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human protein atlas; MOPED, model organism protein expression 
database; PHEGENI, phenotype-genotype integrator; ORF, open 
Reading Frame; RefSeq, reference sequence; SNP, single nucleotide 
polymorphism

Introduction
The human genome project is an attractive starting point for novel 

gene discovery for diverse diseases.1‒4 In the past, gene discovery 
approaches focused on one gene at a time, which was time consuming 
and inefficient. The ready availability of numerous meta-analysis 
bioinformatics tools has greatly enhanced our ability to mine the 
genome globally to identify genes involved in multiple diseases. A 
significant number of the human proteins in the genome, however, 
remain uncharacterized.5 These uncharacterized proteins together 
with the noncoding RNAs (ncRNAs) have been termed the Dark 
Matter of the human genome.6‒8

Development of new molecular entities for therapy and diagnosis 
for various diseases requires novel targets. Reasoning that such novel 
targets may emerge from characterizing the dark matter proteome, 
we have embarked on a systematic dissection of the uncharacterized 
proteins, the Open Reading Frames (ORFs) in the genome.9‒11 Our 
recent development of a cancer-associated fingerprint from the 
dark matter proteome, the OncoORFs,11 provided a framework for 
expanding our approaches to other diseases. 

We have next undertaken mining the human genome with a view 
towards novel biomarker discovery for type 1 and type 2diabetes. It 

is estimated that 382million people suffer from diabetes, for a global 
prevalence of 8.3%.12

Diabetes affects a large number of people in the world and is a 
major healthcare challenge.13,14 The complications associated with 
diabetes involve numerous other disorders such as cardiovascular, 
developmental, immune, metabolic, neurodegenerative, obesity, renal 
and vision.15‒19 Both of the two major forms of diabetes, type 1, an 
autoimmune disease20,21 and type 2, a metabolic disorder,22‒25 require 
novel approaches to early diagnosis and therapy.26‒29 Notwithstanding 
the availability of several classes of anti-diabetic drugs, it is often 
difficult to maintain long-term glycemic control and many current 
agents have treatment-limiting side effects. Discovery of targets 
affecting multiple pathways in the diabetes-associated disorders 
would greatly facilitate the development of novel therapeutics for type 
2 diabetes.26,30

The Genetic Association Database (GAD) provides an efficient 
way to mine the human genome for disease association studies.31 
Association data regarding both the known and the uncharacterized 
proteins are available in the GAD, which can be readily mined to 
establish genetic polymorphism-associated disease phenotypes.

Reasoning that the GAD would enable us to discover type 1 and 
type 2 diabetes-associated novel biomarkers and drug gable targets,32,33 
which might also be relevant to diabetes-related disorders, the GAD 
was searched for diabetes-related entries by text mining. The genetic 
polymorphisms associated with both type 1 and type 2 diabetes 
and related disorders were classified. In addition to known genes, 
numerous ORFs were found to be associated with both type 1 and type 
2 diabetes. These diabetes-associated ORFs (referred to as diabetes 
ORFs) were also found to be genetically associated to numerous 
other diseases. Using diverse bioinformatics and proteomics tools 
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Abstract

The human genome offers an attractive starting point for diabetes biomarker discovery. 
We have undertaken a survey of the Genetic Association Database (GAD) to develop 
a comprehensive genetic profiling of the type 1 and type 2 diabetes phenotypes. Using 
text mining, the GAD was explored for diabetes-associated genetic polymorphisms 
and a working database for type 1 and type 2diabetes was established. In addition to 
well-characterized genes, 57 novel, uncharacterized Open Reading Frames (ORFs) 
encompassed in the dark matter of the human proteome were identified. Diverse 
bioinformatics and proteomics tools were used to characterize these ORFs for gene 
expression, protein motifs and domain information. Distinct protein classes including 
secreted products, enzymes, transporters, and receptors were encoded by these ORFs. 
Using expression Quantitative Traits Loci, Clinical Variations and the Genome-
Phenome Integrator tools, 50 novel ORFs associated with phenotypes for both type 
1 and type 2 diabetes were identified. These results open up new avenues for better 
understanding type 1 and type 2 diabetes and may provide novel therapy targets for 
type 2 diabetes and associated disorders.
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we demonstrate that novel drug gable classes of proteins (enzymes, 
receptors, transporters) were encoded by the diabetes ORFs. Further, 
secreted ORF biomarkers unique to type 1 and type 2diabetes were 
detected in the body fluids including blood, urine and pancreatic 
juice. These results provide a framework for discovery of novel 
biomarkers for diabetes type 1 and type 2 and to further develop a 
better understanding of the diabetes-associated disorders.

Materials and methods
The bioinformatics and proteomics tools used in the study have 

been described elsewhere.9‒11 In addition, the following genome-
wide association tools were used: the Genetic Association Database, 
GAD (31); the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v6.7 from the NCBI;34 GeneALaCart (LifeMap 
discovery) from the GeneCards;35 the Phenotype-GenoType 
Integrator;36 the Database of Genomic Variants, DGV;37 Clinical 
Variations, ClinVar;38 the International HapMap project, the type 1 
diabetes database and the type 2 genetic association database, T2D-
db.39

All of the bioinformatics mining was verified by two independent 
experiments. Big data was downloaded two independent times and the 
output verified for consistency. Big data verification was performed by 
two independent investigators. Only statistically significant results per 
each tool’s requirement are reported. Prior to using a bioinformatics 
tool, a series of control query sequences was tested to evaluate the 
predicted outcome of the results.

Results
Disease association profile of the diabetes genes

We have undertaken a comprehensive profiling of the diabetes-
associated genetic polymorphisms of the human genome. The GAD 
is a comprehensive archive of human genetic association studies of 
complex diseases and disorders.31,40 The association data for both the 
known and uncharacterized proteins are present in this database. The 
identification of clinically relevant polymorphisms from the large 
volume of polymorphism and mutational data is possible with the 
GAD. The entire GAD database as of 2014-03-08 was downloaded to 
provide a basis for mining the diabetes genome. 

From the 65,536 entries in the complete GAD, 4,665 diabetes-
related entries were found. These entries were filtered using the 
advanced filter option of Excel and gene entries related to diabetes 
associated diseases and disorders were enriched (Figure 1). Genetic 
polymorphisms related to cardiovascular, metabolic, immune, 
infection, cancer, neurodegenerative disorders etc. associated with 
diabetes were found. The entire data is shown in Supplemental Table 
1.

Multiple entries for each gene were found which represented 
different polymorphic, Single Nucleotide Polymorphism (SNP) rs 
numbers. The GAD entries were enriched for diabetes using three 
filters 

i.	 broad phenotypes, 

ii.	 disease classes and 

iii.	 Medical Subject Headings (MeSH) terms, yielding 57 
diabetes-associated ORFs. In view of the strong association 
of these ORFs with diabetes-related disorders, these ORFs are 
termed the “Diabetes ORFs”. These novel ORFs provided the 

framework for detailed characterization studies to establish 
druggableness and biomarker potential for diabetes.

Figure 1 Disease association profile of the diabetes genes. The Genetic 
Association Database (GAD) was enriched by text mining-based filtering to 
identify diabetes-associated polymorphisms in related disorders. The numbers 
indicate the polymorphisms associated with the indicated disorders.

Uncharacterized proteome of the diabetes genome

Recently we demonstrated the usefulness of a streamlined approach 
to mining the GAD database to identify a cancer-related fingerprint, 
the OncoORFs.11 The availability of multiple batch analysis tools 
such as the GeneALaCart from the GeneCards,35 DAVID,34 the 
canSAR Integrated Drug Discovery platform,41 and numerous 
protein expression analysis tools such as the Model Organism Protein 
Expression Database (MOPED),42 the Human Protein Reference 
Database (HPRD),43 the Human Protein Atlas (HPA)44 and the recently 
described Clinical Proteomic Tumor Analysis Consortium (CPTAC) 
database greatly facilitated big data handling approaches.

In order to establish an initial framework for characterization studies, 
the 57 diabetes ORFs were batch analyzed using the GeneALaCart, 
DAVID and canSAR integrated bioinformatics tools. Information 
related to gene descriptions, IDs (mRNA and proteins), chromosomal 
map positions, putative function and gene ontology were obtained. 
These analyses enabled an initial protein class prediction for some of 
these diabetes ORFs (Table 1 included as supplementary). Noncoding 
RNAs, putative enzymes, secreted proteins, cell cycle and trafficking 
proteins were inferred from the gene descriptions, the gene ontology 
(GO) and the UniProt summary. Thirty of the diabetes ORFs were 
uncharacterized proteins. Encouraged by the possible druggableness 
and biomarker potential of these uncharacterized diabetes ORFs, a 
comprehensive analysis and characterization was undertaken. 

Association of the diabetes ORFs with diverse diseases 
Diabetes type 1 and type 2 represents a complex set of associated 

diseases and disorders.45‒47 Hence, it was of interest to investigate the 
relationship of the diabetes ORFs with other diseases. The diabetes 
ORFs from the GAD were analyzed using the MeSH and the broad 
terms filters. To augment the disease data output from the GAD, a 
disease-oriented database, the Malacards48 and the NextBio Meta 
analysis tool were used to establish a comprehensive disease profiling 
of these ORFs. Data was also generated from the NextBio for most 
correlated characteristics (tissues, drug interactions and genes 
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perturbed) of the diabetes ORFs (Supplemental Table 2). As shown in 
Figure 2, the 57 diabetes ORFs were associated with various disorders 
and diseases, which often accompany both type 1 and type 2 diabetes. 
Many overlapping diseases were seen for these ORFs, implying a 
complex landscape of involvement. 

Figure 2 Association of the diabetes ORFs with diverse diseases. The 
association of the diabetes-related uncharacterized Open Reading Frames 
(ORFs) with diverse diseases and disorders is shown. The numbers in 
parentheses indicate the ORFs associated with the indicated disorders.

Gene expression profile of the diabetes ORFs

The mRNA and protein expression data provide an important 
clue to the specificity of the ORFs. Hence, the diabetes ORFs’ 
expression in human normal and tumor tissues was investigated 
using the MOPED, HPA and HPRD and the National Cancer Institute 
(NCI) CPTAC protein expression tools. The diabetes ORF data was 
enriched from the complete HPRD and HPA downloaded databases; 
the MOPED and the NCI clinical proteomics databases were batch 
analyzed using the diabetes ORFs. The tissue-restricted mRNA 
expression was inferred from UniGene and HPA tools (Table 2 
included as supplementary). Distinct expression profiles for numerous 
diabetes ORFs were detected in diverse tissues and body fluids: blood 
(C1orf167, C1orf204, C6orf25, C12orf63, C14orf64, C15orf62, 
C20orf27), liver secretion (C1orf167, C11orf9), pancreatic juice 
(C20orf27, C11orf9), serum (C4orf41), sperm (C6orf10) and urine 
(C6orf1). Tissue-restricted expression was seen for brain (C4orf50), 
lung (C1orf87, C9orf171), small intestine (C10orf112, C17orf78), 
testis (C1orf87, C6orf10, C8orf85, C9orf171, C1orf167, C17orf50) 
and fetus (C18orf56). Pancreatic expression was seen for C3orf65, 
C4orf32, C4orf52, C6orf1, C6orf10, C6orf47, C6orf173, C10orf2 and 
C16orf70. The C20orf27 protein expression was seen in both blood 
platelets and pancreatic juice. The C11orf9 protein was detected in 
both the pancreatic juice and in liver secretion, while expression of 
the C6orf10 protein was seen in the sperm and pancreatic tissues. 
The detection of several of the diabetes ORFs in diverse body fluids 
highlights the biomarker potential for these ORFs to enhance the 
pipeline of diagnostic markers for diabetes type 1 and type 2.

Motif and domain analysis of the diabetes ORFs

To develop further insight into the nature of the diabetes–related 
proteins, the ORFs were analyzed for protein motifs and domains. 
The GeneALaCart and DAVID tools were used to batch analyze the 
diabetes ORFs for the InterPro/UniProt Domains and Families, Panther 
and Procyte protein motifs. In addition, the NCBI Conserved Domain 
Database, CDD,49 the InterProscan,50 the Protein Family, PFAM51,52 

and SignalP53 bioinformatics tools were used to analyze the diabetes 
ORFs (Table 3 included as supplementary). The post-translational 

modification sites, binary interactions and protein architecture and 
complexes data were obtained from the HPRD database batch analysis. 
From these analyses, the diabetes ORFs were grouped into classes 
of proteins. Protein families including immunoglobulins, secreted 
products, antigens, cell cycle proteins, enzymes, nucleotide/metal 
binding, receptors, transporter/sorting proteins, vesicular proteins 
and noncoding RNA (ncRNAs) were identified among the diabetes 
ORF encoded proteins. The binary interaction data, post-translational 
modification as well as the protein architecture from the HPRD 
provides additional information regarding the nature of the diabetes 
ORF proteins. From these results, five ORF proteins were predicted as 
secreted proteins based on the presence of signal peptide sequence at 
the N-Terminus using the p signal tool (C1orf204, C6orf25, C6orf27, 
C6orf57 and C14orf64). Two of these proteins, C6orf25 and C6orf27, 
were specific to type 1 diabetes. On the other hand, the C6orf57 
protein was specific to type 2 diabetes. The expression of C6orf25 and 
C1orf204 proteins was also detected in the blood (Table 2 included as 
supplementary). These five ORFs provide a rationale for development 
of novel diagnostic markers. 

Diabetes-associated traits of the diabetes ORFs by 
eQTL analysis 

The Phenotype-GenoType Integrator (PheGenI) merges National 
Human Genome Research Institute (NHGRI) Genome-Wide 
Association Studies (GWAS) data with several databases including 
Gene, database of Genotypes and Phenotypes (dbGaP), Online 
Mendelian Inheritance in Man (OMIM), the Genotype-Tissue 
Expression project (GTEx) and the Single Nucleotide Polymorphism 
database (dbSNP).36

An expression Quantitative Trait Locus (eQTL) represents a 
marker (locus) in the genome in which variation between individuals 
is associated with a quantitative gene expression trait, measured as 
mRNA abundance. Three parameters are used to verify eQTL results: 

i.	 a SNP marker

ii.	 The gene expression levels, as measured by a probe or sequence 
information, and 

iii.	 A measure of the statistical association between the two in a 
study population, such as the P-value. The eQTL browser 
provides an approach to query the eQTL database.54

The eQTLs can be cis, where the genotyped marker is near the 
expressed gene, or trans, in which the genotyped marker is distant 
from the expressed gene either in the same or on another chromosome. 
Currently only the cis-eQTLs55 are available. In order to establish 
diabetes-associated eQTL results for the diabetes ORFs, the PheGenI 
tool was used to batch analyze the ORFs. Genotypes for the diabetes 
ORFs were selected for exons, introns, near gene and Untranslated 
Region (UTR). From the output of results, diabetes traits were 
enriched. The eQTL data for the diabetes ORFs are shown in Table 4 
(included as supplementary). 

Four diabetes ORFs showed strong eQTL association evidence with 
diabetes with significant P-values. The ORF C6orf10 was associated 
with type1 diabetes, systemic lupus56 and multiple sclerosis.57 Other 
diseases showing association with C6orf10 included rheumatoid 
arthritis, drug-induced liver injury, Graves disease, asthma, psoriasis, 
glomerulonephritis, IGA, systemic scleroderma, bone density, diabetic 
nephropathy, heart rate, vitiligo and eosinophils (Supplemental Table 
2). The ORFs C6orf27 and C6orf47 were associated exclusively with 
type 1 diabetes,58‒60 whereas ORF C6orf57 was associated with type 2 
diabetes and CD40 ligand.61,62
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Diabetes ORFs and subtypes of diabetes

A summary of key findings related to the two major subtypes 
of diabetes is shown in Table 5. Thirty of the 57 ORFs remain 
uncharacterized proteins. Both type 1 and type 2 diabetes were found 
to be associated with distinct as well as common diabetes ORFs. 
Fifteen ORFs were associated with type 1 diabetes and 35 ORFs 
were linked to type 2 diabetes. Three eQTL ORFs associated with 
type 1 (C6orf10, C6orf25 and C6orf47) were identified. A single ORF, 
C6orf57, was found to be associated only with type 2 diabetes.

The ncRNA class of the diabetes ORFs was associated with both 
type 1(C6orf208) and type 2 diabetes (C6orf217, C14orf70). Diabetes 
type-specific secreted ORF proteins were also identified for type 
1 (C6orf25 and C6orf27) and for type 2 (C6orf57). Strong genetic 
association for phenotypes was seen for both type 1 (C6orf27, C6orf47, 
C6orf173, C6orf208) and type 2 (C1orf204, C6orf47, C6orf57, 
C6orf217, C14orf70). Clinical variations were identified using the 
ClinVar tool. The C2orf86| WD repeat containing planar cell polarity 
effector is a risk factor for Meckel Syndrome Type 6 and Bardet-Biedl 
Syndrome 12 and is pathogenic for Bardet-Biedel Syndrome 15.63 
The C4orf32| CTBP1 antisense RNA 2 (head to head) is pathogenic 
for developmental delay.64 The C10orf55|Uncharacterized protein is 
a risk factor for susceptibility to late-onset Alzheimer’s Disease,65,66 
whereas the C15orf41|Uncharacterized protein harbors pathogenic 
mutations for Congenital Dyserythropoietic Anemia, Type 1b.67,68

Novel druggable targets for type 2 diabetes and 
biomarkers for type 1 Diabetes

Using diverse bioinformatics and proteomics tools (gene ontology, 
motif and domain analysis, protein expression data in normal tissues 
and body fluids), putative protein classes were assigned for 42/57 
diabetes ORFs (Figure 3) (Table 3). These included druggable 
targets such as enzymes (C7orf10, C10orf2), receptor/cell adhesion 
molecules (C10orf112), transporters (C1orf87, C16orf70), secreted 
immunoglobulins (C1orf204, C6orf25) and other secreted proteins 
(C4orf52, C6orf27, C6orf57 and C14orf64). These novel ORF 
proteins present a valuable opportunity to open new avenues for 
diabetes drug discovery and diagnostic marker development.

Figure 3 Novel druggable targets and biomarkers for diabetes. A summary 
of the gene ontology and protein motif- and domain-based prediction of the 
protein classes for the diabetes ORFs is shown.

Discussion
We have used GAD to stratify diabetes-associated genes and 

genetic polymorphisms. Diverse diabetes-associated complications 
and disorders (albuminuria, alzheimer’s disease, autoimmune, 
cardiovascular, glucose intolerance, infection, inflammation, insulin 
resistance, metabolic syndrome, neurodegenerative, neoplasm, 
obesity, pharmacogenomics, predisposition, subtypes of diabetes) 
were segregated into a distinct set of gene-associated polymorphisms. 
In addition to known genes, over 50 uncharacterized ORF proteins 
were associated with type 1 and type 2 diabetes. These ORFs also 
showed association with diverse diseases and complications that often 
accompany both type 1 and type 2 diabetes, suggesting a complex 
landscape of disease involvement for these proteins. Currently, it is 
not possible to separate the associated disorders specific to type 1 
versus type 2 diabetes. However, the type-specific ORFs predicted 
in this study should provide a starting point for such an analysis in 
the future.

Identification of five new and uncharacterized ORF proteins with 
signal peptides and their detection in body fluids adds to the pipeline 
of potential biomarkers for both type 1 and type 2 diabetes. Further, 
13 new druggable genes encompassing receptors, transporters and 
enzymes motifs were identified. It is likely that some of these novel 
ORFs may provide a basis for drug discovery efforts for diabetes type 
2 and associated diseases.

Novel links to type 1 and type 2 diabetes with cancer is predicted 
from this study. The association results for C12orf30 (N-terminal 
acetyltransferase B complex subunit NAA25) indicate that individuals 
with increased susceptibility to type 1 or 2 diabetes have a decreased 
risk of developing prostate cancer.69 A long intergenic non-protein 
coding RNA (C6orf208) showed a strong association with renal cell 
carcinoma and type 1 diabetes.70 Although the precise relationship 
between diabetes and prostate and renal cancer is unclear, these results 
underscore the importance of linking unrelated human diseases. 
Additional studies on the C6orf208 ncRNA may provide valuable 
clues for understanding the link between both types of diabetes and 
cancer.

The C2orf65 (meiosis 1-arresting protein, M1AP), C6orf10 
(testis-specific basic protein, TSBP) and C8orf85 (alanine- and 
arginine-rich domain-containing protein, AARD) showed association 
with rheumatoid arthritis, coronary artery disease, Crohn’s disease, 
diabetes mellitus type 2, type 1 insulin-dependent diabetes mellitus, 
and hypertension.71 These three ORFs may provide further insight into 
the association of type 1 and type 2 diabetes with cardiovascular and 
inflammatory diseases. 

Interestingly, numerous type 2 diabetes ORFs were found to be 
associated with a pharmacogenomics potential in thiazolidinedione-
induced edema.72 It is tempting to speculate that these ORFs may 
form a core pharmacogenomic signature for the treatment of type 2 
diabetes. Additional experiments are needed to verify these findings. 

The ncRNAs are increasingly becoming an important component 
of the dark matter of the human genome.6,7 Our study demonstrates 
that distinct ncRNAs were associated with type 1 diabetes (C6orf208) 
versus type 2 (C6orf217, C14orf70). In addition to its association with 
type 1 diabetes, C6orf208 was also linked with allergic disorders, 
disorders of the lung and viral infections. On the other hand, C14orf70 
was associated with viral infections, liver transplant disorder and 
neuroblastoma. C6orf217 was associated with virus infections, breast 
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cancer, head and neck cancers and bipolar disorder (Supplemental 
Table 2). A common association with viral infections was seen in these 
three distinct ncRNAs. It is possible they are involved in a common 
pathway. Further studies on these three diabetes type-specific ncRNAs 
are warranted.

Fifteen of the diabetes ORFs were uniquely associated with type 1 
diabetes and 35 were uniquely associated with type 2 diabetes (Table 
5 Included as supplementary). These unique ORFs included secreted 
factors for Type 1 (C6orf25|Secreted immunoglobulin, and C6orf27| 
von Willebrand factor A domain-containing 7 protein) and for type 2 
(C6orf57|Protein of unknown function). The type 1-specific secreted 
ORFs, if verified as an early stage marker, offer early intervention 
potential. 

In addition, the diabetes ORFs encompassed a class of druggable 
proteins: 

i.	 receptor C5orf23|Atrial natriuretic peptide clearance receptor,73 

ii.	 enzymes (C7orf10|baiF CoA-transferase family protein and 
C12orf30|N(alpha)-acetyltransferase 25,58 NatB auxiliary 
subunit) and 

iii.	 Transporter (C16orf70|lin-10 homolog|post-Golgi vesicle-
mediated transport). These three targets may provide novel 
opportunities for drug discovery approaches for type 2 diabetes.

The C5orf23 is associated with hypertension, obesity, asthma, 
thyroiditis, and lung and neuroendocrine tumors.74‒76 The C12orf30 
is associated with type 1 diabetes, hypothyroidism, arthritis, systemic 
lupus erythematosus, other autoimmune disorders and prostate 
cancer.77‒79 The druggableness of the C12orf30 (enzyme) offers 
an attractive target for type 1 diabetes-associated disorders and 
complications. The C16orf70 is associated with type 2 diabetes and 
chronic lymphocytic leukemia and may offer a response therapy 
target for the treatment of edema among individuals who receive 
rosiglitazone.72

The eQTL evidence identifies the C6orf10|Testis-specific basic 
protein|TSBP as a key gene involved in vitiligo, type 1 diabetes, 
multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis 
and various other immune disorders.80‒83 Generalized vitiligo is an 
autoimmune disease characterized by patchy depigmentation of skin, 
hair, and mucous membranes resulting from loss of melanocytes from 
involved areas.84 Strong association evidence was seen for C6orf10 in 
vitiligo, and this gene may provide a biomarker potential.

These results support our starting premise that mining the 
uncharacterized diabetes proteome using bioinformatics and 
proteomics approaches can identify novel molecular targets for better 
understanding the etiology. It is reasonable to predict that from the 
druggable class of the ORFs identified in this study, new drug targets 
may emerge for the treatment of type 2 diabetes and related diseases. 
The discovery of novel diabetes type 1 and type 2 specific ORFs, 
expression validation and protein motif characterization should 
facilitate functional studies for these genes in the future. Further 
studies on these diabetes ORFs with functional genomics should shed 
light on their relevance to the complex etiology of both type 1 and 
type 2diabetes. 

Conclusion
In summary, these results demonstrate the usefulness of mining 

the human genome for novel biomarker discovery for both type 1 
and type 2 diabetes. Identification of novel secreted proteins in the 
body fluids and druggable genes encompassing enzymes, receptors 

and transporters provides a rationale for new biomarkers and 
therapeutic targets discovery for type 2 diabetes and related disorders. 
Understanding the gene network and pathway interactions with 
other genes with these novel diabetes-associated ORFs is likely to 
provide new knowledge about function of these ORFs. The diabetes 
type-specific ORFs discovered in this study should provide a basis 
for follow-up studies toward a better understanding of the complex 
etiology of both type 1 and type 2 diabetes and related diseases that 
often accompany diabetes.
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