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Introduction
Anion binding is a key process in many biological and chemical 

processes and the design of synthetic molecular receptors which 
bind specifically to anions is an area of current importance.1–4 
There are numerous reasons to heighten up this interest. One of the 
open challenge for modern chemist in anion recognition chemistry 
is selective recognition of anions. In this course, many synthetic 
receptors have been developed owing to the coordination ability of 
the appended substituents. However, the development of anionic 
receptor is comparatively slow than cationic receptor due to the 
exceptional properties of anions.5 These include, delocalised nature 
of negative charge over atoms, larger size, diverse geometry of anions 
(spherical, linear, tetrahedral or octahedral), pH dependence and 
salvation.6 Release of anion through various commercial applications 
viz. nucleophiles, bases, catalysts, redox reagents can pose unwanted 
environmental toxicities.6 Hence, entrapment of anions through 
receptors is pivotal that enables the separation using the coordination 
mechanism. Intriguingly, anions are also essential for the biological 
relevant metabolic functions therefore molecules that mimicks the 
anion binding are therapeutically pertinent for treating cystic fibrosis, 
cancer and Alzheimer’s diseases.7 There is, therefore, intense effort 
being devoted to the problem of anion complexation and recognition 
using macro cyclic receptors based on calixarenes, cyclophane, 
steroid, pyrroles, and other charged and non-charged macro cyclic 
receptors are reported so far.8–10

Calixarenes are the macro cyclic architectures with upper/lower 
rim and a characteristic central cavity.11–14 Calix[n]arenes was found 
as easy to make anion binding agents due to adoption of range of 
conformations and capability of being functionalized at both upper 
and lower rim.15 The main feature of this new macro cycle is its 
ability to bind selectively with various anions, cation and neutral 
analytes (Figure 1). Among calix architectures, there have been 
many theoretical and experimental studies on calixpyrrole.16–18 The 
binding to anions can be achieved through protonated N-containing 
macro cycles. Owing to partially filled with NH protons, Hexacyclen 
(Nitrogen analogy of crown ether) or azacorand type macro cycle 

cavity selectively able to bind with the anions.19 Moreover, the 
appended amide and urea substituent’s have engendered significant 
anion binding properties to the calixarenes. For instance, montecarlo 
simulations on 1,3-difunctionalised bis (urea)calix4 arenes with 
long flexible butyl spacers displayed that fluoride binds with the 
greatest affinity in the centroid of the cleft formed by NH bonds.20 
Subsequently, Liu, synthesized neutral anion receptors optimizing 
the suitable distance between the binding site, which demonstrate 
selectivity against dicarboxylate anions.21 It was further articulated 
that increased acidity of NH protons in urea (pKa=26.9) and thioarea 
(pKa=21.0) was responsible for the enhanced complexation ability of 
such receptors.22 

Figure 1 Anion binding diversity of calixarenes.

Anion binding receptor requirement
In contrast to cations, anions are relatively larger in size therefore 

require receptors of considerably greater size than cations (Table 1). 
This size match between anion and host cavity for complementarity 
and topology selectivity is crucial. Prevailing interactions which takes 
place in anion binding are: hydrogen bonding, ion-dipole, ion-ion and 
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van der Waals interactions. Moreover, anions have high free energies 
of solvation and hence they can compete more effectively with the 
medium. The anion binding specificity arises from the preorganized 
placement of complementary binding sites. As such, the various 
anionic acceptors have been exercised.

Table 1 Size of the anion that corresponds to the size of the calix binding site

Anion Diameter (Å)

Na- 4.4

F- 2.66

Cl- 3.62

Br- 3.9

I- 4.32

Binding interaction types
In particular, many anions have diverse geometries that offer 

a possible route to the development of shape-selective anion 
receptors. Although, the non-covalent interactions involved in anion 
coordination are hydrogen bonds, electrostatic interactions, metal 
coordination, Anion- pi interactions and Lewis acid interactions, 
hydrophobicity and combination of these forces.8 Organic based 
receptors have been developed which rely solely on hydrogen 
bond donors such as amides.23 Typically, the indispensable binding 
interactions can be classical non-covalent ranging from H-bonding 
to cation-π,24 π- π stacking25 or anion- π.26 However, its definition is 
also extended to interactions involving aromatic moieties,27 weak C-H 
hydrogen bonds28,29 or interactions between halogen atoms and lewis 
bases.30–33 The lewis acid-base type of interaction also termed as σ- 
hole bonds represent an important and emerging class of non-covalent 
bonding. Loss of electronic charge at the covalent bonds results the 
generation of positive electrostatic potential which thereby act as 
lewis acid centre.34,35 However, halogen,36 pnictogen37 or chalcogen38 
are the most widely used lewis base centres forming the σ- hole bonds. 
More recently, σ-hole bonds have been recognized and described as 
pivotal to generate new family of anion receptors that can be selective 
especially for spherical and linear anions.39,40

Calixarenes derivatives as anionic host
Unmodified calixarene frameworks show no affinity for anionic 

guests, functionalized calixarenes have been shown to be capable of 
binding anions.41–43 Calixarenes and their derivatives interact via these 
non-covalent interactions with certain anions like phosphate, cyanide, 
chloride, fluoride, etc. and find applications in material chemistry.44–48 
Some instances of previous works are, Gale reported the synthesis 
of fluorescent anthracene- calyx4 pyrrole conjugates which can detect 
the presence of anions like (e.g. F-, Cl-, H2PO4

-) through quenching of 
their fluorescence.49 Anion-binding properties of a new calix[4]pyrrole 
with flexiblecatechol-derived diether strap on one side was reported 
by Samanta. which showed different preferences of binding towards 
dihydrogenphosphate, acetate ions and fluoride ions.50 The extraction 
of dichromate anions were reported by Yilmaz. using new calixarene 
based extractantsynthesizedfrom from 5,11,17,23-tetra-tert-butyl-
25,27-bis(chlorocarbonyl-methoxy)-26,28-dihydroxycalix[4]

arene by treatmentwith isoniazid in the presence of pyridine.51 
Another synthetic receptors for monocharged anions using new 
p-tert-butylthiacalix4 arenes linked with phenylurea fragments was 
reported by Stoikov et al.52 The compound, phenylurea-equipped 
p-tert-butylthiacalix [4]arenes was found to show interactions with 
for fluoride, acetate or dihydrogenphosphate anions depending on 
the conformation of the macro cycle (cone, 1,3-alternate) and the 
number of substituents. Chromogenic anion recognition abilities in 
case of fluoride, acetate and dihydrogenphosphate ions was reported 
by Kumar et al.53 by anion complexation induced σ-extended 
conjugation in iminoazophenol appended calix[4]arene/thiacalix4 
arene derivatives.

Conclusion
To sum up, the use of various calixarenes framework have 

opened a broader gateway for researchers working in the field of 
anion sensing applications. Non-covalent coordination of calix based 
compounds has received immense attention realizing its inherent 
properties exemplified by the hydrophobic nature of the cavity. A 
better understanding of calix-anion complexation using theoretical 
repositories based on computational work offers a rationalized 
perceptiveness to the current subject. Thus, the promises that 
calixarenes heralds in the field of anion binding is a destined area with 
respect to contemporary chemistry.
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