6.
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Figure 2 Mercury orbit at Cartesian coordinates system, the red curve
represents the classical elliptical orbit, and the black curve represents the
orbit with the proposed relativistic correction.

Table | Fixed values used at the numerical simulations

Parameter Value (I.S.)

c 2.99792458 x 10%(m/s)

G 6.67384 x 10" (m’kg-1s?)

M 1.98855 x 10°%kg

R, IA.U.= 1.495978707 x 10"'m
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Table 2 Mercury Parameters

Parameter Value
m 3.3022 x 10%kg
a 5.790905 x 10'°m
e 0.20563
r(0) 4.6 x 10"m
v(0) 5.989 x 10%(m/s)
T 87.97days
Mercury orbit Amplification of Mereury Orbit

T 9 T
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— Elipse Classic

1 08 06 04 02 0 02
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Figure 3 Mercury orbit at cartesian coordinates system, the red curve
represents the classical elliptical orbit, and the black curve represents the
orbit with the proposed relativistic correction. It is shown a magnification
at the region near of angular position 377 /2, where the separation and
divergency between the two orbits are more visible.
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Figure 4 Determination of the radial difference between the classical and
the relativistic corrected trajectory, as a function of @ for one revolution of
Mercury.

The mercury precession

The precession of a planet occurs taking into account the center
of a reference frame, in this case the sun. Similar to the geometrical
procedure observed at Figure 7, after some timeT, given the
influence of pure relativistic influence, the planet may change the
plane of its trajectory realizing a certain precession, with respect to
the ¢ angle. To determine this precession angle, we get the perihelion
and the aphelion belonging to a line that contains the Sun, at the
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initial orbit (first revolution) and at the final orbit (last revolution) and
determine the relative inclination angle. For Mercury the angle ¢ as
a function of the revolutions can be observed at Figure 8, where after
400 revolutions are approximately $400 ~ 43", which is a very close
result when compared to the value predicted by general relativity.
Hence, we could say that the perturbation procedure here proposed
is a very good approximation to determine the influence of general
relativity using a more simple mathematical approach from the point
of view of theoretical physics. Considering the precession imposed by
the relativistic correction term, we can observe that Mercury’s orbit
is not intrinsic periodic, since the set of points associated with the
Poincare’ map - see Figure 9 - related to the variables (8, ) do not
have a finite dimension, on other words, in spite of the huge number
of revolutions computed, the object (Mercury) do not recover the
exactly same dynamical configuration. As predicted by the KAM
theorem,' it is a purely chaotic dynamical system, even for just one
interaction between the planet and the sun. These chaotic approaches
have not been discussed by other studies.!>!3?!22 Otherwise, as can
be observed, the present work gives rise for new investigations
from the perspective of stability and nonlinear phenomena. A more
precise approximation could be performed taking into account the
interaction between more than two bodies. For example, considering
the interactions with Saturn and Jupiter.
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Figure 5 Graphic x(#)x @(¢) for one revolution of Mercury. Here is
possible to observe the none asymptotic behavior the trajectories. The red
curve represents the classical trajectory and the black curve represents the
relativistic corrected trajectory.

Concluding remarks

The relativistic celestial dynamic correction proposed by an
effective relativistic Lagrangean, built with a proper classical
gravitational potential, can recover, with a good numerical accuracy,
the orbits obtained by general relativity, which calculations are quite
more complex to perform. Given the proximity of Mercury to the Sun,
the analysis of its perihelion precession through 100years achieved
good agreement with the experimental result ¢ = 43"s . In addition,
from the perspective of nonlinear dynamic, the Poincare’ map with a
huge number of points for the same angular orbit plane, shows a non
periodic motion by a nonlinear as predicted by the KAM theorem,
showing that is possible to investigate this nonlinear phenomena with
other numerical and theoretical tools, even when classical interaction
potentials are used.
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Figure 6 Phase Space Diagram, associated with the variable x(t) one
revolution of Mercury.
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Figure 7 Schematic diagram to determine the precession effect at the planets
orbits due to the relativistic correction of the orbits.
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Figure 8 Determination of the precession angle ¢ as function of the number
of revolutions n, for Mercury. The approximate value of ¢(200) = 43" quite
agrees with the expected value predicted by general relativity 0.4.
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Figure 9 Determination of the Poincare Map for the Mercury trajectory over
approximately 200 years. Under the position 8 ~ 0.42rad .
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