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Introduction
During the last few decades, multi-component/dusty plasmas 

have received considerable attention from researchers due to their 
omnipresence in astrophysical, space and laboratory plasmas. For 
example, dusty plasmas occur in planetary atmospheres and rings1,2 
and comets;3 nearer Earth they occur in the Earth’s mesosphere4 and 
ionosphere5 and also in laboratory plasmas used for the formation of 
‘plasma crystals’6 and fusion devices.7 The addition of dust to plasmas 
increases their complexity due to the excitation of different eigen 
modes like Dust Acoustic Waves (DAWs),8 Dust Ion Acoustic Waves 
(DIAWs),9 Dust Lattice Waves (DLWs),10 etc.

In addition most plasma waves are not linear: hence a study 
of nonlinearity, along with dispersion and dissipation, becomes 
important in the investigations of different plasmas. Among nonlinear 
phenomena, solitons, shocks and double layers are widely seen in 
different space environments.11 Nonlinearity, along with dispersion, 
results in the formation of soliton structures with spectacular stability; 
a plasma supports shock waves if in addition, dissipative effects 
are also present. The KdVB (Korteweg-deVries-Burgers) equation 
supports shock waves, with dissipation occurring due to a variety 
of reasons like wave-particle interactions, turbulence, dust charge, 
streaming of ions, etc.

A cometary plasma is a true multi-ion plasma composed of species 
of both solar and cometary origin. Cometary activity begins when 
it is approaching the Sun: dissociation of water molecules liberates 
positively charged oxygen and hydrogen and associated photo-
electrons; this is in addition to hydrogen and electrons of solar origin.12 
Other ions observed in a cometary environment include He+, He2+

, 
H2

+, OH+, C+, H2O
+, H3O

+, CO+ and S+.13,14 Investigations have also 
revealed the presence of ions of mass >12amu;15 multiply charged ions 
like O3+ and O7+ and O8+ have been observed16,17 at comet McNaught-
Hartley by the spacecrafts Ulysses and Chandra respectively. Thus 
oxygen ions are an important component in the plasma composition 
of a comet.

In addition to positively charged ions, negatively charged ions 
have also been found in three extended mass peaks of 7-19, 22-65 and 
85-110amu with energies ranging from 0.03-3.0 keV by the Giotto 
space-craft at comet Halley. Thus it is now well established that 

positively and negatively charged ions coexist in different cometary 
environments.4,18‒20  

The presence of different types of inhomogeneities makes particle 
distributions deviate from equilibrium; hence one has to consider 
non-Maxwellian distributions. Vasyliunas21 first proposed such a 
distribution while analyzing solar wind data. This distribution is now 
known as a “kappa” distribution and many space and astrophysical 
plasmas are best described by this distribution.

The investigation of nonlinear waves in the presence of different 
drifting components present in plasmas gave a new dimension 
to nonlinear plasma wave research. Ghosh et al.,22 studied small 
amplitude dust acoustic solitons in a two component dusty plasma 
consisting of ions and drifting dust grains, applicable to the F-ring of 
Saturn. In another study, applicable to the F, G and E rings of Saturn, 
they investigated dust drift incorporating ion inertial effect along with 
dust charge variation. They concluded that there existed an instability 
due to free energy of drift motion of dust grains.23 In yet an another 
investigation, it was found that the drift velocity of the ions, along 
with electron inertia, significantly contributes to the formation of 
double layers and solitary structures in a plasma.24 Chattopadhyay25 
investigated the effect of ion temperature on ion acoustic solitary 
waves in a drifting negative plasma. In 2012, Tribeche et al.,26 studied 
the effect of drift of dust grains on arbitrary amplitude dust acoustic 
double layers in a warm dusty plasma with two temperature thermal 
ions and superthermal electrons. In a study related to ion acoustic 
double layers in magnetospheric and auroral plasmas, multi-drifting 
components were considered with nonthermal electrons.27

There are extensive studies on shock waves in the presence of 
kappa distributed electrons and ions.28‒33 In plasmas with super thermal 
electrons, it was found that spectral index changes the amplitude of 
the dust acoustic shock waves significantly.28 In an electron-positron-
ion (e-p-i) plasma, applicable to pulsar magnetospheres, the effect of 
plasma parameters on the strength and steepness of the shock structure 
was investigated, with electrons and protons being described by kappa 
distributions.29 In a plasma with a beam, it was noticed that both the 
amplitude and steepness of the ion-acoustic shock wave accrued, as 
the spectral index of the superthermal electrons and concentration of 
impinging  positron beam  were enhanced. This can also be applied 
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Abstract

We investigate the effect of the drift velocity of lighter ions on shock waves in an un-
magnetized multi-component plasma. Solar origin hot electrons and lighter ions, positively 
and negatively charged heavier ions and cometary origin colder electrons form the multi-
component plasma. Using the reductive perturbation technique, we have derived the KdVB 
(Korteweg-deVries-Burgers) equation and its shock wave solution is plotted for different 
plasma parameters relevant to comet Halley. We find that the strength of the shock profile 
decreases with increasing drift velocities of the lighter ions and kappa indices of the two 
components of electrons. On the other hand, the amplitude of the shock increases with 
increasing kinematic viscosities and densities of the lighter ions. Also, different coefficients 
of the KdVB equation are strongly affected by the drift velocities of the lighter ions.
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to laboratory beam plasma interaction experiments and space and 
astrophysical plasmas.30 In an investigation of dust acoustic shock 
waves in a strongly coupled un-magnetized dusty plasma with 
kappa described ions, it was found that, the coefficients of KdV-
Burger’s equation were significantly modified.31 Later, Kourakis et 
al.,32 discussed the role of superthermality on the characteristics of 
electrostatic plasma waves. In a numerical and analytical study of a 
plasma composed of inertial ions, kappa distributed electrons of two 
temperatures and negatively charged immobile dust grains, it was 
seen that the effect of superthermaility significantly modifies the basic 
features of dust ion acoustic shock waves.33

There are a number of observations showing the existence of 
nonlinear waves at different comets.34‒39 Cometary missions Giotto 
and Vega-1 found structures of sub and bow shocks at comet 
Halley.40 Kennel et al.,41 discussed different plasma waves in the 
shock interaction regions at comet Giacobini-Zinner. Also, recently 
nonlinear waves like solitons, etc were found at the same comet.42

Thus for reasons given above, we are interested in studying the 
effect of streaming lighter ions on shock waves in a five component 
plasma: a pair of oppositely charged heavier ions, streaming lighter 
ions and two components of electrons.

Basic equations
As mentioned above we are interested in studying the effect of 

streaming lighter ions on shock waves in five component plasma. The 
five components that compose our plasma are a pair of oppositely 
charged heavier ions, drifting lighter ions and two components of 
kappa described electrons.

The electrons of both solar and cometary origin are thus described 
as
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where ns and 0ns  are respectively the number and equilibrium 
values of densities of species ‘s’ (s = ce for cometary electrons and s 
= he for hot solar electrons), se is the charge, Bk is the Boltzmann’s 
constant, ,sT the temperature, ,ψ  the potential. Ks  is the spectral 
index of species ‘s’.

The fluid equation of continuity governs the dynamics of the 
plasma components and is given by
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The lighter ion (heavier ion (dust)) equations of motion are given 
below
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The above set is completed by the Poisson’s equation, given by
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The above equations (2)-(6) are made dimensionless as follows: 
the densities and speeds of the plasma species are, respectively, 
normalized by corresponding equilibrium values of densities 0sn
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,mi  1m  and 2m  and ,iz 1z  and 2z  are respectively the masses and 

charges of the lighter ions, negatively and positively charged heavier 
ions respectively. sT  and 1T  respectively represent the temperatures 
of the species ‘s’ and negatively charged heavier ions.

To derive the KdVB equation, we use the transformations:
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The different physical quantities in the equations (1-6) can be 
expressed asymptotically as a power series about their equilibrium 
values as:
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Using transformations (8) and equations (9-13) in equations (1-6) 
and equating different 

     		

		

(1)
(1) (1) (1)2 2
1 2,u uψ α β ψ

λ λ
−

= = 		         (14)

Equating terms of powers of ε and using (14) in Poisson’s 
equation, we get an expression for the phase velocity of the wave as:
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Equating terms of power 5/2ε and using (14), we get
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Equating 2ε terms from Poisson’s equation, taking the derivative and 
using equations (14-18), we arrive at the KdVB equation as
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Solution of KdVB equation

To find the solution to (19), we use the transformation ( )f Vχ ξ τ= −  
of the co-moving frame with speed V. A convenient method to 
solve the KdVB equation is the “tanh method”.43,44 Using boundary 

conditions 
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solution, we can write (19) as
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of the KdVB equation as 
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obtained from the boundary conditions.

Results
We have derived equations applicable to any multi-ion/dusty 

plasma environment; the figures, are, however, plotted using 
parameters relevant to comet Halley. The majority lighter ion density 

was set at 4.95cm-3 , and their temperature at 
             	

and solar 
electron temperature at12 52 10 .heT K= ×  The negatively charged 
heavier ions (oxygen) was detected at an peak energy of 1eV

with densities18 
31 .cm−≤  The negatively and positively charged 

heavier ion densities are therefore 3
1 0.05n cm−=  and 3

2 0.5n cm−=
respectively at a temperature12,18 41.16 10 .K×

Figure 1 depicts the effect of the drift velocities of the lighter ions 
on the shock profile. The parameters used for the figure are:

-3
0 4.95cm ,in = -3

10 0.05cm ,n = -3
20 0.5cm ,n = 42 10 ,ceT K= ×  

52 10 ,heT K= ×  
4

1 1.16 10 ,T K= × 1 2,z = 2 4,z =  
5

0 8 10 ,B G−= ×  

3ce heκ κ= = and 0 0.5.iη =  The upper plot (blue in color) depicts the 

shock profile without a drift velocity for the lighter ions, as discussed 
by Manesh et al.,45 the shock is produced by the effects of heavier 
positive and negative ions. The profile in the middle (green in color) is 
for a drift velocity of lighter ions 0 0.2u = and lower (red in color) is for

0 0.4.u =  From the plots it is seen that as drift velocities of the lighter 
ions increase, the amplitude of the shock profile decreases.

The shock profiles, for different kappa indices of both solar and 
cometary electrons, are depicted in Figure 2. The lower plot is for

3ce heκ κ= = for 0 0.3u =
 
(continuous blue line) and 0 0u = (blue dashed 

line); the middle plot is for 5ce heκ κ= = for 0 0.3u =  (continuous 
green line) and 0 0u = (green dashed line) while the upper plot is for 

10ce heκ κ= = for 0 0.3u = (continuous red line) and 0 0u =  (dashed red 
line). The other parameters are the same as in figure 1.We find that the 
strengths of the shock profiles decrease as the kappa values increase, 
irrespective of the drift velocities of the lighter ions. Lower values of 
kappa indices indicate the presence of more superthermal particles 
in the plasma; these superthermal particles thus support larger shock 
profiles. Also, as the plasma approaches a Maxwellian distribution, 
the effect of the drift velocity diminishes. In addition, the strength 
of the shock profile decreases for non-zero values of drift velocity as 
compared to the profile for a zero drift velocity of the lighter ions; in 
agreement with Figure 1.

Next, Figure 3 shows the variation of shock profiles in the plasma 
for different values of kinematic viscosity with drift velocity of 
lighter ions included 0( 0.1).u =  The upper curve (blue in color) is for 
kinematic viscosity 0 0.1,iη = the middle curve (green in color) is for 

0 0.3iη =  and the lower curve (red in color) is for 0 0.5.iη =  The other 
parameters are the same as in Figure 1. From the figure it is seen 
that the size of the shock profile increases with increasing values of 
kinematic viscosities of the lighter ions.

Figure 4 is a plot of shock profiles for different densities and 
drift velocities of the lighter ions. The upper plot (blue in color) is 
for 0 3,in = middle one (green in color) for 0 4in = and lower plot (red 
in color) is for 0 5in =  with drift velocities of lighter ions as 0 0.5u =   
and 0 0.1u =  (denoted respectively by continuous and dashed lines). 
The other parameters are the same as in figure 1. From the plots, it is 
evident that the amplitude of the shock profile increases as the density 
of lighter ions increases.

Figure 5 depicts values of coefficient A as a function of the 
drift velocities of the lighter ions. The other parameters for the plot 
remain the same as in Figure 1. From the plot, it is seen that value 
of coefficient increases exponentially as the drift velocity increases.

Finally, Figure 6 illustrates the values of the coefficient B as a 
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=
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function of the drift velocities of the lighter ions. The other parameters 
for the plot remain the same as in Figure 1. It is obvious from the plot 
that the variation of B, with the drift velocity of the lighter ions, is 
almost linear.

Figure 1 Plot of shock profiles for different drift velocities of the lighter ions.

Figure 2 Plot of shock profiles for different kappa indices with and without 

drift for the lighter ions.

Figure 3 Plot of Shock profiles for different values of kinematic viscosity 0iη
with a drift velocity 0( 0.1)u = of lighter ions.

Figure 4 Plot of shock profiles for different densities and drift velocities of 
lighter ions.

Figure 5 Plot of coefficient A for different drift velocities of lighter ions.

Figure 6 Plot of coefficient B for different drift velocities of lighter ions.

Figure 1 and Figure 2 given above reveal that the shock amplitudes 
decrease with increasing streaming velocities of the lighter ions. For 
the given plasma system some of the plasma instabilities, whose 
growth rates are a function of the streaming velocity, that can be 
excited are the two stream instability, the ion acoustic instability, etc. 
Thus the decrease in shock amplitude could be due to a diversion of the 
streaming energy to excite these instabilities. At this point it may be 
noted that the existence of both these waves were noticed in numerical 
simulation studies of shock dynamical behavior.46 A superthermal 
distribution tends to a Maxwellian distribution when the spectral index

,κ −>∞ thus damping the wave; a larger streaming velocity is now 
required to drive the instability. Hence the shock amplitude decreases 
when the spectral index .κ − > ∞  Such a decrease in the amplitude 
of the shock wave with spectral index was also found in a study of 
ion acoustic shock waves in a dissipative plasma with superthermal 
electrons and positrons.47 Figure 3 reveals that the amplitude of the 
shock wave increases with increasing lighter ion kinematic viscosity. 
This is due to the increased dissipation in the system and has been 
reported earlier in an electron-positron-ion plasma.48 Keeping the ion 
kinematic viscosity a constant and increasing the lighter ion density 
again increases the dissipation and hence explains the results of figure. 
Finally, the equations describing the system can be made applicable 
to any multi-ion environment where both polarities of heavier ions 
are present along with superthermal electrons and drift velocity of 
lighter ions.

Conclusion
The KdVB equation has been derived in an un-magnetized plasma 

composed of kappa function described electrons (of both cometary 
and solar origin), positively and negatively charged heavier ions and 
lighter ions with a streaming velocity. The shock profiles have been 
studied for various parameters like kinematic viscosities of the lighter 
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ions, drift velocities and kappa values. It is seen that the drift velocity 
has a strong influence on the shock wave: its amplitude decreases as 
the drift velocities of the lighter ions increases. Also, the amplitude of 
the shock profiles increases with a decrease in the kappa indices of the 
electrons and increases with an increase in the densities of the lighter 
ions. That is, increasing the number of superthermal electrons and 
lighter ions supports high amplitude shock waves in the plasma. In 
other words, increasing the number density of the dissipative plasma 
species increases the amplitude of the shock waves, irrespective of 
their polarity. Also, different coefficients of the KdVB equation are 
strongly affected by the drift velocities of the lighter ions.
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