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Introduction
In the context of an active topical research in laser-related 

physics,1‒5 the problem of charge emission from bound-states under 
the action of the electromagnetic radiation is receiving an increasing 
interest. Some investigations focus especially on the effect the optical-
laser radiation may have on the spontaneous alpha-particle decay 
of the atomic nuclei,6‒11 or nuclear proton emission,12,13 but the area 
may be extended to atom ionization or molecular or atomic clusters 
fragmentation.14‒17 The aim of the present paper is to estimate the effect 
of the adiabatically-applied electromagnetic radiation upon the rate of 
spontaneous nuclear alpha decay and proton emission. Specifically, the 
paper is motivated by the interest in computing the rate of tunneling 
through a Coulomb potential barrier in the presence of electric fields. 
It is claimed that the rate of alpha decay is practically not affected by 
electric fields,8 or it is greatly enhanced by strong electric fields.18 On the 
other side, the atomic electron cloud may screen appreciably the external 
electric fields, such that the atomic nucleus may experience, in fact, 
rather low electric fields. It is this point, related to low electric fields, 
which may raise technical difficulties in estimating the small effect of 
these external fields upon the alpha decay.

We adopt a nuclear model with Z protons and A − Z neutrons, where 
A is the mass number of the nucleus, moving in the nuclear mean field. 
The experiments proceed usually by placing a collection of heavy atoms 
in the focal region of a laser beam, and focusing radiation pulses upon 
that collection of atoms. We consider an optical-laser radiation with a 
typical frequency ω  of the order 1015s−1 (corresponding to a period 

15T 10 s−
 and a wavelength 0.8 mλ µ ). We assume that the motion 

of the charges under the action of the electromagnetic radiation remains 
non-relativistic, i.e. 2

0
qA /mc <<1, where q is the particle charge, m is 

the particle mass and A0 is the amplitude of the vector potential (c 
denotes the speed of light in vacuum). For protons in atomic nuclei 

10 24 10(q=4.8 10 , 2 10 , 3 10 / )esu m g c cm s− −× × = ×  this condition 
yields a very high electric field 13

0
 3 10 /E V cm= ×  (1011 electro-

static units), which corresponds to a maximum intensity of the laser beam 
in the focal region of the order 2 24 2

0
I=cE /8  = 10 w/cm .π  Typically, 

the duration of the laser pulse is of the order of tens of radiation period 
(or longer), such that we may consider the action of the electromagnetic 
radiation much longer than the period of the radiation. The repetition rate 
of the laser pulses is usually much longer than the pulse duration. For 

simplification we consider linearly-polarized radiation plane waves; 
the calculations can be extended to a general polarization. The laser-
beam shape or multi-mode operation has little relevance upon the results 
presented here.

The electric fields are appreciably screened by the electronic 
cloud of the heavy atoms. The screening effects on the thermonuclear 
reactions, alpha decay and lifetimes have been considered 
previously.10,11,19,20 A convenient means of treating the electron cloud 
in heavy atoms is the linearized Thomas-Fermi model.21 According to 
this model, the radial electron distribution is concentrated at distance 

1/3 = /ZHR a  (screening distance), where 2 2 = /mHa q  is the Bohr 

radius and Z is the atomic number (Z ≫ 1); q and m denote the 
electron charge and mass, respectively. The atomic binding energy 
depends on R, and the atom exhibits an eigenmode related to 
the change in R (a breathing-type mode), with an eigenfrequency  

16 13
0 0

/ 4.5 10 ( 28 ( )).HZ q ma Z s Z eVω ω−×  
 

We 

recognize in 
0

ω  the plasma frequency 
24 /nq mπ  of a mean 

electron density 3 2 3

H
Z/R  = Z /a .n 

 
It corresponds to the atomic 

giant-dipole oscillations discussed in Ref.21 In the presence of an 
external electric field E oriented along the z-direction the electrons are 
displaced by u(with fixed nucleus), a displacement which produces 
an energy change 2 2 2/ .z u R  By integrating over z, we get a factor 
1 / 3  in the eigenfrequency

0
ω  , as expected. It follows that the 

displacement u obeys the equation of motion 2 / ,u u qE m+ Ω =

where 
0

/ 3;ωΩ =
 
the internal field is 

i
E  = -4 nquπ (polarization

P=nqu and the dipole moment p=Zqu). For 
0

E=E sin tω
 
the solution 

of this equation is 2 2

0 0 0
sin , ( / ) / ( ),u u t u qE mω ω= = − − Ω and the 

internal field is 2 2 2/ ( );
i

E E ω= Ω − Ω the total electric field acting 

upon the atomic nucleus is

		

2

02 2
sin ;

i
F E E E t

ω
ω

ω
= + =

−Ω
 	        (1)

since ,ω << Ω we may use the approximation 
2 2 3 2( / ) 10 /F E Zω −− Ω −  (where 15 1=10 sω − ); we can see that 

the total field acting upon the nucleus is appreciably reduced by the 
electron screening. For Z = 50 this reduction factor is 74 10 ;−× the 
maximum field 3 × 1013V /cm is reduced to 107V /cm ( 410 electrostatic 
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units). It follows that we may limit ourselves here to low fields acting 
upon the atomic nuclei. The cases of strong fields have been analyzed 
in Refs.8,9,18,22,23 At the same time, an induced electric field generated by 
the dipolar eigenmodes occurs inside the atom, which oscillates with the 
higher eigenfrequency .Ω

If the field is low, the bound-state charge oscillates, emits higher-
order harmonics of electromagnetic radiation and tunneling may 
appear; in this latter case, the charge accommodates itself in the 
field, in a long time, which amounts to an adiabatically-introduced 
interaction; this regime allows the usual, standard application of the 
tunneling approach. As we shall see below, the threshold field which 
separates the two regimes (low-field regime from high-field regime) 

can be obtained from 2

0
/ 1,q E m aω =  where a is a distance of the 

order of the bound-state dimension (a = 10−13cm) (for protons, the 

threshold field is 5

0
10 /E V cm (102 electrostatic units)).

Originally, the charge emission from bound states, like atom 
ionization, has been treated by using adiabatic hypothesis, either by 
time-dependent perturbation theory, or by imaginary-time tunneling, 
or other equivalent approaches.24‒32 Quasi-classical tunneling through the 
potential barrier generated by the field has been applied in classical works 
to static fields and the hydrogen atom (in parabollic coordinates).33‒35 For 
alpha-particle decay or proton emission the situation is different. First, 
in spontaneous decay, the alpha particle (and, in general, the ejected 
charge) is preformed and, second, the tunneling through the Coulomb 
potential barrier must be included.36‒40 We analyze below the spontaneous 
charge emission, affected by the presence of an adiabatically-introduced 
electromagnetic radiation, in the presence of a Coulomb barrier; the 
problem may exhibit relevance for studies of alpha-particle decay or 
proton emission.

The standard model of spontaneous alpha decay is based on 
Bohr’s concept of compound nuclei.41 In an alpha-unstable nucleus the 
pre-formed alpha particle acquires a kinetic energy and penetrates 
(tunnels through) the Coulomb potential barrier. Consequently, 
the alpha-unstable nucleus is in fact in a “metastable state”. In this 
simple model, the spontaneous alpha-particle decay and proton 
emission proceed by tunneling through the Coulomb potential barrier, 
as a result of many “attempts” the charge makes to penetrate the barrier. 
The (high) frequency of this process is of the order 1/ta, where ta 
corresponds, approximately, to the energy level spacing; in atomic 
nuclei this spacing, for the relevant energy levels, is of the order 

200 ,keVε∆ = which gives41 213 10 ;
a

t s−× also, the broadening of 
the charge energy levels introduces an energy uncertainty (we leave 
aside the so-called tunneling through the internal potential barrier and 
the pre-formation factor of the alpha particle). The order of magnitude 
of the energy of the charge is a few M eV , which ensures a quasi-
classical tunneling. The effect of the electromagnetic radiation upon 
the initial preparation of the charge for tunneling may be neglected. 
Similarly, we consider a sufficiently low electromagnetic radiation, 
such that we may neglect its effects upon the mean-field potential. We 
limit ourselves to the effect of the electromagnetic interaction on the 
tunneling rate.

Let us consider a charge q >0 with mass m in the potential barrier 
V(r) in the presence of an electromagnetic radiation with the vector 
potential  cos( t - ),ω0A = A kr  where 0A  is the amplitude of the 
vector potential,  ω  is the radiation frequency and k is the radiation 

wavevector ( );ckω =  the electromagnetic field is transverse, i.e. kA 
= 0. Since the phase velocity of the non-relativistic charge is much 
smaller than the speed of light c in vacuum, we may neglect the spatial 
phase kr in comparison with the temporal phase ;tω consequently, 
the vector potential may be approximated by  cos t.ω0A A  This 
approximation amounts to neglecting the effects of the magnetic field. 
It is assumed that this potential is introduced adiabatically. The charge 
is immersed in the radiation field, such that we may start with the 
standard non-relativistic hamiltonian

		
  21 ( ) ( ),

2
qH V

m c
= − +p A r  		      (2)

where the momentum p includes the electromagnetic momentum 
qA/c beside the mechanical momentum mv, where v is the velocity of the 
particle. We consider the Schrodinger equation

		
 ;i H

t
ψ

ψ
∂

=
∂


			      

 (3)

since the interaction is time-dependent we need the time evolution 
of the wavefunction. Consequently, in equation(3) we perform the 
well-known Kramers-Henneberger transform42‒45 (with a vanishing 
electromagnetic interaction for t → −∞)

		
iSe ,ψ ϕ=

 	
2 2

0
2

sin (2 sin 2 );
8

q q AS t t t
mc mc

ω ω ω
ω ω

= − +0A p
 

    	    (4)

the Schrodinger equation becomes

	
21i ( ) ,

2
p V

t m
ϕ ϕ ϕ∂
= +

∂
r

 	 ( ) ( ) ( sin / );is isV e V e V q t mcω ω−= = − 0r r r A 	     (5)

it is convenient to introduce the electric field 
sin , / ;t cω ω= =0 0 0E E E A   we get

	       

2 2
0

2 2
sin (2 sin 2 )

8

q q AS t t t
m mc

ω ω ω
ω ω

= − +0E p
       

(6)

and           2( ) ( / ).V V q mω= −r r E                                 (7)

We can see that for high-intensity fields the potential (including 
the mean- field potential) is rapidly vanishing along the field direction. 
Here we assume that the field intensity is low; specifically we assume 

2
0q / ,E m aω <<  where a is the dimension of the region the charge 

moves in (the atomic nucleus); for protons this inequality means 
4

0E 3 10 /V cm<< ×  (102 electrostatic units), as stated above. The 

preformed alpha particle (or emitted proton) may tunnel through 
the potential barrier given by equation (7); the “attempt” frequency 
to penetrate the barrier and the energy uncertainty are practically not 
affected by the low-intensity field.

We adopt a model of nuclear decay by assuming a Coulumb 
potential barrier ( ) 2 /V r Zq r (with the center-of-mass of the 
original nucleus placed at the origin); in the absence of the field the 
tunneling proceeds from r1 = a to 2

2  / ,rr Zq ε=  where rε is the radial 
energy of the charge; it is convenient to introduce the parameter 

2
0 = qE /m a<<1,ξ ω  which includes the effect of the field. In the 

presence of the field these limits become

	   	         
2

1 | / |r q mω= −a E 	                 (8)
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and 2 2 ,r r=  where   / .a r=a r  We expand 1r  in powers of ξ  and 
get

        
2 2 2

1
1(1 sin t .cos sin .sin ) ... ,
2

r a tξ ω θ ξ ω θ= − + +              (9)

where θ is the angle the radius vector r makes with the electric 
field 0E .

To continue, we assume that the free charge attempting to penetrate 
the potential barrier has momentum np  and kinetic energy 2 /2 ,n np mε =
where n is a generic notation for its state; we may leave aside the orbital 
motion and denote by rnp  the radial momentum and by rnε  the radial 
energy. Let rp  and 2 /2p mε = be the highest radial momentum and, 
respectively, the highest radial energy; they correspond to the total 
momentum p and, respectively, total energy 2 /2p mε =  (in general, a 
degeneration may exist). This charge may tunnel through the potential 
barrier V(r) from 1r to 2.r  The relevant factors in the wave function ψ
given by equation (4) are

		

2( )
cos .( ) . ( )2 12

1

riqE t i
p p dr p rr

m re

θ
ω

− + ∫





		           (10)

Where 1,2 1 1,2( ) 2 [ ( )], ( ,2) 2 [ ( )];r rp r m V r p p r m V rε ε= − = = −   
it is easy to see that p2 = 0. It follows that the tunneling probability 
(transmission coefficient) is given by e ,w γ−=  where

		  sin . cos ,A t Bγ ξ ω θ= − +  

	      

2
0
2

1

2 | | 21 , , | ( )|r

ra p qE
A B dr p r

m a r
ξ

ω
= = = ∫





 
 	          (11)

and 1 1| | 2 [ ( ) ] , | ( )| 2 [ ( ) ]rp m V r p r m V rε ε= − = −  (the condition 
1( )V r ε> ensures the existence of the bound state). We expand the 

coefficient A in powers of ξ and take the average with respect to time; 
we get

	          

2
2 2

2

2 cos ...;
2 /

Zq m B
Zq a

γ ξ θ
ε

=− +
−

 	           (12)

the same procedure applied to the coefficient B leads to

2 2
2 2 2

0 2

22 ( / ) (3 /2 )cos ,
2 2 /

a a mB m Zq a Zq a
Zq a

ξ ξγ ε ε θ
ε

= − − + −
− 

 		
						                  (13)

where 0γ  corresponds to the absence of the radiation; finally, we 
get

	

2 2
2 2

0 2

/22 ( / ) 1 cos
2 /

a Zq am Zq a
Zq a

ξ εγ γ ε θ
ε

 − = − − −
 − 

           (14)

We can see that the effect of the radiation is to increase the rate of 
charge emission by a factor proportional to the square of the electric 
field 2( )ξ and to introduce a slight anisotropy. It is worth noting that 
the radiation field contributes not only to the tunneling factor, as 
expressed by the coefficient B, but it is present also in the coefficient 
A, via the time-dependence of the wave function provided by the 
Kramers-Henneberger transform.

We can define a total disintegration probability

	

2 2
2 0

2

/21 2 ( / ) 1
2 3( / )

tot tot
a Zq aw m Zq a w

Zq a

ξ εε
ε

  −  + − − 
 −   




       (15)

by integrating over angle θ, where 0 0
totw e γ−=  The disintegration 

rate per unit time is (1/ ) w ,totτ where τ  is related to the time ta 
estimated above and the time introduced by the energy uncertainty.41 

The exponent 0 ,γ  corresponding to the absence of the radiation, is

2
2 2 2

0 2 / arccos / / 1 / ;Zq m a Zq a Zq a Zqγ ε ε ε ε = − − 
    

  (16)

since 2 /Zq a ε>>  (for protons q2/a = 2.5M eV ) , we may use the 
approximate formulae

		

2

0 2 /
2
Zq mπγ ε


 			            (17)

and 
2

2 051 2 /
12tot tot
aw mZq a wξ 

 +
 
 



 		           (18) 

As it is well know the interplay between the very large values of 
1/τ and the very small values of 0 ,e γ− makes the disintegration rate to 
be very sensitive to the energy values, and to vary over a wide range.41 
The result can be cast in the form of the Geiger-Nuttall law, which, in the 

absence of the radiation, can be written as 0
0 0ln( / ) / ,totw a Z bτ ε=− +

0a and 0b being well-known constants;41 the only effect of the radiation 

is to modify the constant 0b into 2 2
0b (5 /12 ) 2 / .b a mZq aξ= +   The 

correction to 0b can 2 2 2 2 1/2(5 /12)[(Zq / )/( /2 )]a maξ  also be written 

as for 1.ξ<< The maximum value of this correction is of the order of 
the unity; it follows that the decay rate is enhanced by the radiation by 
a factor of the order 2 1.ξ <<

After the emission of the charge, the mean-field potential suffers 
a reconfiguration (re-arrangement) process and the potential V(r) is 
modified; this is the well-known process of “core shake-up” (or “core 
excitation”); a new bound state is formed and a new transformation 
process may begin for the modified potential V(r). The tunneling 
probability w given above is a transmission coefficient (we can 
check that w<1); with probability 1-w the charge is reflected from the 
potential barrier; in these conditions the bound state is “shaken-up” 
and the charge resumes its motion, or its pre-formation process, until 
it tunnels, or is rescattered back to the core; the latter is the well-
known recollision process.8,46‒50

The case of a static field requires a special discussion. Within 
the present formalism a static electric field E can be obtained from 
a vector potential ;c t= −A E  the position vector in the mean-field 
potential is shifted to ,→ +r r ζ  where 2 ;q m/2t= Eζ  the special 
discussion is necessary because the parameter ζ  is unbounded in 
time. The distance a is covered in time 0t 2 / ;ma qE= for proton, 
a is of the order a = 10−13cm and the threshold field is E=E0=3×104 
V/cm (102 electrostatic units) given above; we get 15

0t 10 .s−
  This 

is a very long duration, in comparison with the relevant nuclear 
times, in particular the attempt time τ ( 21t 10a s−

 estimated above). 
In general, the condition of adiabatic interaction reads 0 / ,t ε<< ∆

where ε∆ is the mean separation of the energy levels; it implies 
2 2 2( ) /( / ),qEa maε<< ∆  which allows for high static fields. In these 

conditions the protons accommodate themselves to the electric field, 
which is absorbed into slightly modified energy levels; this change, 
which can be estimated by perturbation theory, is irrelevant for 
our discussion, since the field strength is small. However, it has an 
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important consequence in that the electric field, once taken in the 
energy levels, is not available anymore for the Kramers-Henneberger 
transform given by equation (4); therefore, the present time-dependent 
formalism cannot be applied. Instead of using the hamiltonian given 
by equation (2), we start with the (equivalent) dipole hamiltonian 
which includes the interaction term .q− Er  Consequently, the 
potential barrier ( ) 2 /V r Zq r  is changed into

	     

  ( )
2 2 2

1 cos .r Erq
r

Zq Zq
r

V
Zq

θ
 
 = − = − 
 

Er            (19)

We compute the tunneling rate by using this potential barrier. In 
view of the small value of the correction parameter proportional to E 

in equation (19), we may expand the momentum ( )  2rp m V rε= −  
in powers of this parameter and replace the powers of r2 by their mean 

values over the tunneling range from r1=a to 2
2 / ;r Zq ε= since r2≫a, 

we get the small parameter 2
2 2/ / 1Er Zq Eqrα ε= <<=  in equation (19). 

For Z=100 and 1MeVε = this parameter is 410 ,Eα −= which is much 
smaller than unity for any usual static field. Integrating over angles 
and assuming 0 1,αγ << where 0γ  is given by equation (17), we get 
finally

		

2 2
001 .

108tot totw wα γ 
 +
 
 
  		         (20)

We can see that the correction brought by a static electric field to 
the decay rate is extremely small, as expected.

Finally, it is worth discussing the case of intermediate fields, i.e. 
field strengths which satisfy the inequality 2

0 / ( 1)qE m aω ξ> >  (in our 
case, fields from 3×104 V/cm to 107 V/cm).51 In this case the adiabatic 
hypothesis cannot be used anymore, and the initial conditions 
for introducing the interaction are important. The corresponding 
Kramers-Henneberger transform diminishes appreciably the potential 
barrier and the charge is set free in a short time, which is the reciprocal 
of the decay rate; this rate may exhibit oscillations as a function of the 
field strength.

Conclusion
We may say that in low-intensity electromagnetic radiation the 

bound-states charges accommodate themselves in the field, which 
amounts to an adiabatically-introduced interaction, as it is well 
known. In these conditions, besides oscillating and emitting higher 
harmonics, the charge may tunnel out from the bound state. This is 
the standard ionization process, which was widely investigated for 
atom ionization. In spontaneous alpha decay or proton emission 
the situation is different, because of the preformation stage and the 
tunneling through the Coulomb potential barrier. We have analyzed 
above the disintegration rate for the charge emission from atomic 
nuclei in the case of the adiabatic introduction of electromagnetic 
interaction, with application to nuclear alpha-particle decay and 
proton emission. Under these circumstances, it has been shown in this 
paper that the tunneling rate (through Coulomb potential) is slightly 
enhanced by the presence of the radiation, by corrections whose 
leading contributions are of second-order in the electric field, with a 
slight anisotropy. Similar results are presented in this paper for static 
fields.
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