Lessening burden of rheumatic heart disease in Saint Vincent and the Grenadines

Abstract
Rheumatic heart disease is a disease of poverty and it disproportionately burdens developing countries like Saint Vincent and the Grenadines. The purpose of this paper is to assess the unique challenges facing the prevention of rheumatic heart disease in Saint Vincent and the Grenadines and provide recommendations based on evidence and best practices established by other similar countries experiencing the burden of this disease. A multifaceted approach to preventing rheumatic heart disease in Saint Vincent and the Grenadines appears to be the most efficacious. The implementation of school-based programs that focus on primary and secondary prevention will be advantageous in targeting children, some of the country’s most vulnerable to rheumatic heart disease. The Ministry of Health in Saint Vincent and the Grenadines needs to continue to utilize partnerships with NGOs to ensure that knowledge, medical equipment, and skill transfers continue to take place so that the healthcare workforce and resources are strengthened. The utilization of task-shifting and standardization of screening and treatment will largely increase the ability for more isolated Grenadine Islands to be able to deliver the same care as healthcare works in the urban capital in Saint Vincent. In addition, a readily available supply of penicillin must be present on all inhabited islands. Lastly, the implementation of a country-wide registry system will allow the country to monitor and evaluate the individuals affected by rheumatic heart disease, in addition to the assessment of country-wide trends in incidence and prevalence of rheumatic heart disease.

Background
Despite the World Health Organization publishing guidelines for the prevention and treatment of rheumatic heart disease over the last 60 years, many middle and low-income countries, such as Saint Vincent and the Grenadines, continue to be burdened by the disease.1 Purposing this burden is the social, political, and economic influences in Saint Vincent and the Grenadines. The specific challenges facing this island nation sets the stage for increased prevalence of rheumatic heart disease, thus making it a disease of poverty. Rheumatic heart disease proves to be a major public health concern as it inflicts disability and premature death upon those diagnosed with it.2 Social determinants of health largely influence whether a vulnerable population will be cured or left with a life-long burden of this disease.3 With access to proper health screening resources, healthcare systems of low and middle-income countries can properly screen for this disease and provide the simple and inexpensive treatment of Penicillin G. Saint Vincent and the Grenadines, a thirty-two-island nation in the West Indies, has incidence of rheumatic heart disease close to 200 times that of the United States.4 Understanding and analyzing the best practices of screenings techniques utilized by other countries, will allow Saint Vincent and the Grenadines to create effective screening programs for their vulnerable populations. For example, in New Zealand, school-based programs have shown to be efficacious in screening for acute rheumatic disease among their high-risk indigenous population.5 In addition to promoting familial acceptability of screening measures among school-aged children, the intervention revealed that echocardiographic screening proved to have high acceptability among families and with no negative psychological or physiological effects among those being screened.6 The purpose of this research is to review factors that make Saint Vincent and the Grenadines vulnerable to the disease, provide an overview of possible interventions that have been successful in similar populations and provide recommendations, such as evidence-based screening techniques to improve the preventative practices to decrease the incidence of this disease.

Specific aims
The specific aims of this critical analysis are as follows: (1) Assess what political, economic, and social factors make Saint Vincent and the Grenadines particularly vulnerable to rheumatic heart disease; (2) Identify the specific vulnerabilities of the high-risk populations of Saint Vincent and the Grenadines; (3) Assess the current preventative practices recommended by the World Health Organization and assessing what barriers has kept Saint Vincent and the Grenadines from implementing those recommendations; moreover, this research will assess the acceptability and negative effects of the preventative screening techniques utilized by other countries; (4) Provide recommendations about how the public health system of Saint Vincent and the Grenadines can address their risk factors for rheumatic heart disease through the utilization of best practices of other low and middle-income countries. This critical analysis is guided by the following research questions: (1) What social, economic, and environmental factors make the population of Saint Vincent and the Grenadines particularly vulnerable to rheumatic heart disease? (2) What are the current deficiencies that exist in the screening and preventing of rheumatic heart disease in Saint Vincent and the Grenadines? (3) What are the primordial, primary, and secondary prevention techniques utilized by other middle and low-income counties that can be applied in Saint Vincent and the Grenadines? (4) Which best practices from other public health systems in other low and middle-income counties can be implemented in Saint Vincent and the Grenadines?

Methods
A narrative review of current research was conducted through various online databases including PubMed, Google Scholar, Center for Disease Control and Prevention, World Health Organization, and the George Washington University online library. I reviewed results from at least twenty peer-reviewed resources. The phrases and keywords: “Acute rheumatic disease,” “sequela of rheumatic heart disease,” “Screening techniques of strep throat,” “family acceptability,” “screening for rheumatic heart disease,” “screening techniques,” “echocardiography,” “high-risk populations,” “best practices,” “screening,” “Saint Vincent and the Grenadines,” “Strep throat,” “treatment for strep throat,” “long-term consequences of strep throat,” “streptococcus pharyngitis,” “chronic rheumatic heart disease,” “primary prevention and
is of upmost importance as the long-term sequela of Group A Streptococcal bacterial infection, or more commonly known as Strep throat, is rheumatic heart disease. Children appear to be especially vulnerable to Streptococcal infection because the Group A Streptococcal bacteria is highly contagious (Mayo Foundation for Medical Education and Research, 2018). This bacteria can spread through respiratory droplets when a child coughs or sneezes, as two examples. Furthermore, this bacteria can also be easily spread through food and drink. Group A Streptococcal bacteria can live on and be transferred through fomites such as doorknobs (Mayo Foundation for Medical Education and Research, 2018). Children in close contact with sick children, for instance in a school or home environment, allow for efficient transmission of the bacteria among children.

Pathophysiology of rheumatic heart disease

A component of Group A Streptococcal bacteria is a protein called M protein. M protein has a very similar microscopic structure to the microscopic structures of heart valves. As a result, the body’s immune system attacks both. This complication of Group A Streptococcal bacterial infection is termed rheumatic heart fever. The long repeated episodes of rheumatic heart fever will eventually cause long-term damage to heart valves, which results in rheumatic heart disease. Trained medical professionals can visualize the damage to the heart valves through echocardiograms, which is why the World Heart Federation recommends echocardiograms as a standardized approach to rheumatic heart disease screening. The long term negative effects of untreated rheumatic heart disease include heart failure, stroke, and inflammation of the heart. In developing countries like Ethiopia, it has been reported that 70% of patients with rheumatic heart disease have died before the age of 26. In addition, providing the length of quality of life among the most vulnerable populations, preventative screening and treatments significantly reduce healthcare costs. Manji & others 2013 reported over $51 million a year was spent on one hundred low-income patients with diagnosed rheumatic heart disease treatment in Brazil.

Prevention of rheumatic heart disease

Primary prevention techniques require proper hygiene practices among individuals with the infection. Washing hands, hygiene sneezing techniques, and not sharing cups and cutlery with a sick person are all important and effective forms of primary prevention (Mayo Foundation for Medical Education and Research, 2018). Unfortunately, these behaviors are not regularly practiced by school-aged children, which makes this population especially vulnerable to the spread of Group A Streptococcal bacteria. Currently, there is no vaccine for Group A Streptococcal bacteria. The lack of vaccine development and widespread availability is partially the result of little economic incentive from the vaccine development industry. The development of a Group A Streptococcus vaccine has been in development since 1960s, however, still no vaccine is available. High-income countries have decreased funding for vaccine development as rheumatic heart disease simply isn’t prevalent in their population. The primary population utilizing the vaccine would be from middle and low-income countries, like Saint Vincent and the Grenadines, which has little financial benefit for the vaccine development industry. Pressure needs to be placed on those in power to continue to fund the development of vaccine development for Group A Streptococcus as vaccine development is the best chance for eradication of rheumatic heart disease. A form of secondary prevention manifest as echocardiograms assessing the presence of a diseased heart valve. An echocardiogram allows medical workers to look at the patient’s heart to see whether there is any evidence of damaged heart valves. A common sequela of Group A Streptococcal bacterial infection is for antibodies, created by the immune system of the infection person, to unintentionally attack the infected person’s own heart valves as previously mentioned.

Resources currently available in Saint Vincent and the Grenadines

Milton Cato Memorial Hospital of Saint Vincent and the Grenadines was
donated one echocardiogram in 2017. There is no evidence to suggest other echocardiograms exists in the more isolated health posts in the Grenadine Islands. In the absence of an echocardiogram, medical professionals can assess the patient’s physical presentation for early Strep throat or rheumatic heart fever using basic physical examination techniques. Unfortunately, the ability to perform the basic screening exam is dependent on whether the patient and their parent(s) seek medical assistance. Furthermore, treatment of Strep throat and/or rheumatic fever requires penicillin. The initial screening and subsequent treatment for Strep throat and/or rheumatic fever require financial resources, medical infrastructure, medical professional training, and geographical proximity. These factors and others are specifically challenging for those living in a developing country like Saint Vincent and the Grenadines, which boasts a poverty rate of 48.2% and a health insurance coverage rate of only 36.5%.

Recommended screening and treatment practices for rheumatic heart disease as per evidence

The World Health Organization firmly recommends the utilization of echocardiography as it can be performed remotely and at a low cost. The 2012 World Heart Foundation criteria for the echocardiographic diagnosis of rheumatic heart disease can be found on Table 1 below. The 2012 World Heart Foundation criteria is an internationally developed, evidence-based approach to the echocardiographic diagnostic guideline for rheumatic heart disease. With the objective and prompt recognition of rheumatic heart disease via echocardiography, patients can immediately begin their secondary prevention regimen, which includes recurrent penicillin injections. Manji & others 2013 suggest that primary prophylaxis may be less cost-effective than echocardiographic screening followed by secondary prevention. Specific barriers to the echocardiogram-centered approach to rheumatic heart disease prevention is the lack of diagnostic equipment. Focus from international organizations, international institutions and the federal government to generate the funding needed to ensure inhabited islands in Saint Vincent and the Grenadines have access to echocardiograms.

<table>
<thead>
<tr>
<th>Country and year</th>
<th>Population, mean age (SD), % male</th>
<th>Sample size</th>
<th>Diagnostic interpretation</th>
<th>Image diagnostic</th>
<th>Simplified disease</th>
<th>Sensitivity (all disease)</th>
<th>Specificity (all)</th>
<th>Sensitivity (definite RHD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
<td>Schoolchildren, 10.6 years (2.5), 47.5%</td>
<td>2170</td>
<td>STAND</td>
<td>Experienced cardiologists</td>
<td>MR jet length > 2 cm</td>
<td>73%</td>
<td>Not recorded</td>
<td>Not recorded</td>
</tr>
<tr>
<td>Uganda</td>
<td>Schoolchildren, 10.8 years (2.6), 47%</td>
<td>1420</td>
<td>HAND</td>
<td>Pediatric cardiologists</td>
<td>WHF criteria minus CW Doppler</td>
<td>78.9%</td>
<td>87.2%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Uganda</td>
<td>Schoolchildren, 10.8 years (2.6), 47%</td>
<td>1439</td>
<td>HAND</td>
<td>Pediatric cardiologists</td>
<td>MR jet length >= 1.5 cm or any AR</td>
<td>73.3%</td>
<td>82.4%</td>
<td>97.9%</td>
</tr>
<tr>
<td>Uganda</td>
<td>Schoolchildren, 10.8 years (2.6), 46%</td>
<td>1317</td>
<td>HAND</td>
<td>Experienced cardiologists</td>
<td>WHF criteria minus CW Doppler</td>
<td>78.4%</td>
<td>87.3%</td>
<td>97.8%</td>
</tr>
<tr>
<td>Fiji</td>
<td>Schoolchildren, (age/sex not recorded)</td>
<td>50</td>
<td>STAND</td>
<td>Nurses (scanning and interpretation)</td>
<td>MR jet length > 1.5 cm</td>
<td>100% 83%b</td>
<td>67.4% 79%b</td>
<td>Not recorded</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Schoolchildren, 9.6 years (0.5), 49.6%</td>
<td>1217</td>
<td>HAND</td>
<td>Nurses (scanning and interpretation)</td>
<td>MR jet length > 2 cm</td>
<td>81.7%</td>
<td>77.6% b</td>
<td>90.9%</td>
</tr>
<tr>
<td>Uganda</td>
<td>Schoolchildren, 11.1 years (2.5), 42.1%</td>
<td>956</td>
<td>HAND</td>
<td>Nurses (scanning and interpretation)</td>
<td>MR jet length >= 1.5 cm or any AR</td>
<td>74.4%</td>
<td>78.8%</td>
<td>90.9%</td>
</tr>
</tbody>
</table>

Table 1: Summary of recent screening studies examining the sensitivity and specificity of simplified diagnostic criteria when compared to the reference approach (images obtained using standard portable echocardiography and interpreted by experienced cardiologists with expertise in rheumatic heart disease using the full 2012 World Heart Federation criteria).

Two studies used different diagnostic criteria given that they predated the WHF criteria. All disease: Borderline RHD + definite RHD. Owing to nonstandard criteria, this does not apply to the studies by Mirabel et al., & Colquhoun et al. 2013. Both studies compared the performance of two nurses using HAND on the same population, therefore there are two separate values for sensitivity and specificity (the study by Ploutz et al. 2016 compared the performance of two nurses using HAND on two different populations).

Acceptability of utilization of echocardiograms in screening interventions

Northern Uganda implemented a school-based echocardiogram screening approach to assess the acceptability of the experience the children and teachers had during the screening event. Of the 255 students (mean 10.7 years; 48% male) and 35 teachers screened in this study, 95% of the students and 100% of the teachers “were happy to have participated in the screening; however, students reported feeling scared (35%) and nervous (48%) during the screening process”. Results from surveys obtained from the school-based screening for rheumatic heart disease in Northern Uganda is as follows (Table 2) (Table 3).

Table 2: Students’ experience of school-based echocardiographic screening for rheumatic heart disease (n= 255)

<table>
<thead>
<tr>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am happy that my heart was checked</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>I wanted more privacy when they were checking my heart</td>
<td>40%</td>
<td>8%</td>
</tr>
<tr>
<td>I felt scared when they were checking my heart</td>
<td>35%</td>
<td>9%</td>
</tr>
<tr>
<td>I would tell my friend that checking my heart is easy</td>
<td>80%</td>
<td>4%</td>
</tr>
<tr>
<td>I felt nervous when the people were checking my heart</td>
<td>48%</td>
<td>6%</td>
</tr>
<tr>
<td>The people told me what they were doing to do before they did it</td>
<td>75%</td>
<td>7%</td>
</tr>
<tr>
<td>I felt safe when the people were checking my heart</td>
<td>69%</td>
<td>13%</td>
</tr>
<tr>
<td>The people that checked my hearts were nice to me</td>
<td>82%</td>
<td>3%</td>
</tr>
<tr>
<td>The people who checked my heart talked to me</td>
<td>81%</td>
<td>4%</td>
</tr>
<tr>
<td>I understood what was going to happen when they checked my heart</td>
<td>67%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Table 3: Teachers’ experience of school-based echocardiographic screening for rheumatic heart disease (n=255)

<table>
<thead>
<tr>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>The children were scared on the day of screening</td>
<td>20%</td>
<td>37%</td>
</tr>
<tr>
<td>The screening was disruptive</td>
<td>23%</td>
<td>9%</td>
</tr>
<tr>
<td>I am pleased the children had their hearts checked</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>I would tell teachers at other schools to allow this program</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>I wish the screening had NOT taken place</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>This was a worthwhile activity</td>
<td>86%</td>
<td>9%</td>
</tr>
<tr>
<td>Parents were pleased that the screening took place</td>
<td>89%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Best practices of other low-to-middle income countries

In the setting of Saint Vincent and the Grenadines, it is important to assess the cost-effective prevention techniques utilized by other countries that would be equally beneficial to the specific challenges vulnerable populations in Saint Vincent and the Grenadines face. Assessing the best practices of countries that also have a few medical resources, inadequately trained medical personnel, geographic isolation of patients, and low-income among patients will ultimately benefit Saint Vincent and the Grenadines more. In a cost-effectiveness acceptability report published by Irlam & others 2012, regarding the high prevalence of rheumatic heart disease in South Africa, it was proposed to simply treat everyone within a high-risk population. Irlam & others 2012 argue that treating everyone with the inexpensive treatment of an intramuscular injection of penicillin is effective and cost-efficient as each injection costs only USD $1; furthermore, this strategy has a sensitivity of 100%. In large-scale utilization of penicillin in Puerto Rico, Guadeloupe, Martinique, and Cuba for rheumatic heart disease, there were no reports of drug resistance to penicillin. A cost-effective analysis study, undertaken over ten years in Cuba, suggested the most efficacious and cost-effective approach to the management of rheumatic heart disease are as follows: (1) increase supply of penicillin to all district hospitals and health posts (2) improve medical worker education surrounding the recognition and treatment of Group A Streptococcal infections (3) integrate a registry system that is accessible to all healthcare facilities in the country. The Rwandan healthcare system utilizes volunteer expatriate teams that transfer knowledge and training to local healthcare providers in Rwanda. The premise of this program is to create a foundation in which Rwanda gradually transitions to a self-sustaining, comprehensive cardiac care program that focuses on recognition and treatment of all cardiac cases, in addition to rheumatic heart disease. Furthermore, this model allows for Rwandan healthcare providers, the Rwandan Ministry of Health and Ivy League-trained medical volunteers exchange ideas to ultimately create a sophisticated approach to skill transfer, problem solving, and idea sharing.

Recommendations for the prevention of rheumatic heart disease in Saint Vincent and the Grenadines

The most efficacious approach for screening for rheumatic heart disease is using the echocardiogram. Echocardiograms are preferred to other screening methods, like screening for heart murmurs, because echocardiograms can be sensitive to subclinical components of rheumatic heart disease. Previously, physicians and other trained health care workers would utilize a stethoscope to auscultate or listen for evidence of heart valve disease, related to rheumatic heart disease, in the form of a heart murmur. Echocardiography has demonstrated that evidence rheumatic heart disease can be present in the absence of an audible heart murmur. Therefore, many cases of rheumatic heart disease were missed, as a result of inadequate screening techniques. Echocardiography can decrease the amount of missed cases because echocardiograms are more sensitive to rheumatic heart disease presentation.

The prevention of rheumatic heart disease is the most appealing option of sustainable disease control in developing nations. The severe burden upon individuals and the development of low and middle-income countries needs to be realized by the governments and other stakeholders in endemic regions. Without the full and aggressive support by governments, NGOs, and other stakeholders, prevention of rheumatic heart disease in Saint Vincent and the Grenadines will continue to be weak. With proper access to primary
Echocardiograms have become rather compact and portable; moreover, probes more expeditiously. Several advantages exist with echocardiogram technology. In endemic areas, more subclinical cases can be caught, and treatment can begin rheumatic heart disease, as previously discussed. With implementation and teachers, well over two hundred children and adults were screened for school-based screening for rheumatic heart disease with the utilization of the countries in Africa.

With advance technology available for rheumatic heart disease, upgrades the technique, in addition to the auscultation of heart murmurs, is utilized often for the primary screening of rheumatic heart disease, subclinical cases of well-established rheumatic heart disease remain undiagnosed. The implementation of the echocardiogram allowed for subclinical cases of rheumatic heart disease to be discovered by medical workers as it is a more sensitive screening tool.4 With advance technology available for rheumatic heart disease, upgrades the standardized approach to screening have taken place. Secondary screening has utilized the 2012 World Heart Federation criteria (Table 4) as a guide to a standardized and standardization approach to rheumatic heart disease screening, with the use of echocardiogram technology. The 2012 World Heart Federation criteria, alongside echocardiogram utilization, have been widely adopted in screening for rheumatic heart disease in school-going children in endemic countries in Africa.4 Northern Uganda proved that the acceptability of school-based screening for rheumatic heart disease with the utilization of the echocardiogram. In addition to high rates of acceptability among the students and teachers, well over two hundred children and adults were screened for rheumatic heart disease, as previously discussed. With implementation programs that allow increased access to especially vulnerable populations in endemic areas, more subclinical cases can be caught, and treatment can begin more expeditiously. Several advantages exist with echocardiogram technology. Echocardiograms have become rather compact and portable; moreover, probes can be attached to “smart devices” which will continue to increase portability and reduce initial costs for the product.2 In addition, there are larger, more cumbersome model that are available as well.

Table 4: The abridged World Heart Federation diagnostic screening criteria for rheumatic heart disease

<table>
<thead>
<tr>
<th>RHD</th>
<th>RHO</th>
<th>Mitral regurgitation, AR</th>
<th>Aortic regurgitation, MV</th>
<th>Mitral valve, AV</th>
<th>Atrioventricular, AMVL</th>
<th>Anterior mitral valve leaflet, MS</th>
<th>Mitral stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>B:</td>
<td>B:</td>
<td>B:</td>
<td>B:</td>
<td>B:</td>
<td>B:</td>
<td>B:</td>
<td>B:</td>
</tr>
<tr>
<td>C:</td>
<td>C:</td>
<td>C:</td>
<td>C:</td>
<td>C:</td>
<td>C:</td>
<td>C:</td>
<td>C:</td>
</tr>
<tr>
<td>D:</td>
<td>D:</td>
<td>D:</td>
<td>D:</td>
<td>D:</td>
<td>D:</td>
<td>D:</td>
<td>D:</td>
</tr>
<tr>
<td>E:</td>
<td>E:</td>
<td>E:</td>
<td>E:</td>
<td>E:</td>
<td>E:</td>
<td>E:</td>
<td>E:</td>
</tr>
<tr>
<td>G:</td>
<td>G:</td>
<td>G:</td>
<td>G:</td>
<td>G:</td>
<td>G:</td>
<td>G:</td>
<td>G:</td>
</tr>
</tbody>
</table>

Echocardiographic criteria for RHD in individuals ≥20 years For definite RHD (either A, B, C, or D)

- A: Pathological MR and ≥2 morphological features of RHO of the MV
- B: MS (mean gradient ≥4 mmHg)
- C: Pathological AR and ≥2 morphological features of RHD of the AV
- D: Borderline disease of both the MV and AV

For borderline RHD (either A, B, or C)

- A: ≥2 morphological features of RHD of the MV without pathological MR or MS
- B: Pathological MR
- C: Pathological AR

Echocardiographic criteria for pathological regurgitation Doppler echocardiographic criteria for MR (all 4 must be met) Seen in 2 views

- In at least 1 view, jet length ≥2 cm
- Velocity ≥3 m/s for 1 complete envelope
- Pan-systolic jet in at least 1 envelope
- Doppler echocardiographic criteria for AR (all 4 must be met) Seen in 2 views
- In at least 1 view, jet length ≥1 cm
- Velocity ≥3 m/s in early diastole
- Pan-diastolic jet in at least one envelope

Echocardiographic criteria for morphological features of RHD Features in the MV

- AMVL thickening ≥3 mm (≥4 mm if aged 21-40 years, ≥5 mm if aged over 40 years)
- Chordal thickening
- Restricted leaflet motion
- Excessive leaflet tip motion during systole Features in the AV
- Irregular or focal thickening
- Coaptation defect
- Restricted leaflet motion
- Prolapse

Disadvantages with echocardiographic screening for rheumatic heart disease do exist. In addition to the initial cost of the echocardiogram devices, it is necessary to ensure that local resources allow for continued maintenance for the echocardiogram machines. Furthermore, advances in technology, such as attaching an echocardiogram probe to a smartphone may not be appropriate and sustainable solution in geographically isolated endemic areas that may not have reliable access to technology. Furthermore, a focus on task-shifting will be of utmost importance to the implementation of this technology.

Task-shifting is the delegation of a clinical task from a specialized clinician.
like a cardiologist, to a less-specialized clinical, like a health worker. Task shifting using nurses with echocardiographic training is an advantageous approach to ensuring the echocardiogram technology is available in geographically isolated and resource-limited settings. “Overall sensitivity for all disease ranged from 74.4% to 100% and specificity was 67.4%–92%. Sensitivity for definite RHD was high at 86.7%–93.3%.” With proper training, Saint Vincent and the Grenadines can have specialists train nurses and other health workers in the most remote islands to be able to utilize echocardiograms to properly screen for rheumatic heart disease. Engelman & colleagues 2016 assessed seven nurses in eight different schools containing 2004 children in Fiji between September 2012 and September 2013. During this time, Engelman and colleagues assessed the accuracy of non-expert operators, like nurses, and their ability to screen for RHD via echocardiography. Engelman & colleagues 2016 reported sensitivity of individual nurses ranged from 66.7% to 100% and specificity of 74.0% to 93.7%. One particular approach to training non-expert operators and their ability to RHD screening via echocardiograms include the administration of a standardized, computer-based training course. Beaton & colleagues 2016 conducted a study in Brazil to assess the efficacy of implementing a standardized, computer-based training course to six non-experts, which included medical students, nurses, and bio-technicians. The three-week training course had a high rate of accuracy among the groups trained; furthermore, the program isolated costs and time needed to train non-experts (Beaton et al., 2016). The results of the intervention revealed a combined sensitivity of 83% (95% CI 76% to 89%) and a specificity of 85% (95% CI 82% or 87%) for detecting any RHD. Moving forward, leaders in vaccine development need to understand the importance of vaccine development. Monetary resources must continue to be directed towards the development of a Group A Streptococcus vaccine. Sharma & Nitsche-Schnitz 2014 name one major challenges with Group A Streptococcus vaccine: there are so many different variations of the bacteria, that it would be difficult to ensure the vaccine protects against all varieties of the bacteria. One option is to take a similar approach to that of the influenza and HPV vaccine, which includes combining several different combinations of the bacteria in one vaccine, to anticipate which bacterial variation may be most dangerous. A second approach would be to make several different region-specific vaccines that would provide better coverage in specific areas. In either scenario, resources will have to be dedicated for surveillance of the vaccines to ensure the proper vaccines are being administered; furthermore, constant redevelopment may be necessary too, in the event cross contamination between different regional variants manifest. Conclusion There are efficacious programs in place in other low-income countries that are lessening the burden of rheumatic heart disease in their respective country. Although the prevention of rheumatic heart disease must be given priority by the central and local governments and Ministry of Health of Saint Vincent and the Grenadines for any intervention to be implemented. Furthermore, high-income countries need to prioritize the need to continue to direct effort and funding into the prevention of rheumatic heart disease as they hold the monopoly of advancing healthcare in the world. Saint Vincent and the Grenadines needs to continue to work closely with already existing programs, which include an HIV/AIDS epidemic that largely distracts time, resources, and energy from other health prevention programs, which include rheumatic heart disease. If the Ministry of Health can assess the challenges that exist within their healthcare infrastructure and create country-specific solutions based in the best practices and evidence established by other countries, Saint Vincent and the Grenadines stands a chance in improved prevention of rheumatic heart disease. Rheumatic heart disease prevention needs to be a priority for both high and low-income countries because some of the most vulnerable to this disease are children. In addition to the moral and ethical need to protect any country’s vulnerable children, all countries need to realize the long-term implications of early death and disability in vulnerable county’s future workforce and leaders. Preventing rheumatic heart disease allows the most vulnerable populations to have a quality of life. Preventing rheumatic heart disease allows vulnerable populations to continue to go to school and remain in the workforce. Simple screening techniques, standardization of care, and treatment can save millions of dollars for those burden to pay for healthcare costs and ultimately save lives. Focusing on the prevention of rheumatic heart disease in low-income countries like Saint Vincent and the Grenadines is important and necessary for the future of vulnerable Vincentians and others in similar in other vulnerable countries across the world. Ethical considerations No ethical considerations. Acknowledgements The author would like to thank the Milken Institute School of Public Health at the George Washington University for posing the research opportunity and Dr. Nisha A. Sachdev, DrPh, PsyD for her proofreading and guidance throughout the research. Conflict of interest The author has no conflicts of interests in this work. References 1. Watkins DA, Johnson CO, Colquhoun SM, et al. Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015. N Engl J Med. 2017;377(8):713–722. 2. Dougherty S, Khorsandi M, Herbst P. Rheumatic heart disease screening: Current concepts and challenges. Annals of Pediatric Cardiology. 2017;10(1):39–49. 3. Saint Vincent & the Grenadines. 2016.

27. https://www.worldpediatricproject.org/

33. SVG Essentials. 2018.

DOI: 10.15406/mojph.2018.07.00230