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Abstract

Fractal geometry presents a comprehensive mathematical richness capable of
describing different aspects of irregular growth phenomena of which the bone
structure is an example. In this context we can mention osteoporosis, which is a
disease that reaches the bones. It is characterized when the amount of bone mass
decreases substantially and develops hollow bones, fine and extremely sensitive,
more subject to fractures. It is a variation in the density of the trabecular bone,
or a variation in the quantity of trabeculae. Generic modeling of an irregular
structure, such as that of the trabeculae of bone, will allow an analytical
description of the phenomena resulting from the structure of these trabeculae
within the models of bone growth, bone remodeling, osseointegration, etc. In
this way, the theoretical models of these phenomena may incorporate the fractal
aspects of the trabeculae, explaining them more appropriately, as well as the
properties deriving from their geometry in a general way. The objective of this
work is to develop a methodology for the measurement of void volume variation
and volume variation of trabecular bone material based on fractals.
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Introduction

The visualization of the bone structure of a patient can be done
by different methods, such as: X-rays, tomography, micro-CT, etc.
From an image can be made a clinical diagnosis of bone diseases
such as osteoporosis, for example. However, these qualitative
methods that are commonly used are limited to the orthopedist’s
visual experience. No quantitative data is provided unless a
computerized analysis of these images is performed. A safe
diagnosis is the continuing goal of the clinician using the imaging
methods outlined above. Since the irregular trabecular structure
can be characterized by fractal geometry, in this work we perform
a geometric analysis of a bone structure as a way of quantifying
the information that can be obtained through an image.

In this work we propose a monofractal model for the trabecular
bone structure as a way of quantifying the analyzes made on
digitized images. The initial objective of this work is to extract
information through the analysis of images that can quantify
mathematical quantities defined in the fractal model, depending
on the area of observation, such as: effective bone volume, bone
volume variation, total trabeculae count, variation of bone density,
rate of bone loss, rate of bone remodeling.

In this work we will only present the geometric analyzes
made based on the monofractal geometry. We present the fractal
study on bone images, where we quantified data related to bone
volume variation with the observation scale and the size of the
trabecular voids. The objective is to present a research proposal
for use in Models of Thermodynamic Potentials Applied to the

Study of Phenomena Associated with Porous Matrices as the Bone
Trabecular Matrix [1,2].

Review of the Osteoporosis Problem

Osteoporosis is a disease that strikes the bones. It is
characterized when the amount of bone mass decreases
substantially and develops hollow bones, fine and extremely
sensitive, more subject to fractures. It is part of the normal
aging process and is more common in women than in men. The
disease progresses slowly and rarely presents symptoms before
something of greater gravity happens, such as a fracture, which is
usually spontaneous, that is, not related to trauma. If preventative
diagnostic tests are not done osteoporosis may go unnoticed until
it has greater severity. Osteoporosis can be delayed by preventive
measures.

The onset of osteoporosis is linked to the hormonal levels of
the body. Estrogen, the female hormone, also present in men, but
in lesser amounts, helps maintain the balance between bone loss
and bone gain. Women are the most affected by the disease, since
at menopause, estrogen levels fall sharply. With this, the bones
begin to incorporate less calcium (fundamental in the formation
of the bone), becoming more fragile. For every four women, only
one man develops this pathology. Although they look like inactive
structures, bones change over a lifetime. The body is constantly
healing and breaking bones. This process depends on several
factors like genetics, good nutrition, maintaining good levels of
hormones and regular exercise. The bone cells (osteocytes) are
responsible for the formation of collagen, which gives support to
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the bone. The channels that interconnect the osteocytes allow the
calcium, essential for bone formation, to escape from the blood
and help form the bone.

The mineral density of calcium is reduced from 65% to 35%
when osteoporosis is installed as shown in the Figure 1. The
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|‘ L] Figure 3: Trabecular structure with the appearance of osteoporosis.

< Bone remodeling
i

The amount of bone mass present in the skeleton is the result
S "R i [ of formation and reabsorption. This process is directly related

‘ L LA R | J to the bodily need to maintain a physiological concentration
of ionized calcium in the organic fluids and especially to the
need to maintain the structural integrity of the skeleton.
In the normal physiological process, bone resorption and
formation are closely related in time, degree and space, so
much so that bone formation is only activated after an area of
absorption is established. Bone metabolism is influenced by
various hormonal, local, behavioral and environmental factors, as
well as mechanical, electrical, chemical and magnetic forces. This
mechanism is relatively rapid in the trabecular bone and slower
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Osteoclasts are recruited to the surface (a process called
activation) and reabsorb a quantity of mineral, creating a cavity
Figure 1: Variation of the trabecular structure with the degree of bone - Howship gap - in the trabecular bone. This phase lasts for about
calcification. two weeks and is followed by a period of apparent inactivity at
the site of resorption. During this phase, the osteoclasts disappear
and are replaced by macrophages, whose function is not fully
elucidated but appears to be to deposit a substance that initiates
cementation. As this process occurs between bone removal and
its subsequent replacement, it is called the reversal phase. Upon
receipt of a signal, the osteoblasts - cells that synthesize the new
matrix - adhere to the surface of the cavity. These cells synthesize
collagen and other non-collagenous proteins, which are secreted
into the cavity to form the osteoid, a non-mineralized matrix that
will later form into new bone. This training phase may take several
months to establish. Under normal conditions, the amount of new
bone synthesized at each remodeling site is exactly the same as
that removed by osteoclasts. Adults are estimated to remodele
from 10 to 30% of their bone mass every year. This “preventive
maintenance” causes the skeleton to have an average age of about
eight years.
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Bone remodeling with fractals

The idea of integrating the processes and theories about bone
remodeling with fractals theory is to obtain a theoretical model
able to demonstrate beyond variation of bone density, trabeculae

Figure 2: variation of the size of voids for a: a) trabecular bone with
low calcium reduction; b) trabecular bone with high calcium reduction
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growth, its direction and size, in relation to its position within the
bone.

Using fractal measurements of bone images, in other words,
applied the fractal theory, to obtain the fractal dimension, which
can be considered a quantitative description of the degree of
irregularity of the complex surfaces, on a sequence of images of
tomographies, or X-rays, as a function of time, provide formation
or resorption characteristics of the trabeculae. With this, it is
possible to define a guideline to obtain the specific properties of
each trabecula during the process of bone remodeling.

Fundamentals of Fractal Theory

We are very familiar with Euclidean geometry, where we study
the most simple and well-known figures of geometry: straight
lines, squares, circles, cones, pyramids, etc. We are accustomed
to calculate their length, area, and volume measurements. In this
context the idea of dimension is already in our minds. However,
many phenomena and forms found in nature cannot be explained
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along the lines of conventional mathematics, for which a special
theory is needed to explain and characterize them, the so-called
fractal geometry. In general, fractal geometry is used to describe
a geometric object that never loses its structure whatever the
distance of sight, or scale. Figure 4 contains drawings of two
naturally occurring objects, the boundary (or coastline) of an
island (Figure 4a) and a person (Figure 4b). As the contour of the
island is enlarged, it is observed that the roughness repeats itself
and, by changing the scale, the roughness seems to be the same,
that is, the contour of the island is a fractal curve and the island
is a self-similar object. The person, however, is not a self-similar
object. When various parts of the body are enlarged, complete
changes in the shape of objects are observed. The hand does not
represent the whole body, the nail does not resemble the hand,
and even when observing different parts of the body on the same
scale, such as the head and the hand, these parts cannot be said to
have similar shapes. This concludes that a person is not a fractal
object.
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Figure 4: [llustration of the boundary of an island, fractal, and a person, not fractal.

Following the observation done above using different scales
as illustrated in the Figure 4 we can verify that many objects,
phenomena and forms found in nature cannot be explained in the
form of conventional mathematics, for which a special theory is
necessary to explain and characterize them, the so-called fractal
geometry. Both the pattern of cloud formation and the pattern
of growth and arrangement of branches and leaves in a tree, for
example, can be recreated by means of simple rules of geometric
construction, but when executed they can generate structures of
admirable complexity, the fractals.

a. Fractais: they are geometric objects whose Haussdorf-
Besicovitch dimension strictly exceeds the topological
dimension and have structures in all their scales of expansion,
usually with some similarity between them, that is, they are
self-invariant geometric objects by scale transformation that
they possess fractional dimension exceeding the topological
dimension, as shown in the Figure 5.

b. Invariance by transformation of scale: Is when the parts
of an object are similar to the whole that can be by SELF-
SIMILARITY (e.g. a pine) or SELF-AFFINITY (e.g. a crack)
whose characteristics are: has voids in the structure, has
a fractional dimension together the invariance by scale
transformation, as shown in the Figure 5 & 6.

There are basically two types of self-similarity, the statistical
and the exact or strict. Statistical self-similarity is the case of the
example cited in Figure 4a (the coastline of an island) and in the
Figure 5b, as is the case of the trabeculae of a trabecular bone,
ie these examples have the same statistical characteristics. In the
case of the line of a coast, the roughness of a surface or profile, and
in the case of the trabecular bones we observe irregularities that
arerepeated in a statistically similar way in different magnification
scales. In exact or strict self-similarity, one can observe in a part of
the fractal object a replica of the whole parenthesis: (Figure 5a),
as is the case with the fern leaf.
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Figure 5: Mathematical fractal showing its initiator and its seed as basic or fundamental structure of construction.
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Figure 6: Some types of phenomena that can be modeled by fractal growth theory.
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The term fractal was coined in 1975 by Benoit Mandelbrot,
a French mathematician born in Poland, who discovered fractal
geometry in the 1970s, from the Latin adjective fractus, from
the verb frangere, which means to break. It serves to describe
a geometric object that never loses its structure whatever the
distance of sight, or scale. Mandelbrot classified his objects of
study in this way, for they had a fractional dimension, a non-
whole dimension. Fractional dimensions have become a way of
quantifying qualities that would otherwise remain without a
precise dimension, such as the degree of irregularity or tortuosity
of an object. The word fractal above all means self-similar. Self-
similarity is the symmetry through the scales, that is, an object
has self-similarity if it always presents the same aspect on any
scale in which it is observed. If we notice, all orthodox geometric
forms lose their structure when they are enlarged or diminished.

It is interesting to note that the body as a whole is not a fractal
object, but recent studies have shown with some success that it
is possible to characterize certain parts of the body using fractal
geometry, such as the branching of the structure of the lung, the
thin structure of the neurons and the trabeculae of trabecular
bones [3-5].

Measurement of the geometric extension of an object

When we come across an irregular geometric structure such
as bone trabeculae, we imagine that it is impossible to quantify
data on these structures, except by means of statistical analysis.
However, it is intuitively perceived that there is some kind of built-
in geometric information that makes us say that such a structure is
trabeculae of a bone and not something else. This intuitive visual
information can be mathematically identified by fractal geometry.
In order to obtain this information in a quantified way, we must
use mathematical concepts and equations. The first of these is the
idea of a geometric measure, which can be of length, area, volume,
etc. In the case of a 2D image of a bone, obtained by X-rays, or
microscopy, for example, we can evaluate the area examined by
measuring its extent (in the 2D-2D case), which will henceforth
be a concept defined as:

M,5)=N(6)s" =M, §))

Where N(é‘) is the number of structural elements that
recover the object and d is de Euclidean dimension

The object extension, M ,, depends on the size of the

D
measurement ruler used & = ¢L, .

Mo(8/ Lo)( / Lo)~(d - D), )

By means of equation (1) a measure is defined as a function
of its measurement scale, in addition to the geometric attributes
of the topological dimension of the measurement space, the
dimension of the unit of measure and the dimension of the
measured object.

The functions F that describe the fractal scaling are of the
homogeneous type and their differentials are given by:

)= £, 3)

Jo

dF (Xj >
J=1 an
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Where Xj is the variables of this mathematical function for

j=12...n

The measurement scale is defined in terms of a ruler of size /;
(used as a unit of measure) and in terms of the maximum size L,
of the object under measure, as shown by the following equation:

L /

A=—"oe=">

L, L, 4)
Where A and ¢ is a scaling factor.

Homogeneous functions also satisfy the Euler theorem which
is given by:

n OF
F(/IX,)E&”Z—X_
Rk ©

from which for mass M, volume V and energy U
measurements one can reduce that:

X, X, av v av v, (6)

Mathematically, a fractal can be defined as a geometric
sequence S defined by

S = %Sk onde £ =0,1,2... %)

Where S, is the subsequence, represented in the Euclidean
space when the measure of its geometric extension, given by the
series M, |9, ) satisfies the following Hausdorf-Besicovitch
condition:

0->D<d
M, (5,{):%(:1)5,5 =N(5,) 5 @3 = M, >D=d (g
a0 ©—>D>d

Being y (d) the geometric factor of the unit elements (or seed)
of the geometrically represented sequence, ¢ is the size of the
elements, used as the standard unit of measure of the geometric
extension of the spatial representation of the sequence, N () is
the number of elementary units (or seeds) spatial representation
of the sequence on a given scale, d is the dimension of the unitary
elements and D is the Hausdorff-Besicovitch dimension.

Relationship between fractal geometry and euclidean

Some irregular structures are considered as fractals with self-
similarity or statistical self-affinity. A fractal is an object whose
measure of its geometric extent depends on the measuring ruler
used. This object is defined as having one Hausdorff-Besicovitch
dimension.

According to Figure 7 it is observed that a fractal always
exceeds a Euclidean dimension and has a fault in the dimension
immediately above which it is immersed. Let's look at the
examples: a Cantor curve fractal has a dimension in the interval
0 <D <1, according to Figure 7, it exceeds one point but is not a
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straight line. A rough profile has a fractal dimension in the interval
1 <D = 2, according to Figure 7, it exceeds a straight line, but does
not reach a plane. A rough surface has fractal dimension in the
interval 2 <D < 3, and according to Figure 7, it exceeds a plane but
does not reach a solid.

3<Dp4m

Figure 7: Euclidean geometry x Fractal geometry.

But what do fractals serve in practice?: The fractals serve to
describe mathematically irregular structures, which are not
possible by the basic elements, Point, Line, Plane and Space of
Euclidean geometry. Note the following geometric modeling
shown in Figure 8. This geometric modeling example used flat
figures such as circle, rectangle, and triangle to geometrically
represent some more elaborate figures such as a person, a dog,
and a car. On the other hand, in Figure 9, it can be seen that figures
of non-Euclidean geometries such as cracks, clouds, lightning, etc.,
cannot be easily described by simple regular forms of Euclidean
geometry. In this case it is necessary to resort to more complex
geometric models such as the fractal models, as we will see next.

e

O /\

Figure 8: Regular Euclidean geometry.
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Figure 9: Irregular Fractal Geometry.

Fractal Modeling of the Trabecular Structure

Fractal geometry presents a comprehensive mathematical
richness capable of describing different aspects of irregular
growth phenomena of which the bone structure is an example.
It is believed that it is possible to model generically an irregular
structure, such as that of the bone trabeculae, this will allow an
analytical description of the phenomena arising from the structure
of these trabeculae within the bone growth, bone remodeling,
osseointegration and healing models. In this way the theoretical
models of these phenomena can incorporate the fractal aspects of
the trabeculae explaining them more appropriately as well as the
properties deriving from their geometry in a general way.

Discretization of a bone by the box-counting method

Consider the following trabecular structure, which can be
considered a fractal (or multifractal), as being representative of a
bone structure, as shown in Figure 10.

On these models an initial mesh is constructed and by means
of a process of consecutive refinements, of order, i, that is, we
proceed to the following construction, as shown in Figure 11. For
this, several steps of mesh refining are adopted, converging the
model to the result.

In each iteration i the mesh is subdivided into a smaller
mesh opening (or spacing) of length /. Rectangular mesh cells or
reticles that do not intersect the trabecula are considered empty
regions or cells or absent segments of trabecula, where

== 9

Where [, is the width of the mesh and L, is the apparent
horizontal size in the x-direction and a is the mesh reduction
factor in the horizontal direction and #, is the height of the mesh

H
h =—2

i 10
g a0
Where H, is the height of the mesh and #H is the apparent
vertical size in the y-direction and & is the mesh reduction factor
in the vertical direction.

The mesh elements that do not intersect the trabeculae are
considered empty regions, absent from trabeculae. Thus, we can
write the total irregular area of the structure as,
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A= NA

max

(11

Where, N is the total number of non-empty elements, and
A, is the area of an element.
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In the case of this discretization, hexahedral elements were
used, the area of an element can be calculated in the following
way, for each refining step,

(12)

Figure 11: Measure of the trabecular matrix by the Box-Counting using the concept of ruler and length.

Approximation of the monofractal model: The Monofractal
modeling consists of admitting that each element of the mesh that
is not empty or totally filled will have a fixed amount of trabecular
structure. Considering the following trabecular structures as
being representative of a normal bone structure and another
one of osteoporosis, as shown in Figure 12, showing a trabecular
bone. Considering that each element the trabecula area is that of
arectangle minus the area of an ellipse inscribed in this rectangle,
as shown in the Figure 13, one has that:

A. =4 -4

min rectangle elipse

(13)

Being, 4, the area of the intermediate element. Figure 14
illustrates this schematization of ellipses in rectangles for the

normal trabecular structure for the first mesh adopted.

As the mesh is refined, the model is closer to the structures
of the real trabeculae. Figure 15 shows the first refining of this
mesh. It is noted that the mesh with the first refining, Figure 15b
is closest to the trabecular structure shown in Figure 15a. The
mesh refiners are run until the discretized model can accurately
describe the actual model.

The values of the area of a rectangle and an ellipse are known.
Substituting them into equation ( 13), we arrive at,

A = L —7lhy (14)

Substituting equations ( 9) and ( 10) into equation ( 14), we
obtain
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(15)

L H
AmirAZ?bi (l_ﬂ-)

A particular case of equation ( 15) is observed when the
horizontal refining follows the same rule as the vertical refining,
and therefore, a' =b' = r' being r' a general reduction factor of
the mesh. For this particular case, equation (13) can be rewritten

Copyright:
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using equations ( 11),( 12) and ( 13) of the form,

a= bty N (1-7) ]

2i max min
r

(16)
The only unknown variables of equation (16) are the values
of N and N which can be easily found by counting the

max min ’

numbers of fully filled elements and intermediate elements.

Figure 12: Estrutura trabecular normal (a) e estrutura trabecular com osteoporose (b).

-
-
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Figure 13: Geometric model of a trabecular structure with the diameters of the voids constant.
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Figure 14: Monofractal approximation scheme of a normal trabecular Figure 15: Refining the mesh of the monofractal approach scheme.
structure (a), approximate trabecular structure (b).

Calculation of the effective volume and rate of variation of

bone volume: Considering that the total irregular volume of the - NL H, (1 )
trabecular structure is given by: T e
a , (24)
V=NV_ (17) Knowing that each structure of minimum size has a volume

given by the unit model.

Where N is the total number of filled boxes and Vmin is the unit

volume of a box, given by: 5 / ? R P
V=L -z >| =1"|1-—
Vmin = Vsquare - Velipse (18) 2 4 ’ (25)
0
r Thus, the total volume of the analyzed region has, N unit
Vi = lih[. - ﬂ'l’./’li ' (19) volumes, then
Or V= NVmin = N(Vr uare Veli ve)
54 2lip: , (26)
Vmin = lihi (1 - ﬂ-) ) (20)
Then replacing ( 9) and ( 10) in ( 20) we get: Substituting ( 25) into ( 26) we have:
L H
0 0 NL H T
Vmin=ﬁbn (1-7) V(L,,D)= “2”0(1—;:)—N102(1—j
a , (21) a 4/, (27)
ideri = have:
Considering a =5 we have Now the mathematical problem to be solved in the case of any
L H curve is to write the number, N, and dimensions of the coating
Viin = "2”" (1 - 7r) boxes in terms of quantities that can be easily measured.
a
’ (22) Let us now assume that in ( 27) the fractal exponent, D e can be
and still considered as a single exponent, because the objectis monofractal,
just as in equation ( 8) we therefore have the number of cells in
V=NV_ = (me - dim) the x and y direction, which intercept the curve on any horizontal
’ (23) slice can be written as:
Therefore,
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-D

(28)

0 )

Therefore, the fractal volume of the matrix is given by:

-D -D

VZL{?Ofﬂ)Z& =@—”jl° I
a

4 J\ L, ) (29)

This equation gives the real bone volume as a function of the
fractal dimension.

Mass measurement of a cell

Now inside the slices, for each cell, we will also classify the
structures of the trabeculae and the empty regions, as follows.

A trabecula may have different degrees of irregularities each
classified in the spectrum of Figure 16. In this way a single
trabecular structure may present different dimensions of capacity,
as shown in Figure 16.

Consider that each slice also contains cells with different
degrees of irregularities. And that these degrees can be
represented by different capacity exponents, according to
the spectrum of Figure 16. Thus, each cell in a slice has a fill
probability that is revealed at each refinement of the mesh. Thus,
with each new refinement of the mesh the capacity dimension
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of the cells can vary because for a more resolved mesh each cell
can show new details of the segment that was previously not
perceived in the refinement of the previous mesh in such a way
that the capacity exponent, a, varies, according to Figure 16. This
classification of capacity exponent & can be made constructing
an algorithm specially developed by using a data bank of basic
images as exemplified in the Figure 16.

For each structure contained in a slice of the mesh in this mesh
we assign a fraction of the mass p of the segment of the previous
mesh. The masses of these segments are not equal if p # 1.

Similarly for each segment a numbering can be given that
corresponds to its refinement order ranging from 0 <i <N - 1.
This other binary representation of the integer i will characterize
the segment to give us the history of segment refinements In the
sense that the number of zeros corresponds to the number of
empty regions and the number of ones corresponds to the number
of segments of non-empty cracks of each refinement. For example,
by analogy with the Cantor fractal of Figure 17, for n = 3 we have
8 segments and segment 3 whose binary representation is 011
resulted from the refinement of a first empty segment on the left
followed by two segments of crack Right, as shown in Figure 17.
The mass of this segment will then be (1 - p) p? Note that there
are other segments with this same mass that can be counted by
combinatorial analysis. For example, segment 6 whose binary
representation is 110. In fact, for n = 3 there are 3 segments with
mass p (1-p)2

Therefore, in this way, using genetic algorithm, it is possible
reconstruct a bone in computer simulation.

[ )

o=2 2 <o < 1

Figure 16: Spectrum of the capacity of the box capacity in 2D.

a=1 a=10

Il
)

1

n=3

.
il 1l

.
11 11

011

Figure 17: Spectrum of the capacity of a slice in 1D.

110
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Capacity of a cell

Therefore, the local probability p that a cell contains a fraction
of points No /Nn is given by:

—a

NU ZO
Nn lVl

(30)

Where 6 is the box size. So the probability that a cell appears
in an empty pixel is given by:

—-a

N /
q:l—p:l— 2 _1-| 2
Nn Zn

, (31)

In general a segment of crack whose binary representation has
u zeros has mass

u N, -u
Pe=P (l—p) ’ (32)
and there are
w ) (N, —u)! 63

Segments of crack with this same mass.

Figure 18: Counting of trabecular structures using the slice method.

In iteration » , for each horizontal slice of the mesh, we have a
number of cells equal to:

o
NHn
ln ’ (3 5)
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It is necessary to add on all the slices to obtain the mass all of
the slices:

N N |
N n: N -u
)y (u n)Pk =X mpu (1—17) !
- —ou! —u)!
u=0 r=0 n (34)
This combinatorial mathematical description of the trabeculae
can be used to obtain a multifractal spectrum analysis of the bone.

Discretization of a bone by the slice method

We know that any fractal line, corresponding to the excess of
a line and to the lack of a plane. Like each slice, the number of
filled boxes is analogous to the Cantor fractal. So if we consider a
slice to be a straight segment, and its boxes as points, we see that
at the intersection with the trabecula structure, the slice exceeds
one point but lacks a straight line. For, more than one box is filled,
yet the slice is not fully filled. This allows us to write the number
of cells in the x and y directions, which intercept the curve in a
horizontal and vertical slice respectively, as shown in the Figure
18, such as:

Let’s slice the mesh so that we get several slices corresponding
to a fractal line analogous to a Cantor fractal, but with irregular
distribution of segments. The trabecula structure can be

discretized in the x and y directions by horizontal size slices
(#,.1,)

(La,ln) and by vertical size slices as shown in Figure

o
=

vertical slices

Figure 19: Discretization of a fractal curve by means of horizontal and
vertical slices.

and, for each vertical slice of the mesh, we have the number
of cells a:

" (36)
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Therefore, the whole mesh will have a total number of:

ln hn An ) (3 7)

Cells contained in this mesh.

Monofractality of horizontal and vertical slices: Let us
now assume that the exponent « , can be considered a single
exponent, because the curve is monofractal, in the same way a,
, we have, therefore,
a,=a;0<a <1

xi

And

, (38)

a.=a ;0<a <1
Y y y E (39)

Being self-related behavior, we have,

a o
x y’ (40)

The number of cells in the x-direction, which intercept the
curve in any horizontal slice can be written as:

Oy

n, = —= 0<a <1
I , (41)

Where « s a fractional exponent extracted directly from the
fractal analysis of the image, in analogue way to fractal dimension
for the horizontal slice.

However in the y direction, the number of cells that intercept
the curve in any vertical slice is unique and can be written as:

H y
2 0<ea, <1
h
o , (42)

Where a, is a fractional exponent extracted directly from the
fractal analysis of the image, in analogue way to fractal dimension
for the vertical slice.

Multifractality of horizontal and vertical slices: Let us now
assume that the exponent « , are different exponent for each
slice, because the curve is multifractal, in the same way «_ , we

have, therefore, "
Ayl
Ly 0 1;71=12 A,
n =l <a, < s b =14,
HI l x/ h
n n , (4_3)

Where « , is a fractional exponent extracted directly from the
fractal analysis of the image, in analogue way to fractal dimension
for the horizontal slice.

a
H | L

, (44)
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Where a,, is a fractional exponent extracted directly from the
fractal analysis of the image, in analogue way to fractal dimension
for the vertical slice.

Then
1
L, «
NHn = T = nHl o
" , (45)
And
1
HO a m
NVn = h = an !

n , (46)

For it is always possible to find exponents « ,,
Xi

a,, that satisfy
the above relations. From ( 9) and ( 10) we have:

L, « n
NHn_ T :nHl ! =a
" , (47)
And
1
Ho ym n
NVn = h = an = b
" , (48)
Then
_ %
nHl a , (49)
Or
_ bnllym
My = , (50)

Therefore, the total number of cells is given by:

1 1

— — Ayl aym
Ny =Ny, Ny, =ny " npy,

" ) (51

Discretization of a bone by the orthogonal projection
method

In order to obtain the projections of the fractal curves on the
orthogonal axes, it is necessary to add all the possible slices of the
previous item, especially the curve range, both horizontally and
vertically, within the size grid (Lo, Ho).

Note that as a mandatory number of slices covers the entire
object (Figure 19) in the size grid interval (Lo, Ho). Therefore, the
total number of cells intercepting the object, counted horizontally,
must be equal to the number of cells that intercept the object
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vertically, which leads to the relation

N. =N

TH TV (52)

Monofractality of the orthogonal projections: Similarly for
monofractals, adding all possible slices both horizontally and
vertically within the size grid (Lo, Ho), we have that the total
number of horizontal and vertical slices are given respectively by:

Ay Ay
v e (L, H (L
m= ~ My = — = —
i=l =NV A (53)
a a
v e el "o (H
w = & My = — =
Jj=1 J= Ak, I\ h, (54)

Analogously to the previous case we have:

N... =N

TH v’

(55)

Thus the total number in this case is given by:

Ay ay

H | L L | H

o 4 _ o o

h \ 1 I\ h
o o o o (56)
What gives the following relation between the horizontal and
vertical scales

a, -1 ay—l

(57)

For the case of monofractal this is the necessary relation to
be used in the scaling equations of lengths, areas or trabecular
volume given in (29).

Multifractality of the orthogonal projections: For the
multifractal case we will have that the total number of horizontal
and vertical slices are given respectively by:

Hy/h, Hylhy [ L
Ny = X Ny = -
i=1 i=l1 /
° , (58)
a,,i
Lo/, iy g )"
[
N, > ny, =
Jj=1 j=1 ho
, (59)
Logo
Hylh, H,/h,
Nopy = Ny = Z Ny,

, (60)
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Or

i

Hylhy (L Ly/l,

= 1 A\ h

, (61)

For the case of multifractal this is the necessary relation to
be used in the scaling equations of lengths, areas or trabecular
volume given in (29).

a. Horizontal trabecular counting

Counting the structures within each horizontal slice we have:
xi

0
= — < <
nHi 0< axi <1

° , (62)

Therefore sweeping all the area or volume of the region
analyzed we have:
a
o (H V"L H
by

o o o

= 1\ h

(63)
b. Vertical trabecular counting

Counting the structures within each vertical slice we have:
yi

: 0<a, <l

Y

° , (64)

Therefore sweeping all the area or volume of the region
analyzed we have:
Ax ax
Hollo [ L, H L
N, = Z n,. = z _Z = -
i=1 i=l1 10 h [

o o

(65)
c. Total counting in whole volume

We know that the two previous counts (horizontal and vertical
in 2D and a third for the 3D model) must have the same result, so
we can match these values by getting

Hylhy o,
Npy = E Ny = a ny; v
= /= , (66)

From where the total number of irregular structures is easily
extracted, obtaining
[24 a

X
H | L L | H
N = o o __o o
h \ 1 I\ h

o o o o

(67)

For the case of monofractal this is the necessary relation to
be used in the scaling equations of lengths, areas or trabecular
volume given in (29).
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d. Autosimilarity of the counting

For the sake of simplicity we can consider that the structures
do not have a preferential direction, they are self-similar, so we
can do:

H =L, eh =1

o, (68)
and therefore,
l+a
N=|—~
/
° , (69)

For the case of monofractal this is the necessary relation to
be used in the scaling equations of lengths, areas or trabecular
volume given in (29).

Fractal scaling of the bone volume

Starting from the unit volume considered in the geometric
model

) (70)

The Real Volume of Bone Mass can be written by substituting (
69) into ( 70) and obtaining:

I+a

L 5 V4
V== 7 1-—
I} 4
° , (71)

We can also write this real volume in terms of the apparent
volume given by:
2
V =L
o 0 ) (72)
and obtain

, (73)
Or
l P L l+a x
V = VU o 5 o 1-=
I 4
0 o , (74)
Therefore,

(75)

This is the equation thataccording to the proposed monofractal
model describes the actual bone volume of the irregular structures
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of the trabecular structure ir% an area of observation delimited by
an apparent volume V =L " .

Bone loss rate

To obtain a mathematical formulation for bone loss or gain
as a function of time, it is enough to derive the previous result in
relation to time and obtain:

2a-1

dv L 7 \dv
—=(-ay, | = 1-= | ==
dt ! 4) ar

o

, (76)
Multiplying everything by bone density p we have:
2a-1
dm o | L, r\dV,
—=p-ay, | = 1-=
dt [ 4 ) dt
Note that the rate of bone loss can be calculated in terms of the
rate of change in apparent bone volume.

(77)

Variation of bone density
Knowing that we have:

Considering that the same bone mass is analyzed we have;

dM = dMo’ (79)
Then
P =p, (80)
So
dv
P, = P;
°, (81)

From ( 75) we have to:

av AV
—=|1-— |5
av, a)r’\ 1

Therefore,

, (82)

l-a

4 L,

P=p, | ="

Note that the actual bone density can be calculated in terms of
the apparent density of the bone.

Bone remodellig rate

Knowing that:
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M All these results of these calculations are mathematical
v o=— equations that can represent the characteristics of a trabecular
P, ' (84) structure according to the monofractal and multifractal models.
What remains is its application in practice to verify its validity
Considering that a same bone volume is analyzed we have; in the geometric and physical characterization of the processes
that take place in the bone matrix in the osteoporosis and healing
Vi =V ) (85) phenomena.
Materials and Methods

Then . ) . . . .
Based on the following figures obtained in a microscopic
M M analysis of a trabecular structure, as shown in the Figure 20, we
ol 02 will use the box-counting method to analyze these structures. For
P P2 ’ (86) this first analysis we used Fractal Vision Software to obtain the

fractal dimension of these structures.

From (75) we have to: We used the microscopic analysis shown in Figure 21, to apply

the Box Counting technique with half mesh reduction at each

voy| L | T count as shown in the Figure 22-24 [6-12].
“\1 4
° , (87)
Then
l-oq I-ay
4 L, 4 L,
(o B A
4-r J\ 1, 4-m )\ 1,
o o ) (88)
An o -
V| —= =V, 2
1 I 2 ,
o o , (89)
Multiplying everything by p we have: "
0s ostéoporotique 0s normal
1-a 1-a
o 1 LU ’
A =pV, Figure 20: Change in the shape of the trabecular structure with the
ol 02 (90) calcium content in a case of osteoporosis.

wl'r

Figure 21: Trabecular structure in two different calcification conditions.
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Figure 24: Counting boxes using a mesh size of §/4.
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Results and Discussion
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Measures of the fractional dimensions of the bone dies

In this section we describe the fractal characterization of some

bone structures to verify the models presented in item 5.0 of this

article.

Table 1: Fractional Measures of the Case - 1.

Applying the Box-Counting method to the case shown in Figure
22-24 the results shown in Table 1 & 2.

Size Box Fractal Dimension Number of Structural Elements
Normal - 1 Osteoporotico - 1 Normal - 1 Osteoporotico - 2
2 1,705,463 1,355,219 2,55835949 3,26133581
4 1,602,282 1,128,430 4,77950099 9,21870435
6 1,600,730 1,225,713 8,99062955 17,6039469
8 1,863,938 1,269,649 14,0154581 48,2284988

Table 2: Fractional Measures of the Case - 2.

Size Box Fractal Dimension Number of Structural Elements
Normal - 2 Osteoporotico - 2 Normal - 2 Osteoporotico - 2
2 15,483,350 180,088 29,247,940 34,843,366
4 13,984,410 17,444 69,493,691 112,262,485
6 12,724,950 181,622 97,767,290 258,996,945
8 13,314,510 18,006 159,374,952 422,773,194
Graphing the count of boxes obtained in the structures
analyzed we have the results shown in Figure 25 & 26.
Box-Counting Method
2 -
10 [oomme —owemn  owwmc —owes
Box-Counting Method o 184 i
60 2 17
- § 16+
E ol ~Nomal 1 g 151
E =~ Osteo 1 = 14
T Normal 2 FERER |
7 409 Osteo 2 o 1'2 J ~ a1
3 i ¥ - —~— -
E 30 4 1,1
s ! l Scale l ‘
‘E 20 1 3 5 7
3 i
5
z 104
Figure 26: Variation of the fractal dimension with the measurement
0 T T . \
0 2 4 6 10
Scale

Figure 25: Variation of the fractal dimension with the measurement

scale.

Variation of Volume with the sizes of voids

By calculating the variation of bone volume with the apparent
length, LO we have the result shown in Figure 27.
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Figure 27: Chart of effective bone volume.

Analyzing the volumetric fraction of the bones as a function of
the size of the observed voids, we have the graph of Figure 28 The
analyzes provided a volume equation given by:

1-a
l Vs
v=v|-> 1-=
L 4
¢ , 91)

Where the fractal dimension of the analyzed bones had a value

of:

D:1—a=1,17’ (92)

Conclusion

Bone remodeling is an extremely complex process and
difficult to understand. Referencing this process with geometric
measurements capable of visualizing and identifying irregularities
of bone trabeculae may be a way of simplifying this process to
facilitate analysis.

Results obtained up to the present moment show that the
variation of the irregularity of the images is always related to an
external process. In the case of the images shown in Figure 21-
24, the process for bone loss in the generation of the figures was
a simple modification in the accuracy level of a bitmap image
tracking algorithm.
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We conclude that there is a direct relationship between the
Fractional Quantities and the Thermodynamic Powers, because
all the Extensive and Intensive magnitudes that depend on the
bone geometry can use the relation of Bone Volume in the models.

Therefore, modeling and fractal geometric characterization
can provide important information to be used in the models of
Bone Reshaping, Osseointegration, Bone Fracture, and dynamic
evolution phenomena that can use the bone volume derivative in
time.

In the next analyzes will be made scans and checks on
tomography images for the attempt to observe this parameter of
variation of the remodeling and try to identify it next to the theory
of fractals.
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