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Introduction
Gasotransmitters are a subfamily of endogenous gaseous 

signaling molecules, including nitric oxide (NO), carbon monoxide 
(CO), hydrogen sulphide (H2S), and possibly some other gases 
[1-4]. These gases were traditionally considered to toxic with 
environmental hazard, however at extremely lower concentration, 
these gaseous molecules have emerged as important mediators of 
a variety of cellular signal transduction and pathophysiological 
responses. These gasotransmitters share many common features 
in their production and function, but they fulfill their physiological 
tasks in unique ways that differ from those of classical signaling 
molecules [2]. Due to their high lipid solubility and unique chemical 
activity, these gasotransmitters can move rapidly throughout cells 
and tissues binding with proteins/enzymes through reactions 
with specific amino acids [5,6]. In this review, the endogenous 
production of these gasotransmitters and their cellular functions 
through protein post-translational modifications are discussed.

NO and Protein S-Nitrosylation
NO is a very small, lipophilic, chemically unstable molecule 

with a very short half-life (seconds), which can be endogenously 
produced by NO synthases from the amino acid L-arginine in a 
large number of different tissues [7,8]. NO plays a relevant role 
in regulating many cellular functions and pathophysiological 
responses, including cell growth and apoptosis, inflammation, 
vasodilation, ischemic damage, and respiration, etc [8]. Protein 
S-nitrosylation, the incorporation of an NO moiety to a cysteine 
thiol group, has emerged as a central mechanism of NO-
dependent cellular regulation [7,8]. NO may also regulate cellular 
functions via the activation of soluble guanylyl cyclase (sGC) 
leading to the production of cyclic guanosine monophosphate 
(cGMP) [1,2]. Up to now, numerous proteins together with the 
target cysteine residues have been demonstrated. By forming a 

new –SNO group, S-nitrosylation can alter protein conformation 
leading to different enzymatic activities, protein interaction with 
other macromolecules, protein stability, and protein subcellular 
location, etc [9]. Post-translational modifications of protein 
cysteine residues are very common for regulation of diverse 
cellular functions. Beside with S-nitrosylation, the free thiol group 
in a substantial proportion of cysteine residues can easily undergo 
many other biological modification, including S-palmitoylation, 
S-glutathionylation, S-sulfhydration, S-sulfenylation, and 
oxidation etc [5,9].

Although the exact mechanism of NO interaction with thiol 
group in target protein is not fully resolved, no evidence has 
been provided for S-nitrosylation formation by enzymatic 
catalysis [10]. S-nitrosylation of proteins is relatively unstable, 
the nitrosothiol bond can be quickly changed to more stable 
disulfide bonds or be oxidized by reacting with other active 
molecules [11,12]. It is clear that several enzymes are involved 
in protein transnitrosylation and/or de-nitrosylation, including 
the thioredoxin reductase system and S-nitrosoglutathione 
reductase (GSNOR). Transnitrosation is the process in which 
an NO+ equivalent is transferred from S-nitrosylated protein 
to different cysteine/protein or other molecules. Thioredoxin 
reductase catalyzes the denitrosylation of caspase-3, maintains 
a low steady-state amount of S-nitrosylation, and promotes 
apoptosis [10]. On the other hand, thioredoxin reductase has 
been shown to trans-nitrosylates caspase-3 and block apoptosis 
[11]. GSNOR modulates the transnitrosylation equilibrium among 
S-nitrosylated proteins and provides an important defense 
mechanism against nitrosative stress [10]. Protein disulfide 
isomerase is also implicated into transnitrosation reactions [7]. 
More recently, reductase sulfiredoxin was shown to act an enzyme 
that denitrosylates peroxiredoxin-2 and protects neural cells from 
NO-induced hypersensitivity to oxidative stress [12].
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Abstract

Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), the three 
members in gasotransmitter family, have emerged as important regulators of 
cellular functions and pathophysiological responses. In this mini-review, the 
current understanding on the roles of these gasotransmitters in regulating cellular 
events via post-translational modification proteins is summarized. NO chemically 
reacts with specific cysteine residue(s) in target proteins via S-nitrosylation. 
CO alters protein conformation and activity by forming carbonylation in unique 
amino acids. H2S binds with the free thiol group in active cysteine residue of 
target protein to form hydropersulfide group, termed as S-sulfhydration. The 
mechanisms for gasotransmitter modification of proteins and their reversible 
process are also highlighted.
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CO and Protein Carbonylation
CO is highly poisonous and odorless known as a ‘‘silent killer’’ 

due to its strong affinity to hemoglobin in red blood cells. Just in 
the last decades, CO is shown to be endogenously produced by 
heme oxygenases with heme as substrate [2]. Compared with 
NO, CO is the most biologically stable gasotransmitter due to its 
weak chemical reactivity. CO generates wide effects in cellular 
functions and physiological roles in the body. Abnormalities of 
CO metabolism have been linked to a diverse array of diseases, 
including hypertension, atherosclerosis, heart disorders, and 
inflammation [13,14]. The diverse actions of CO are mainly due 
to its stimulation of sGC and alteration of oxidative stress and 
ion channel activity. CO may also exerts its biological actions by 
inducing direct carbonylation of cysteine, lysine, histidine, and 
arginine residues in target proteins [15-17]. Carbonylation of 
specific amino acids is an irreversible and non-enzymatic process, 
forming carbonyl derivatives (aldehydes and ketones) and leading 
to protein damage, aggregation, and even proteolytic degradation 
[16]. Specially, protein carbonylation could offer additional 
mechanism for oxidant-mediated signal transduction [17,18]. In 
compare, there is also report that CO is not involved in protein 
carbonylation at all [19].

Although protein carbonyls are quite stable, decarbonylation 
may also occur in natural way with the aid of two thiol-dependent 
enzymes, thioredoxin reductase and glutaredoxin. Blockage 
of thioredoxin reductase promotes protein carbonylation, 
and siRNA-mediated knockdown of glutaredoxin inhibits the 
decarbonylation of peroxiredoxin [15,17].

H2S and Protein S-Sulfhydration
H2S as a novel gasotransmitter is mainly produced with the 

metabolism of L-cysteine by the enzymes cystathionine beta-
synthase, cystathionine gamma-lyase and 3-mercaptopyruvate 
sulfurtransferase [4,20,21]. H2S has been shown to be 
endogenously generated in cardiovascular, neuronal, immune, 
respiratory, gastrointestinal, liver, and endocrine systems, and 
influence a number of cellular signaling pathways. H2S can be 
present as a free form of gas or bound form of sulfane sulfur 
inside the cells [22]. Similar to NO and CO, H2S may directly 
regulate target proteins by S-sulfhydration to elicit its biological 
and pharmacological responses [23,24]. In this protein post-
translational modification, H2S reacts with a free thiol group in 
active cysteine residue of target protein to form hydropersulfide 
group (-SSH) [23]. It also has been reported that sulfane sulfur-
containing compounds have more reactive activity in mediating 
protein S-sulfhydration in comparison with H2S [24,25]. 
The modified biotin switch assay, mleimide assay, and mass 
spectrometry are often used to detect protein S-sulfhydration 
[21]. Thus far, a handful of proteins have been demonstrated to 
be targeted by H2S for S-sulfhydration, including Keap1, GAPDH, 
NF-κB, MEK1, Parkin, PTP-1B, pyruvate carboxylase, and many 
others [5,26].

Although protein S-sulfhydration has been showing 
its biological significance, the formation and removal of 
hydropersulfide in target proteins are not clear yet [5]. It is 

questioned on the direct reaction of H2S with free thiol group to 
form hydropersulfide. Cysteine S-sulfhydration may occur only 
when the free thiol group is oxidized to sulfenic acid, disulfide, 
mixed disulfide or nitrosothiol, which needs further evidence 
to validate [25]. Protein S-sulfhydration is unstable due to the 
increased nucleophilicity when compared to un-sulfhydrated 
proteins. It is highly possible that protein S-sulfhydration can 
be quickly removed or further oxidized. Not only acting as an 
S-denitrosylase, thioredoxin has been shown to facilitate protein 
S-desulfhydration by direct interaction with S-sulfhydrated 
proteins [27]. Overexpression of thioredoxin showed higher 
reactivity in removing cysteine hydropersulfide, while blockage 
of the thioredoxin system enhanced the level of intracellular 
persulfides, indicative the critical role of thioredoxin as a de-
sulfhydrase in regulating H2S signalling [25]. Indeed, thioredoxin 
has been shown to induce H2S generation by cleaving persulfide 
group in 3MST.

Future Directions and Prospects
Given the breadth and complexity of gasotransmitter in cellular 

functions, the precise and unique targets by gasotransmitters 
and the interaction among different gasotransmitters in post-
translational modification of proteins need to be thoroughly 
explored. A mutually competitive but also cooperative 
relationship among different post-translational modification 
by gasotransmitters can exist depending on cellular redox 
environment. In addition, rational drug design by targeting the 
modified proteins for therapeutic intervention of human diseases 
related with abnormal gasotransmitter signaling is greatly 
demanded.
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