Submit manuscript...
MOJ
eISSN: 2574-9773

Polymer Science

Review Article Volume 1 Issue 6

Performance of sagnac interferometer with loops made of PCF and PANDA fibers

Faramarz E Seraji,1 Fatemeh Pazooki2

1Optical communication Group, Iran Telecom Research Center, Iran
2Physics Group, Islamic Azad Univ, North Branch, Iran

Correspondence: Faramarz E Seraji, Optical communication Group, Iran Telecom Research Center, Tehran, Iran

Received: November 20, 2017 | Published: December 13, 2017

Citation: Seraji FE, Pazooki F. Performance of sagnac interferometer with loops made of PCF and PANDA fibers. MOJ Poly Sci. 2017;1(6):205-208. DOI: 10.15406/mojps.2017.01.00034

Download PDF

Abstract

The parametric effects on performance of the Sagnac interferometer with loop (SLI) made of high-birefringence photonic crystal fiber (HB-PCF) and polarization-maintaining and absorption reducing (PANADA) fibers are simulated and analyzed accordingly in this paper where transmission spectra and the variations of free spectral range are studied under different conditions. The obtained results from calculations and comparisons of the curves loop fiber made of standard polarization-maintaining fiber and high-birefringence photonic crystal fibers revealed that the distance between fringes (DBF) of the SLI would reduce by increasing loop length. This reducing trend in case of HB-PCF has steeper slope. The DBF for two fibers HB-PCF and PANDA with shorter loop lengths would increase.

This study reveals that by using high-birefringence PCF, one can optimize the loop length with minimum distance between fringes in the Sagnac loop interferometer. The obtained results provide a required condition for fabrication of SLI-based devices, such as optical sensors, with a small packaging size.

Keywords: sagnac interferometer, loop length, HB-PCF, PANDA fiber, free spectral range, performance

Abbreviations

HB-PCF, high-birefringence photonic crystal fiber; DBF, distance between fringes; SLI, sagnac loop as a interferometer; WDM, wavelength division multiplexing; PCFs, photonic crystal fibers; FSR, free spectral range

Introduction

Optical fiber Sagnac loop as a interferometer (SLI), is a useful component utilized in devices and systems of optical technology.1,2 As of today, several components based on SLI, have been designed for applications of wavelength division multiplexing (WDM) filters and optical sensors, using conventional and photonic crystal fibers.3-6 In an SLI, two interfering waves in an optical fiber loop counter-propagate in a similar path. Usually, a standard optical fiber Sagnac loop made of a birefringent fiber in a comparison to Mach-Zehnder interferometer has several advantages, such as insensitivity to temperature, high extinction ratio, and independent to input polarization of light waves.7

Amongst various features of photonic crystal fibers (PCFs), one of the characteristics is their capability of producing high birefringence by merely changing the core and rearranging the geometry of the air-holes placed along the cladding region. It is possible to obtain a birefringence as high as 10-4, which is twice the value in standard single-mode fibers.8 In polarization-maintaining fibers, such as Polarization-maintaining and absorption reducing PANDA fibers, elliptical core fiber, and bow-tie fibers, that have at least two regions of different material with different thermal expansion coefficients in the core region, the polarization of propagating wave changes when the environmental temperature varies with time.9 On the contrary, the birefringence of PCFs is insensitive to thermal changes, because it is made of a single material.

In this paper, the parametric effects on performance of the Sagnac interferometer with loop made of high-birefringence-PCF (HB-PCF) and PANDA fibers are simulated and analyzed accordingly, where transmission spectra and the variations of free spectral range (FSR) are studied under different conditions.

SLI with PCF loop

A schematic diagram of a SLI is shown in Figure 1 in which the loop is made of an HB-PCF10 or PANDA fiber by connecting two output ports of a directional coupler with a coupling coefficient of K=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaca WFlbGaa8xpaiaa=bdacaWFUaGaa8xnaaaa@3A0E@ .11 The input light to arm 1 of the 3-dB directional coupler is divided into two equal intensity counter-propagating waves, entering the loop from port 3 and 4. The coupled light to the loop faces a phase delay of π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGIap Gaai4laiaaikdaaaa@3944@ , thus the intensity of the transmitted light to the arm 2 will equal to the summation of two fields with equal amplitudes, one in clockwise with an optional phase of φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOXda aa@37CF@  and the other field in anti-clockwise with a relative phase of (φ-π) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aakA8acaGITaGaaOiWdiaacMcaaaa@3B30@ . As a consequence, the transmitted field intensity will become zero and the input light maintaining all the energy will reflect back to arm 2.

Figure 1 Schematic of an optical fiber Sagnac loop.

The presence of birefringence in the fiber causes a velocity difference and optical path variation related to state of polarization. As a result, when these fields once again enter the directional coupler, will retain a relative phase difference. Therefore, the reflection will become zero and the fields in the coupler recombine, and the resulting light appears at the interferometer output. The interference of the propagated fields in the loop, depending on the birefringence, may either be constructive or destructive.

Irrespective of coupler loss and field evanescence of birefringent fiber of the loop, the transmission T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe Gaamivaaaa@398C@  coefficient and reflection coefficient R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe GaamOuaaaa@398A@  of the loop are nearly periodic functions expressed as:

T=[1cos(δ)]/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaKqzGeGaamivai abg2da9iaacUfacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaiik aiabes7aKjaacMcacaGGDbGaai4laiaaikdaaaa@42FF@   (1)

R=[1+cos(δ)]/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai abg2da9iaacUfacaaIXaGaey4kaSIaci4yaiaac+gacaGGZbGaaiik aiabes7aKjaacMcacaGGDbGaai4laiaaikdaaaa@42F2@    (2)

where δ(=2πΔ n g L/λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOiTdi aaykW7caGIOaGaeyypa0JaaGOmaiaakc8acaaMc8UaeyiLdqKaamOB aKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaamitaiaac+ cacaGI7oGaaOykaaaa@4802@  denotes the phase difference between polarization modes of high-birefringence where Δ n g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaaaa@3BD2@  is the fiber group birefringence, L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb aaaa@3747@  is the loop length, and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW gaaa@382C@ represents the wavelength of the light in vacuum.

When the variations of Δ n g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaaaa@3BD2@  are small in comparison to the wavelength, then Δ n g | n x n y | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyis ISRaaiiFaiaad6gajuaGdaWgaaqcbasaaKqzadGaamiEaaWcbeaaju gibiabgkHiTiaad6gajuaGdaWgaaqcbasaaKqzadGaamyEaaWcbeaa jugibiaacYhaaaa@4A22@ , where n x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacaWG4baaleqaaaaa@3A7C@  and n y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacaWG5baaleqaaaaa@3A7D@  are the effective refractive indices of polarization modes in x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b aaaa@3783@  and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b aaaa@3784@  direction, respectively. The maximum wavelengths act as resonance wavelengths that are represented as:

λ= 2πΔ n g L (2m+1)π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaO4Udi abg2da9KqbaoaalaaakeaajugibiaaikdacaGIapGaeyiLdqKaamOB aKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaamitaaGcba qcLbsacaGGOaGaaGOmaiaad2gacqGHRaWkcaaIXaGaaiykaiaakc8a aaaaaa@4950@ (3)

where m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb aaaa@3778@  is an integer. The wavelength difference between two adjacent maxima (fringe distance) is determined by the relation

Δλ= λ 2 /(Δ n g L) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq Kaeq4UdWMaeyypa0Jaeq4UdWwcfa4aaWbaaSqabKqaGeaajugWaiaa ikdaaaqcLbsacaGGVaGaaiikaiabgs5aejaad6gajuaGdaWgaaqcba saaKqzadGaam4zaaWcbeaajugibiaadYeacaGGPaaaaa@486F@ (5)

Simulation of transmission spectrum of the SLI

With reference to Eq. 3, the distance between fringes (DBF), i.e. Δλ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaaO4UdiaakYcaaaa@39E3@  in SLI is inversely proportional to the loop length. Thus, to obtain the smallest distance between fringes, we need longer loop length made of HB-PCF.

For a comparison, the DBF as a function of loop length of two types of loop fiber, one an HB-PCF with a high group birefringence of Δ n g =8.56× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGioaiaac6cacaaI1aGaaGOnaiabgEna0kaaigdacaaIWaWcda ahaaqcbasabeaajugWaiabgkHiTiaaisdaaaaaaa@4716@  and the other a PANDA fiber with group birefringence of Δ n g =3.3× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaG4maiaac6cacaaIZaGaey41aqRaaGymaiaaicdalmaaCaaaje aibeqaaKqzadGaeyOeI0IaaGinaaaaaaa@464F@  both at wavelength λ=1550nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaabaWaaqaaaOqaaKqzGe Gaeq4UdWMaeyypa0JaaGymaiaaiwdacaaI1aGaaGimaiaaykW7caWG UbGaamyBaaaa@41CE@ , is depicted in Figure 2.

By comparing the variations of the DBF in terms of loop lengths for the PANDA and the HB-PCF fibers, it is found that the DBF for the two fibers is more for shorter loop lengths. It's further revealed that in HB-PCF, by decreasing the loop length, the trend of increase of the DBF is with smaller slope as compared to the case of PANDA fiber. Further, by reduction of the loop length, the DBF faces more variation when the PANDA fiber is used as the loop.

Figure 2 The distance between fringes as a function of loop length for HB-PCF and PANDA fibers.

To study the transmission spectrum and the analysis of spectral response with respect to loop length variations, the simulations are performed by using the solver software MATLAB, as depicted in Figure 3. In Figure 3A, the loop length is taken as 50 cm, whereas in Figure 3B, the loop is 20 cm long.

Figure 3 Transmission spectrum of the SLI for HB-PCF loop and PANDA loop with equal loop length of 20 cm.

On comparing these curves, we note that when loop length becomes shorter, the DBF in SLIs with two types of fiber used in the loop would considerably increase. By assessing Figure 3A & Figure 3B, we can extract a relationship between free spectral range (FSR) and group refractive index related to two types of fibers, HB-PCF and PANDA, as follows:

Δ λ PANDA »2.5Δλ HB-PCF MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe GaeuiLdqKaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaadcfacaWGbbGa amOtaiaadseacaWGbbaaleqaaKqzGeGaai4UaiaaykW7caaIYaGaai OlaiaaiwdacaaMc8UaeuiLdqKaeq4UdWMaaGPaVVWaaSbaaKqaGeaa jugWaiaadIeacaWGcbGaaiylaiaaykW7caWGqbGaam4qaiaadAeaaK qaGeqaaaaa@5578@   (4)
Δ n g(HBPCF) 2.5Δ n g(PANDA) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe GaeuiLdqKaamOBaSWaaSbaaKqaGeaajugWaiaadEgacaGGOaGaamis aiaadkeacqGHsislcaaMc8UaamiuaiaadoeacaWGgbGaaiykaaqcba sabaqcLbsacqGHijYUcaaMc8UaaGOmaiaac6cacaaI1aGaaGPaVlab fs5aejaad6gajuaGdaWgaaWcbaqcLbmacaWGNbGaaiikaiaadcfaca WGbbGaamOtaiaadseacaWGbbGaaiykaaWcbeaaaaa@5784@     (5)

Therefore, by multiplying above expressions, we get:

(Δ λ Δ n g ) PANDA (ΔλΔ n g ) HBPCF MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe Gaaiikaiabfs5aejabeU7aSLqbaoaaBaaaleaajugibiaaykW7caaM c8oaleqaaKqzGeGaeuiLdqKaamOBaKqbaoaaBaaajeaibaqcLbmaca WGNbaaleqaaKqzGeGaaiykaSWaaSbaaKqaGeaajugWaiaadcfacaWG bbGaamOtaiaadseacaWGbbaajeaibeaajugibiabgIKi7kaaykW7ca GGOaGaeuiLdqKaeq4UdWMaaGPaVlabfs5aejaad6gajuaGdaWgaaqc basaaKqzadGaam4zaaWcbeaajugibiaacMcajuaGdaWgaaqcbasaaK qzadGaamisaiaadkeacqGHsislcaaMc8UaamiuaiaadoeacaWGgbaa leqaaaaa@65E5@ (6)

If the transmission spectrum of the SLI is illustrated for each fiber for different loop lengths, as shown in Figure 4A & Figure 4B, the derived relationship between Δλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaabaWaaqaaaOqaaKqzGe GaeuiLdqKaeq4UdWgaaa@3BCD@  and Δ n g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaabaWaaqaaaOqaaKqzGe GaeuiLdqKaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaaaa @3E0C@  will be similar to the previous expression that is not dependent on the loop length.

Figure 4 Transmission spectrum of the SLI (A) for HB-PCF and (B) PANDA fiber with different loop lengths.

Variations of FSR in terms of group birefringence

By using PCF with higher group birefringence, the FSR will reduce. To study the trend of variations, the two expressions considered for two PCFs with birefringence of Δ n g =8.65× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaSWaaSbaaKqaGeaajugWaiaadEgaaKqaGeqaaKqzGeGaeyyp a0JaaGioaiaac6cacaaI2aGaaGynaiabgEna0kaaigdacaaIWaqcfa 4aaWbaaSqabKqaGeaajugWaiabgkHiTiaaisdaaaaaaa@4740@  and Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGOmaiaaiEdacaGGUaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaaaa@47D3@ , are simulated and then illustrated in Figure 5.

Figure 5 Free spectral range versus loop length made of two PCFs with birefringence (A) Δ n g =8.65× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGioaiaac6cacaaI2aGaaGynaiabgEna0kaaigdacaaIWaWcda ahaaqcbasabeaajugWaiabgkHiTiaaisdaaaaaaa@4706@ and (B) Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGOmaiaaiEdacaGGUaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaG imaKqbaoaaCaaajeaibeqaaKqzadGaeyOeI0IaaGinaaaaaaa@4846@ .

The transmission spectrum of the SLI with a loop length of 20 cm made of the PCF with birefringence of Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGOmaiaaiEdacaGGUaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaG imaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaI0aaaaaaa@4861@  is depicted in Figure 6. On a comparison, one can observe that the DBF of the SLI with a loop length of 20 cm made of HB-PCF in Fig. 6 is approximately one third of the DBF in Figure 4A.

Figure 6 The transmission spectrum of the SLI with loop fiber HB-PCF of L=20cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb Gaeyypa0JaaGOmaiaaicdacaaMc8UaaO4yaiaak2gaaaa@3D36@ and Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaKqbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaeyyp a0JaaGOmaiaaiEdacaGGUaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaaaa@47C3@ .

Discussion

The DBF for the loop length of 20 cm made of PANDA fiber is 36.4 nm, while for the HB-PCF used as the loop fiber, the DBF is obtained as 13.88 nm. The difference of the DBF between two cases is 22.5 nm, or in other words, when miniaturization of SLI is required with short loop lengths, employment of HB-PCF is preferred where the value of DBF would reduce more than half of the value.

The comparison between two HB-PCF fibers, one with Δ n g =8.65× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaajugibi abfs5aejaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaaWcbeaajugi biabg2da9iaaiIdacaGGUaGaaGOnaiaaiwdacqGHxdaTcaaIXaGaaG imaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaI0aaaaaaa@4961@  and the other with Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaad6 gadaWgaaWcbaGaam4zaaqabaGccqGH9aqpcaaIYaGaaG4naiaac6ca caaI2aGaaG4naiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsi slcaaI0aaaaaaa@4381@  is carried out and the obtained results show that the reducing slope of the curve for HB-PCF loop with group birefringence of more than Δ n g =27.67× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq KaamOBaSWaaSbaaKqaGeaajugWaiaadEgaaKqaGeqaaKqzGeGaeyyp a0JaaGOmaiaaiEdacaGGUaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaaaa@476F@ is more and the DBF is less than that of HB-PCF with Δ n g =8.65× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaajugibi abfs5aejaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaaWcbeaajugi biabg2da9iaaiIdacaGGUaGaaGOnaiaaiwdacqGHxdaTcaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaaaa@48D3@ .

Yet, in another study, the transmission spectrum of the SLI in terms of wavelength for two fiber samples with loop lengths of 20 cm and 50 cm is simulated. The comparison of the distance between maxima in the obtained characteristic curves, certifies the calculated DBF values versus loop length.

Conclusion

In the present paper, the relationship between the wavelength of consecutive maxima in transmission spectrum in terms of loop length of Sagnac loop interferometer is established and analyzed with loop fibers made of HB-PCF and PANDA fiber. The obtained results from calculations and comparisons of the curves loop fiber made of standard polarization-maintaining fiber and high-birefringence photonic crystal fibers revealed that the distance between fringes (DBF) of the SLI would reduce by increasing loop length. This reducing trend in case of HB-PCF has a steeper slope. The DBF for two fibers HB-PCF and PANDA with shorter loop lengths would increase. As an example, the DBF with the loop length of 150 cm made of PANDA fiber is Δλ=14.57nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaajugibi abfs5aejabeU7aSjabg2da9iaaigdacaaI0aGaaiOlaiaaiwdacaaI 3aGaaGPaVlaak6gacaGITbaaaa@4381@ , whereas for HB-PCF with equal loop length with Δ n g =8.65× 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaajugibi abfs5aejaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaaWcbeaajugi biabg2da9iaaiIdacaGGUaGaaGOnaiaaiwdacqGHxdaTcaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaaaa@48D3@ , the DBF is obtained as Δλ=5.55nm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaajugibi abfs5aejabeU7aSjabg2da9iaaiwdacaGGUaGaaGynaiaaiwdacaaM c8UaaOOBaiaak2gacaGIUaaaaa@437F@  That is, the DBF of SLI with loop length of 50 cm made of HB-PC, is 9 nm smaller than the SLI with the loop made of PANDA fiber.

By the obtained results through simulations, this study reveals that by using high-birefringence PCF, one can optimize the loop length with minimum distance between fringes in Sagnac loop interferometer. The obtained results provide a required condition for fabrication of SLI-based devices with a small packaging size.

Acknowledgements

The authors would like to acknowledge the optical communication group management for permission of publication of the present paper.

Conflict of interest

The author declares no conflict of interest.

References

  1. Fu HY, Tam HY, Shao LY. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl Opt. 2008;47(15):2835–2839.
  2. Kim G, Cho T, Hwang K. Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer. Opt Exp. 2009;17(4):2481–2486.
  3. Mortimore DB. Fiber loop reflectors. J Lightwave Technol. 1988;6(7):1217–1224.
  4. Yang S, Li Z, Dong X, et al. Generation of wavelength- switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror. IEEE Photon Technol. Lett. 2002;14:774–776.
  5. Hae Young Choi, Myoung Jin Kim, et al. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt Exp. 2007;15(9):5711–5720.
  6. Xiaojun Fang, Richard O Claus. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer. Opt Lett. 1995;20(20):2146–2148.
  7. Kim DH, Kang JU. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt Exp. 2004;12(19):4490–4495.
  8. Hansen TP, Broeng J, Libori SEB, et al. Highly birefringent index-guiding photonic crystal fibers, IEEE Photon. Technol Lett. 2001;13(6):588–590.
  9. Chun-Liu Zhao, Xiufeng Yang, Chao Lu, et al. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon Technol Lett. 2004;16(11):2535–2537.
  10. Ortigosa-Blanch A, Knight JC, Wadsworth WJ, et al. Highly birefringent photonic crystal fibers. Opt Lett. 2000;25(18):1325–1327.
  11. Wang Y1, Zhao CL, Dong X, et al. A fiber loop mirror temperature sensor demodulation technique using a long-period grating in a photonic crystal fiber and a band-pass filter. Rev Scientific Instru. 2011;82(7):073101.
Creative Commons Attribution License

©2017 Seraji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.