Introduction

a. Many bacteria, in particular, have unpredictable susceptibilities to antimicrobial agents, and their susceptibilities can be measured in vitro to help guide the selection of the most appropriate antimicrobial agent.

a. Susceptibility to antibiotics

a. The term susceptible means that the microorganism is inhibited by a concentration of the antimicrobial agent.

b. The term resistant indicates that the microorganism is resistant to a concentrations of the antimicrobial agent.

The Aim of this Project

a. To determine the minimum inhibitory concentrations [MICs] of antimicrobial agents.

b. And to identify the microorganisms that are susceptible or resistance to the antibiotics.

Antimicrobial Susceptibility Tests

Minimum inhibitory concentration [MIC]

a. The lowest concentration of antimicrobial agents that will inhibit the visible growth of a microorganism. Widely used in the comparative testing of new agents.

Dilution methods (agar dilution or broth dilution)

a. Used to determine the [MICs] and are the reference methods for antimicrobial susceptibility testing.

Agar dilution test

a. Is the standard method for determining levels of microbial resistance to an antimicrobial agent.

b. Serial dilutions of the test agent are made in a agar microbial growth medium which is inoculated with a few amount of microorganisms and incubated for a prescribed time.

c. The lowest concentration (highest dilution) of test agent preventing the appearance of growth is considered to be the minimum inhibitory concentration (MIC).

Materials Used

a. Different enrichment and selective medium.

b. Culture.

MIC medium

I. Clear choice for a reference medium remains to be determined,

a. Nutrient agar/broth: used for the cultivation of a wide variety of microorganisms.

b. Brain-Heart Infusion agar

c. Mueller-Hinton ll agar.

II. Media for Bacterial identification

a. EMB agar.

b. MacConkey agar.

c. Triple Sugar Iron agar.

d. Nutrient agar/broth.

III. Antimicrobial agents Tested (Figure 1 – figure 5).

a. Lincomycin.

b. Cefaclor.

c. Ampicillin.

d. Gentamicin.
Determination of Minimum Inhibitory Concentrations [Mics] of Antibacterial Agents for Bacteria Isolated from Malva

Different concentrations of Lincomycin in Mueller-Hinton II agar:

![Figure 1a: Increase the concentration of Lincomycin. Antimicrobial agents Tested](image)

Different concentrations of Cefaclor in Mueller-Hinton II agar:

![Figure 1b: Increase the concentration of Cefaclor in Muller-Hinton II agar.](image)

Citation: Nayef A (2016) Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents for Bacteria Isolated from Malva. MOJ Proteomics Bioinform 3(1): 00072. DOI: 10.15406/mojpb.2016.03.00072
Different concentrations of Ampicillin in Mueller-Hinton II agar:

Increase the concentration of Ampicillin

Figure 1c: Increase the concentration of Ampicillin in Muller-Hinton II agar.

Different concentrations of Gentamycin in Mueller-Hinton II agar:

Increase the concentration of Gentamicin

Figure 1d: Increase the concentration of Gentamycin Muller-Hinton II agar.
Discussion

Identification: matching characteristics of an unknown to lists of known organisms.

a. Several culture and subculture for the bacterial samples done to reduce the number of bacterial colonies that have been isolated.

b. Three different types of media used for identification, (EMB agar, Triple Sugar Iron agar, and MacConkey agar).

For each sample, the three different types of media showed the same result (same species, which is identified by the morphology).

Result

a. Bacterial isolates identification

Bioinformatics, Computational Methods (Table 1- Table 3).

Table 1: Bacterial isolates identification.

<table>
<thead>
<tr>
<th>Samples from different regions</th>
<th>EMB agar</th>
<th>Triple Sugar Iron agar</th>
<th>MacConkey agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>كريستمصة</td>
<td>شيجيللا فلخنر</td>
<td>شيجيللا فلخنر</td>
<td>شيجيللا فلخنر</td>
</tr>
<tr>
<td>أب تصور</td>
<td>بروماسا ميرابيليس</td>
<td>بروماسا ميرابيليس</td>
<td>بروماسا ميرابيليس</td>
</tr>
<tr>
<td>الجايبة</td>
<td>بروماسا فيرجاليس</td>
<td>بروماسا فيرجاليس</td>
<td>بروماسا فيرجاليس</td>
</tr>
<tr>
<td>الويدة</td>
<td>بينودوناس آيرجينوسا</td>
<td>بينودوناس آيرجينوسا</td>
<td>بينودوناس آيرجينوسا</td>
</tr>
<tr>
<td>عين البنا</td>
<td>بروماسا ميرابيليس</td>
<td>بروماسا ميرابيليس</td>
<td>بروماسا ميرابيليس</td>
</tr>
</tbody>
</table>

Table 2: Bacterial isolates identification.

<table>
<thead>
<tr>
<th>Samples from different regions</th>
<th>EMB agar</th>
<th>Triple Sugar Iron agar</th>
<th>MacConkey agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>المدينة الرياضية</td>
<td>كيتروباستركت فرندندي</td>
<td>كيتروباستركت فرندندي</td>
<td>كيتروباستركت فرندندي</td>
</tr>
<tr>
<td>مادبا</td>
<td>شيجيللا فلخنر</td>
<td>شيجيللا فلخنر</td>
<td>شيجيللا فلخنر</td>
</tr>
<tr>
<td>رحب</td>
<td>E.coli</td>
<td>E.coli</td>
<td>E.coli</td>
</tr>
<tr>
<td>الزرقا</td>
<td>كليسيلا پنونوميا</td>
<td>كليسيلا پنونوميا</td>
<td>كليسيلا پنونوميا</td>
</tr>
<tr>
<td>السيل</td>
<td>بروماسا فيرجاليس</td>
<td>بروماسا فيرجاليس</td>
<td>بروماسا فيرجاليس</td>
</tr>
<tr>
<td>جانب السيل</td>
<td>سالونيلا تفي</td>
<td>سالونيلا تفي</td>
<td>سالونيلا تفي</td>
</tr>
</tbody>
</table>

Citation: Nayef A (2016) Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents for Bacteria Isolated from Malva. MOJ Proteomics Bioinform 3(1): 00072. DOI: 10.15406/mojpb.2016.03.00072
Table 3: Bacterial isolates identification.

<table>
<thead>
<tr>
<th></th>
<th>EMB agar</th>
<th>Triple Sugar Iron agar</th>
<th>MacConkey agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>نيزال</td>
<td>Citrobacter freundii</td>
<td>Citrobacter freundii</td>
<td>Citrobacter freundii</td>
</tr>
<tr>
<td>السد</td>
<td>Proteus mirabilis</td>
<td>Proteus mirabilis</td>
<td>Proteus mirabilis</td>
</tr>
<tr>
<td>السلط</td>
<td>Salmonella typhi</td>
<td>Salmonella typhi</td>
<td>Salmonella typhi</td>
</tr>
<tr>
<td>شغبدران</td>
<td>Shigella flexneri</td>
<td>Shigella flexneri</td>
<td>Shigella flexneri</td>
</tr>
</tbody>
</table>

Discussion

I. Lincomycin, generally considered a bactericidal antibiotic, for these bacteria, the MIC was at dilution (512mg), but also there are three different types of bacteria which resists the Lincomycin at the same dilution (512), these bacteria are (*Shigella flexneri*, *Proteus mirabilis*, and *Proteus vulgaris*).

II. Cefaclor and Gentamicin, generally considered a bactericidal antibiotics, for these bacteria, the MIC was at dilution (64mg), which means that all the bacterial samples are sensitive to these types of antibiotics at their different concentrations (Cefaclor and Gentamicin).

References