Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Image Article

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macrospectroscopy and Photothermal Macrospectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1–6) [1–109].

Figure 1a & b: Thermal Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Figure 2a & b: Photothermal Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.
Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Figure 3a & b: Thermal Microspectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Figure 4a & b: Photothermal Microspectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Figure 5a & b: Thermal Macrospectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Figure 6a & b: Photothermal Macrospectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Conclusion

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time.

Acknowledgment

Author declares no acknowledgment.

Conflict of Interest

Author declares no Conflict of interest.

References

18. Alireza Heidari (2016) Measurement the Amount of Vitamin D$_2$ (Ergocalciferol), Vitamin D$_3$ (Cholecalciferol) and Absorbable Calcium (Ca$^{2+}$), Iron (II), (Fe$^{2+}$), Magnesium (Mg$^{2+}$), Phosphate (PO$_4^{3-}$) and Zinc (Zn$^{2+}$) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biomol Res Ther 7: 292.
19. Alireza Heidari (2016) Spectroscopy and Quantum Mechanics of the Helium Dimer (He$_2$), Neon Dimer (Ne$_2$), Argon Dimer (Ar$_2$), Krypton Dimer (Kr$_2$), Xenon Dimer (Xe$_2$), Radon Dimer (Rn$_2$) and Ununoctium Dimer (Uuo$_2$) Molecular Gations. Chem Sci 7: 112.

27. Alireza Heidari (2016) Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis 1: 2.

51. Alireza Heidari (2016) Computational Study on Molecular Structures of C$_{24}$H$_{44}$C$_{6}$H$_{12}$N$_{4}$A$_{4}$, C$_{24}$H$_{44}$C$_{6}$H$_{12}$N$_{4}$A$_{4}$ and C$_{24}$H$_{44}$C$_{6}$H$_{12}$N$_{4}$A$_{4}$ Fulleren Nanomolecules under Synchrotron Radiations Using Fuzzy Logic. J Material SciEng 5: 282.

52. Alireza Heidari (2016) Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide Polyhexamethylene Biguanide Guze and Polyhexamethylene...
Biguanide Hydrochloride (PHMB), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs).

54. Alireza Heidari (2016) A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nanoparticles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT). Methods Insights in Biomied 1: 2.

Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

