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Introduction
The visualization of the bone structure of a patient can be done 

by different methods, such as: X-rays, tomography, micro-CT, etc. 
From an image can be made a clinical diagnosis of bone diseases 
such as osteoporosis, for example. However, these qualitative 
methods that are commonly used are limited to the orthopedist’s 
visual experience. No quantitative data is provided unless a 
computerized analysis of these images is performed. A safe 
diagnosis is the continuing goal of the clinician using the imaging 
methods outlined above. Since the irregular trabecular structure 
can be characterized by fractal geometry, in this work we perform 
a geometric analysis of a bone structure as a way of quantifying 
the information that can be obtained through an image.

In this work we propose a monofractal model for the trabecular 
bone structure as a way of quantifying the analyzes made on 
digitized images. The initial objective of this work is to extract 
information through the analysis of images that can quantify 
mathematical quantities defined in the fractal model, depending 
on the area of ​​observation, such as: effective bone volume, bone 
volume variation, total trabeculae count, variation of bone density, 
rate of bone loss, rate of bone remodeling.

In this work we will only present the geometric analyzes 
made based on the monofractal geometry. We present the fractal 
study on bone images, where we quantified data related to bone 
volume variation with the observation scale and the size of the 
trabecular voids. The objective is to present a research proposal 
for use in Models of Thermodynamic Potentials Applied to the 

Study of Phenomena Associated with Porous Matrices as the Bone 
Trabecular Matrix [1,2].

Review of the Osteoporosis Problem
Osteoporosis is a disease that strikes the bones. It is 

characterized when the amount of bone mass decreases 
substantially and develops hollow bones, fine and extremely 
sensitive, more subject to fractures. It is part of the normal 
aging process and is more common in women than in men. The 
disease progresses slowly and rarely presents symptoms before 
something of greater gravity happens, such as a fracture, which is 
usually spontaneous, that is, not related to trauma. If preventative 
diagnostic tests are not done osteoporosis may go unnoticed until 
it has greater severity. Osteoporosis can be delayed by preventive 
measures.

The onset of osteoporosis is linked to the hormonal levels of 
the body. Estrogen, the female hormone, also present in men, but 
in lesser amounts, helps maintain the balance between bone loss 
and bone gain. Women are the most affected by the disease, since 
at menopause, estrogen levels fall sharply. With this, the bones 
begin to incorporate less calcium (fundamental in the formation 
of the bone), becoming more fragile. For every four women, only 
one man develops this pathology. Although they look like inactive 
structures, bones change over a lifetime. The body is constantly 
healing and breaking bones. This process depends on several 
factors like genetics, good nutrition, maintaining good levels of 
hormones and regular exercise. The bone cells (osteocytes) are 
responsible for the formation of collagen, which gives support to 
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the bone. The channels that interconnect the osteocytes allow the 
calcium, essential for bone formation, to escape from the blood 
and help form the bone.

The mineral density of calcium is reduced from 65% to 35% 
when osteoporosis is installed as shown in the Figure 1. The 
central medullary canal of the bone becomes wider. With the 
progression of osteoporosis, the bones can become bumpy and 
brittle. The collagen and mineral deposits are dissolved very 
quickly and the formation of the bone becomes slower. With less 
collagen, there are empty spaces in the trabecular structure that 
weaken the bone, as shown in Figure 2 & 3.

Bone remodeling

The amount of bone mass present in the skeleton is the result 
of formation and reabsorption. This process is directly related 
to the bodily need to maintain a physiological concentration 
of ionized calcium in the organic fluids and especially to the 
need to maintain the structural integrity of the skeleton. 
In the normal physiological process, bone resorption and 
formation are closely related in time, degree and space, so 
much so that bone formation is only activated after an area of ​​
absorption is established. Bone metabolism is influenced by 
various hormonal, local, behavioral and environmental factors, as 
well as mechanical, electrical, chemical and magnetic forces. This 
mechanism is relatively rapid in the trabecular bone and slower 
in the cortical bone.

Osteoclasts are recruited to the surface (a process called 
activation) and reabsorb a quantity of mineral, creating a cavity 
- Howship gap - in the trabecular bone. This phase lasts for about 
two weeks and is followed by a period of apparent inactivity at 
the site of resorption. During this phase, the osteoclasts disappear 
and are replaced by macrophages, whose function is not fully 
elucidated but appears to be to deposit a substance that initiates 
cementation. As this process occurs between bone removal and 
its subsequent replacement, it is called the reversal phase. Upon 
receipt of a signal, the osteoblasts - cells that synthesize the new 
matrix - adhere to the surface of the cavity. These cells synthesize 
collagen and other non-collagenous proteins, which are secreted 
into the cavity to form the osteoid, a non-mineralized matrix that 
will later form into new bone. This training phase may take several 
months to establish. Under normal conditions, the amount of new 
bone synthesized at each remodeling site is exactly the same as 
that removed by osteoclasts. Adults are estimated to remodele 
from 10 to 30% of their bone mass every year. This “preventive 
maintenance” causes the skeleton to have an average age of about 
eight years.

Bone remodeling with fractals

The idea of ​​integrating the processes and theories about bone 
remodeling with fractals theory is to obtain a theoretical model 
able to demonstrate beyond variation of bone density, trabeculae 

Figure 2: variation of the size of voids for a: a) trabecular bone with 
low calcium reduction; b) trabecular bone with high calcium reduction

(a)			                (b)

Figure 1: Variation of the trabecular structure with the degree of bone 
calcification.

Figure 3: Trabecular structure with the appearance of osteoporosis.
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growth, its direction and size, in relation to its position within the 
bone.

Using fractal measurements of bone images, in other words, 
applied the fractal theory, to obtain the fractal dimension, which 
can be considered a quantitative description of the degree of 
irregularity of the complex surfaces, on a sequence of images of 
tomographies, or X-rays, as a function of time, provide formation 
or resorption characteristics of the trabeculae. With this, it is 
possible to define a guideline to obtain the specific properties of 
each trabecula during the process of bone remodeling.

Fundamentals of Fractal Theory
We are very familiar with Euclidean geometry, where we study 

the most simple and well-known figures of geometry: straight 
lines, squares, circles, cones, pyramids, etc. We are accustomed 
to calculate their length, area, and volume measurements. In this 
context the idea of ​​dimension is already in our minds. However, 
many phenomena and forms found in nature cannot be explained 

along the lines of conventional mathematics, for which a special 
theory is needed to explain and characterize them, the so-called 
fractal geometry. In general, fractal geometry is used to describe 
a geometric object that never loses its structure whatever the 
distance of sight, or scale. Figure 4 contains drawings of two 
naturally occurring objects, the boundary (or coastline) of an 
island (Figure 4a) and a person (Figure 4b). As the contour of the 
island is enlarged, it is observed that the roughness repeats itself 
and, by changing the scale, the roughness seems to be the same, 
that is, the contour of the island is a fractal curve and the island 
is a self-similar object. The person, however, is not a self-similar 
object. When various parts of the body are enlarged, complete 
changes in the shape of objects are observed. The hand does not 
represent the whole body, the nail does not resemble the hand, 
and even when observing different parts of the body on the same 
scale, such as the head and the hand, these parts cannot be said to 
have similar shapes. This concludes that a person is not a fractal 
object.

Figure 4: Illustration of the boundary of an island, fractal, and a person, not fractal.

Following the observation done above using different scales 
as illustrated in the Figure 4 we can verify that many objects, 
phenomena and forms found in nature cannot be explained in the 
form of conventional mathematics, for which a special theory is 
necessary to explain and characterize them, the so-called fractal 
geometry. Both the pattern of cloud formation and the pattern 
of growth and arrangement of branches and leaves in a tree, for 
example, can be recreated by means of simple rules of geometric 
construction, but when executed they can generate structures of 
admirable complexity, the fractals.

a.	 Fractais: they are geometric objects whose Haussdorf-
Besicovitch dimension strictly exceeds the topological 
dimension and have structures in all their scales of expansion, 
usually with some similarity between them, that is, they are 
self-invariant geometric objects by scale transformation that 
they possess fractional dimension exceeding the topological 
dimension, as shown in the Figure 5.

b.	 Invariance by transformation of scale: Is when the parts 
of an object are similar to the whole that can be by SELF-
SIMILARITY (e.g. a pine) or SELF-AFFINITY (e.g. a crack) 
whose characteristics are: has voids in the structure, has 
a fractional dimension together the invariance by scale 
transformation, as shown in the Figure 5 & 6.

There are basically two types of self-similarity, the statistical 
and the exact or strict. Statistical self-similarity is the case of the 
example cited in Figure 4a (the coastline of an island) and in the 
Figure 5b, as is the case of the trabeculae of a trabecular bone, 
ie these examples have the same statistical characteristics. In the 
case of the line of a coast, the roughness of a surface or profile, and 
in the case of the trabecular bones we observe irregularities that 
are repeated in a statistically similar way in different magnification 
scales. In exact or strict self-similarity, one can observe in a part of 
the fractal object a replica of the whole parenthesis: (Figure 5a), 
as is the case with the fern leaf.
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Figure 5: Mathematical fractal showing its initiator and its seed as basic or fundamental structure of construction.

Figure 6: Some types of phenomena that can be modeled by fractal growth theory.
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The term fractal was coined in 1975 by Benoît Mandelbrot, 
a French mathematician born in Poland, who discovered fractal 
geometry in the 1970s, from the Latin adjective fractus, from 
the verb frangere, which means to break. It serves to describe 
a geometric object that never loses its structure whatever the 
distance of sight, or scale. Mandelbrot classified his objects of 
study in this way, for they had a fractional dimension, a non-
whole dimension. Fractional dimensions have become a way of 
quantifying qualities that would otherwise remain without a 
precise dimension, such as the degree of irregularity or tortuosity 
of an object. The word fractal above all means self-similar. Self-
similarity is the symmetry through the scales, that is, an object 
has self-similarity if it always presents the same aspect on any 
scale in which it is observed. If we notice, all orthodox geometric 
forms lose their structure when they are enlarged or diminished.

It is interesting to note that the body as a whole is not a fractal 
object, but recent studies have shown with some success that it 
is possible to characterize certain parts of the body using fractal 
geometry, such as the branching of the structure of the lung, the 
thin structure of the neurons and the trabeculae of trabecular 
bones [3-5].

Measurement of the geometric extension of an object

When we come across an irregular geometric structure such 
as bone trabeculae, we imagine that it is impossible to quantify 
data on these structures, except by means of statistical analysis. 
However, it is intuitively perceived that there is some kind of built-
in geometric information that makes us say that such a structure is 
trabeculae of a bone and not something else. This intuitive visual 
information can be mathematically identified by fractal geometry. 
In order to obtain this information in a quantified way, we must 
use mathematical concepts and equations. The first of these is the 
idea of ​​a geometric measure, which can be of length, area, volume, 
etc. In the case of a 2D image of a bone, obtained by X-rays, or 
microscopy, for example, we can evaluate the area examined by 
measuring its extent (in the 2D-2D case), which will henceforth 
be a concept defined as:

( )( ) d
D oM N Mδ δ δ= = ,            (1)

Where ( )N δ  is the number of structural elements that 
recover the object and d  is de Euclidean dimension

The object extension, DM , depends on the size of the 
measurement ruler used oLδ ε= . 

( )^( )(/ / )Mo Lo Lo d Dδ δ − ,                     (2)

By means of equation (1) a measure is defined as a function 
of its measurement scale, in addition to the geometric attributes 
of the topological dimension of the measurement space, the 
dimension of the unit of measure and the dimension of the 
measured object.

The functions F  that describe the fractal scaling are of the 
homogeneous type and their differentials are given by:

( )
1

n

j j
j

j

F
dF X dX
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∂
∑≡

∂
,                      (3)

Where jX  is the variables of this mathematical function for 
1, 2...,j n=

The measurement scale is defined in terms of a ruler of size 0l  
(used as a unit of measure) and in terms of the maximum size 0L
of the object under measure, as shown by the following equation:

o o

o o

L l

l L
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Where λ and ε  is a scaling factor.

Homogeneous functions also satisfy the Euler theorem which 
is given by:
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from which for mass M , volume V  and energy U  
measurements one can reduce that:

~ ;
j j

F F dM M dU U

X X dV V dV V

∂
⇒ = =

∂ ,                         (6)

Mathematically, a fractal can be defined as a geometric 
sequence S  defined by

k
k

S S∑=  onde 0,1, 2...k =                         (7)

Where kS  is the subsequence, represented in the Euclidean 
space when the measure of its geometric extension, given by the 
series ( )d kM δ , satisfies the following Hausdorf-Besicovitch 
condition:

( ) ( ) ( )
0

0

( )d d
d k k k k d
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D d

M d N d M D d

D d

γ

δ

δ δ δ δγ
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




    (8)    

Being ( )dγ  the geometric factor of the unit elements (or seed) 
of the geometrically represented sequence, δ  is the size of the 
elements, used as the standard unit of measure of the geometric 
extension of the spatial representation of the sequence, ( )N δ is 
the number of elementary units (or seeds) spatial representation 
of the sequence on a given scale, d is the dimension of the unitary 
elements and D is the Hausdorff-Besicovitch dimension.

Relationship between fractal geometry and euclidean

Some irregular structures are considered as fractals with self-
similarity or statistical self-affinity. A fractal is an object whose 
measure of its geometric extent depends on the measuring ruler 
used. This object is defined as having one Hausdorff-Besicovitch 
dimension.

According to Figure 7 it is observed that a fractal always 
exceeds a Euclidean dimension and has a fault in the dimension 
immediately above which it is immersed. Let’s look at the 
examples: a Cantor curve fractal has a dimension in the interval 
0 ≤ D ≤ 1, according to Figure 7, it exceeds one point but is not a 
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straight line. A rough profile has a fractal dimension in the interval 
1 ≤ D ≤ 2, according to Figure 7, it exceeds a straight line, but does 
not reach a plane. A rough surface has fractal dimension in the 
interval 2 ≤ D ≤ 3, and according to Figure 7, it exceeds a plane but 
does not reach a solid.

But what do fractals serve in practice?: The fractals serve to 
describe mathematically irregular structures, which are not 
possible by the basic elements, Point, Line, Plane and Space of 
Euclidean geometry. Note the following geometric modeling 
shown in Figure 8. This geometric modeling example used flat 
figures such as circle, rectangle, and triangle to geometrically 
represent some more elaborate figures such as a person, a dog, 
and a car. On the other hand, in Figure 9, it can be seen that figures 
of non-Euclidean geometries such as cracks, clouds, lightning, etc., 
cannot be easily described by simple regular forms of Euclidean 
geometry. In this case it is necessary to resort to more complex 
geometric models such as the fractal models, as we will see next.

Fractal Modeling of the Trabecular Structure
Fractal geometry presents a comprehensive mathematical 

richness capable of describing different aspects of irregular 
growth phenomena of which the bone structure is an example. 
It is believed that it is possible to model generically an irregular 
structure, such as that of the bone trabeculae, this will allow an 
analytical description of the phenomena arising from the structure 
of these trabeculae within the bone growth, bone remodeling, 
osseointegration and healing models. In this way the theoretical 
models of these phenomena can incorporate the fractal aspects of 
the trabeculae explaining them more appropriately as well as the 
properties deriving from their geometry in a general way.

Discretization of a bone by the box-counting method

Consider the following trabecular structure, which can be 
considered a fractal (or multifractal), as being representative of a 
bone structure, as shown in Figure 10.

On these models an initial mesh is constructed and by means 
of a process of consecutive refinements, of order, i, that is, we 
proceed to the following construction, as shown in Figure 11. For 
this, several steps of mesh refining are adopted, converging the 
model to the result. 

In each iteration i  the mesh is subdivided into a smaller 
mesh opening (or spacing) of length il . Rectangular mesh cells or 
reticles that do not intersect the trabecula are considered empty 
regions or cells or absent segments of trabecula, where

0 .i i

L
l

a
=           (9)

Where il  is the width of the mesh and 0L  is the apparent 
horizontal size in the x-direction and a  is the mesh reduction 
factor in the horizontal direction and ih  is the height of the mesh 

.o
i i

H
h

b
=          (10)

Where 0H  is the height of the mesh and 0H  is the apparent 
vertical size in the y-direction and b  is the mesh reduction factor 
in the vertical direction.

The mesh elements that do not intersect the trabeculae are 
considered empty regions, absent from trabeculae. Thus, we can 
write the total irregular area of ​​the structure as,

Figure 7: Euclidean geometry x Fractal geometry.

Figure 8: Regular Euclidean geometry.

Figure 9: Irregular Fractal Geometry.

http://dx.doi.org/10.15406/mojor.2017.07.00271


Citation: Alves LM, Argenta MA, Farani LA, Hecke MB (2017) Monofractal and Multifractal Approach for the Fractal Modeling of the Porous Structure of 
the Trabecular Bone Matrix. MOJ Orthop Rheumatol 7(3): 00271. DOI: 10.15406/mojor.2017.07.00271

Monofractal and Multifractal Approach for the Fractal Modeling of the Porous Structure 
of the Trabecular Bone Matrix

7/18
Copyright:

©2017 Alves et al.

maxA NA=          (11)

Where, N  is the total number of non-empty elements, and 
maxA  is the area of ​​an element.

In the case of this discretization, hexahedral elements were 
used, the area of ​​an element can be calculated in the following 
way, for each refining step,

max i iA l h=            (12)

Figure 10: Geometric differentiation of trabecular structure with variation of calcium content.

Figure 11: Measure of the trabecular matrix by the Box-Counting using the concept of ruler and length.

Approximation of the monofractal model: The Monofractal 
modeling consists of admitting that each element of the mesh that 
is not empty or totally filled will have a fixed amount of trabecular 
structure. Considering the following trabecular structures as 
being representative of a normal bone structure and another 
one of osteoporosis, as shown in Figure 12, showing a trabecular 
bone. Considering that each element the trabecula area is that of 
a rectangle minus the area of ​​an ellipse inscribed in this rectangle, 
as shown in the Figure 13, one has that:

min tangrec le elípseA A A= −          (13)

Being, minA  the area of ​​the intermediate element. Figure 14 
illustrates this schematization of ellipses in rectangles for the 

normal trabecular structure for the first mesh adopted.

As the mesh is refined, the model is closer to the structures 
of the real trabeculae. Figure 15 shows the first refining of this 
mesh. It is noted that the mesh with the first refining, Figure 15b 
is closest to the trabecular structure shown in Figure 15a. The 
mesh refiners are run until the discretized model can accurately 
describe the actual model.

The values ​​of the area of ​​a rectangle and an ellipse are known. 
Substituting them into equation ( 13), we arrive at,

min i i i iA l h l hπ= −         (14)

Substituting equations ( 9) and ( 10) into equation ( 14), we 
obtain
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      ( )min 1o o
i i

L H
A

a b
π= −       (15)                                                            

A particular case of equation ( 15) is observed when the 
horizontal refining follows the same rule as the vertical refining, 
and therefore, i i ia b r= =  being ir  a general reduction factor of 
the mesh. For this particular case, equation (13) can be rewritten 

using equations ( 11),( 12) and ( 13) of the form,

( )max min2 1o o
i

L H
A N N

r
π= + −          (16)

The only unknown variables of equation (16) are the values ​​
of maxN  and minN , which can be easily found by counting the 
numbers of fully filled elements and intermediate elements.

Figure 12: Estrutura trabecular normal (a) e estrutura trabecular com osteoporose (b).

Figure 13: Geometric model of a trabecular structure with the diameters of the voids constant.
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Calculation of the effective volume and rate of variation of 
bone volume: Considering that the total irregular volume of the 
trabecular structure is given by:

minV NV=                         (17)

Where N is the total number of filled boxes and minV  is the unit 
volume of a box, given by:

min square elipseV V V= −
              (18)

Or

min i i i iV l h l hπ= − ,           (19)
Or

( )min 1i iV l h π= − ,          (20)
Then replacing ( 9) and ( 10) in ( 20) we get:

( )min 1o o
n n

L H
V

a b
π= −

,     (21)

Considering a b=  we have:

( )min 2 1o o
n

L H
V

a
π= −

,        (22)

and still

( )min square elipseV NV N V V= = −
,            (23)

Therefore,

( )2 1o o
n

NL H
V

a
π= −

,                (24)

Knowing that each structure of minimum size has a volume 
given by the unit model.

2
2 2

min 1
2 4
o

o o

l
V l l

π
π= − = −
   

  
   ,             (25)

Thus, the total volume of the analyzed region has, N   unit 
volumes, then

( )min square elipseV NV N V V= = −
,               (26)

Substituting ( 25) into ( 26) we have:

( ) 2
0 2( , ) 1 1

4
o o

on

NL H
V L D Nl

a

π
π= − = −

 
 
  ,             (27)

Now the mathematical problem to be solved in the case of any 
curve is to write the number, N, and dimensions of the coating 
boxes in terms of quantities that can be easily measured.

Let us now assume that in ( 27) the fractal exponent, D e can be 
considered as a single exponent, because the object is monofractal, 
just as in equation ( 8) we therefore have the number of cells in 
the x and y direction, which intercept the curve on any horizontal 
slice can be written as:

(a) 			               (b)

Figure 14: Monofractal approximation scheme of a normal trabecular 
structure (a), approximate trabecular structure (b).

(a) 			               (b)

Figure 15: Refining the mesh of the monofractal approach scheme.
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0

0

D
l

N
L

−

=
 
 
  ,                      (28)

Therefore, the fractal volume of the matrix is ​​given by:

( ) 20 0
02

0 0

1 1
4

D D

o o
n

L H l l
V l

a L L

π
π

− −

= − = −
    

         ,                       (29)

This equation gives the real bone volume as a function of the 
fractal dimension.

Mass measurement of a cell

Now inside the slices, for each cell, we will also classify the 
structures of the trabeculae and the empty regions, as follows.

A trabecula may have different degrees of irregularities each 
classified in the spectrum of Figure 16. In this way a single 
trabecular structure may present different dimensions of capacity, 
as shown in Figure 16.

Consider that each slice also contains cells with different 
degrees of irregularities. And that these degrees can be 
represented by different capacity exponents, according to 
the spectrum of Figure 16. Thus, each cell in a slice has a fill 
probability that is revealed at each refinement of the mesh. Thus, 
with each new refinement of the mesh the capacity dimension 

of the cells can vary because for a more resolved mesh each cell 
can show new details of the segment that was previously not 
perceived in the refinement of the previous mesh in such a way 
that the capacity exponent, α, varies, according to Figure 16. This 
classification of capacity exponent α  can be made constructing 
an algorithm specially developed by using a data bank of basic 
images as exemplified in the Figure 16.

For each structure contained in a slice of the mesh in this mesh 
we assign a fraction of the mass p of the segment of the previous 
mesh. The masses of these segments are not equal if p ≠ 1.

Similarly for each segment a numbering can be given that 
corresponds to its refinement order ranging from 0 ≤ i ≤ N - 1. 
This other binary representation of the integer i will characterize 
the segment to give us the history of segment refinements In the 
sense that the number of zeros corresponds to the number of 
empty regions and the number of ones corresponds to the number 
of segments of non-empty cracks of each refinement. For example, 
by analogy with the Cantor fractal of Figure 17, for n = 3 we have 
8 segments and segment 3 whose binary representation is 011 
resulted from the refinement of a first empty segment on the left 
followed by two segments of crack Right, as shown in Figure 17. 
The mass of this segment will then be (1 - p) p2. Note that there 
are other segments with this same mass that can be counted by 
combinatorial analysis. For example, segment 6 whose binary 
representation is 110. In fact, for n = 3 there are 3 segments with 
mass p (1 - p)2.

Therefore, in this way, using genetic algorithm, it is possible 
reconstruct a bone in computer simulation.

Figure 16: Spectrum of the capacity of the box capacity in 2D.

Figure 17: Spectrum of the capacity of a slice in 1D.
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Capacity of a cell

Therefore, the local probability p that a cell contains a fraction 
of points /o nN N  is given by:

o o

n n

N l
p

N l

α−

= =
 
 
   ,               (30)

Where δ  is the box size. So the probability that a cell appears 
in an empty pixel is given by:

1 1 1o o

n n

N l
q p

N l

α−

= − = − = −
 
 
  ,                    (31)

In general a segment of crack whose binary representation has 
u zeros has mass

( )1
uu n

k
N

p pρ
−

= − ,                   (32)
and there are

( )
!

! !
n

n

nN
u u N u

=
−

  
 

,                     (33)
Segments of crack with this same mass.

It is necessary to add on all the slices to obtain the mass all of 
the slices:

( ) ( )
0 0

!
1

! !

N N uu n
k

u r n

n NNn p p
u u N u

ρ
−

= =

∑ ∑= −
−

  
 

,                   (34)

This combinatorial mathematical description of the trabeculae 
can be used to obtain a multifractal spectrum analysis of the bone.

Discretization of a bone by the slice method

We know that any fractal line, corresponding to the excess of 
a line and to the lack of a plane. Like each slice, the number of 
filled boxes is analogous to the Cantor fractal. So if we consider a 
slice to be a straight segment, and its boxes as points, we see that 
at the intersection with the trabecula structure, the slice exceeds 
one point but lacks a straight line. For, more than one box is filled, 
yet the slice is not fully filled. This allows us to write the number 
of cells in the x and y directions, which intercept the curve in a 
horizontal and vertical slice respectively, as shown in the Figure 
18, such as:

Let’s slice the mesh so that we get several slices corresponding 
to a fractal line analogous to a Cantor fractal, but with irregular 
distribution of segments. The trabecula structure can be 
discretized in the x and y directions by horizontal size slices 
( ),o nL l  and by vertical size slices ( ),n oh H  as shown in Figure 
19.

Figure 18: Counting of trabecular structures using the slice method. Figure 19: Discretization of a fractal curve by means of horizontal and 
vertical slices.

In iteration n , for each horizontal slice of the mesh, we have a 
number of cells equal to:

o
Hn

n

L
N

l
=

,                         (35)

and, for each vertical slice of the mesh, we have the number 
of cells a:

o
Vn

n

H
N

h
=

,                            (36)
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Therefore, the whole mesh will have a total number of:

0 0 0.T Hn Vnn
n n n

L H A
N N N

l h A
= = =

,                   (37)

Cells contained in this mesh.

Monofractality of horizontal and vertical slices: Let us 
now assume that the exponent xiα  can be considered a single 
exponent, because the curve is monofractal, in the same way yjα
, we have, therefore,

; 0 1xi x xα α α= ≤ ≤ ,                   (38)
And

; 0 1yj y yα α α= ≤ ≤
,                  (39)

Being self-related behavior, we have,

x yα α≠
,                             (40)

The number of cells in the x-direction, which intercept the 
curve in any horizontal slice can be written as:

0 1
x

o
H x

o

L
n

l

α

α= ≤ ≤
 
 
  ,                  (41)

Where xα  is a fractional exponent extracted directly from the 
fractal analysis of the image, in analogue way to fractal dimension 
for the horizontal slice.

However in the y direction, the number of cells that intercept 
the curve in any vertical slice is unique and can be written as:

0 1
y

o
V y

o

H
n

h

α

α= ≤ ≤
 
 
  ,                   (42)

Where yα  is a fractional exponent extracted directly from the 
fractal analysis of the image, in analogue way to fractal dimension 
for the vertical slice.

Multifractality of horizontal and vertical slices: Let us now 
assume that the exponent xlα  are different exponent for each 
slice, because the curve is multifractal, in the same way ymα , we 
have, therefore,

0 1 ; 1, 2, ...,
xl

o o
Hl xl

n n

L H
n l

l h

α

α= ≤ ≤ =
 
 
  ,                   (43)

Where xlα  is a fractional exponent extracted directly from the 
fractal analysis of the image, in analogue way to fractal dimension 
for the horizontal slice.

0 1 ; 1, 2, ...,
ym

o o
Vm ym

n n

H L
n m

h l

α

α= ≤ ≤ =
 
 
  ,                (44)

Where ymα  is a fractional exponent extracted directly from the 
fractal analysis of the image, in analogue way to fractal dimension 
for the vertical slice.

Then
1

o xl
Hn Hl

n

L
N n

l
α

= =
 
 
  ,                      (45)

And

1

o ym
Vn Vm

n

H
N n

h

α
= =
 
 
  ,                         (46)

For it is always possible to find exponents ,xl ymα α  that satisfy 
the above relations. From ( 9) and ( 10) we have:

1

no xl
Hn Hl

n

L
N n a

l
α

= = =
 
 
  ,                    (47)

And
1

no ym
Vn Vm

n

H
N n b

h

α
= = =
 
 
  ,     (48)

Then

n xl
Hln a α

= ,          (49)

Or

n ym
Vmn b

α
= ,        (50)

Therefore, the total number of cells is given by:
11

. ymxl
T Hn Vn Hln

N N N n nVm
αα

= =
,                     (51)

Discretization of a bone by the orthogonal projection 
method

In order to obtain the projections of the fractal curves on the 
orthogonal axes, it is necessary to add all the possible slices of the 
previous item, especially the curve range, both horizontally and 
vertically, within the size grid (Lo, Ho). 

Note that as a mandatory number of slices covers the entire 
object (Figure 19) in the size grid interval (Lo, Ho). Therefore, the 
total number of cells intercepting the object, counted horizontally, 
must be equal to the number of cells that intercept the object 
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vertically, which leads to the relation

NTH = NTV,          (52)

Monofractality of the orthogonal projections: Similarly for 
monofractals, adding all possible slices both horizontally and 
vertically within the size grid (Lo, Ho), we have that the total 
number of horizontal and vertical slices are given respectively by:

/ /

1 1

x x
H h H ho o o o o o o

TH Hi
i i

o o o

L H L
N n

l h l

α α

= =
∑ ∑= = =

   
   
    ,                  (53)

/ /

1 1

y y
L l L lo o o o o o o

TV Vi
j j

o o o

H L H
N n

h l h

α α

= =
∑ ∑= = =

   
   
    ,                  (54)

Analogously to the previous case we have:

NTH =NTV,                (55)

Thus the total number in this case is given by:

x y

o o o o

o o o o

H L L H

h l l h

α α

=
   
   
    ,                (56)

What gives the following relation between the horizontal and 
vertical scales

1 1x y

o o

o o

L H

l h

α α− −

=
   
   
    ,           (57)

For the case of monofractal this is the necessary relation to 
be used in the scaling equations of lengths, areas or trabecular 
volume given in (29).

Multifractality of the orthogonal projections: For the 
multifractal case we will have that the total number of horizontal 
and vertical slices are given respectively by:

/ /

1 1

xi
H h H ho o o o o

TH Hi
i i

o

L
N n

l

α

= =
∑ ∑= =

 
 
  ,      (58)

/ /

1 1

yj
L l L lo o o o o

TV Vj
j j

o

H
N n

h

α

= =
∑ ∑= =

 
 
  ,          (59)

Logo

/ /

1 1

H h H ho o o o

TH Hi Vj
i j

N n n
= =
∑ ∑= =

,                  (60)

Or

/ /

1 1

xi yj
H h L lo o o oo o

i j
o o

L H

l h

α α

= =
∑ ∑=

   
   
    ,               (61)

For the case of multifractal this is the necessary relation to 
be used in the scaling equations of lengths, areas or trabecular 
volume given in (29).

a.	 Horizontal trabecular counting

Counting the structures within each horizontal slice we have:

0 1
xi

o
Hi xi

o

L
n

l

α

α= ≤ ≤
 
 
  ,                  (62)

Therefore sweeping all the area or volume of the region 
analyzed we have:

/ /

1 1

yj y
L l L lo o o o o o o

TV Vj
j j

o o o

H L H
N n

h l h

α α

= =
∑ ∑= = =

   
   
    ,           (63)

b.	 Vertical trabecular counting

Counting the structures within each vertical slice we have:

0 1
yi

o
Vj yi

o

H
n

h

α

α= ≤ ≤
 
 
  ,           (64)

Therefore sweeping all the area or volume of the region 
analyzed we have:

/ /

1 1

x x
H h H ho o o o o o o

TH Hi
i i

o o o

L H L
N n

l h l

α α

= =
∑ ∑= = =

   
   
    ,           (65)

c.	 Total counting in whole volume

We know that the two previous counts (horizontal and vertical 
in 2D and a third for the 3D model) must have the same result, so 
we can match these values ​​by getting

/ /

1 1

H h H ho o o o

TH Hi Vj TV
i j

N n n N
= =
∑ ∑= = =

,     (66)

From where the total number of irregular structures is easily 
extracted, obtaining

y

o o o o

o o o o

x
H L L H

N
h l l h

αα

= =
   
   
    ,        (67)

For the case of monofractal this is the necessary relation to 
be used in the scaling equations of lengths, areas or trabecular 
volume given in (29).
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d.	 Autosimilarity of the counting

For the sake of simplicity we can consider that the structures 
do not have a preferential direction, they are self-similar, so we 
can do:

o o o oH L e h l= = ,          (68)

and therefore,

1

o

o

L
N

l

α+

=
 
 
  ,                     (69)

For the case of monofractal this is the necessary relation to 
be used in the scaling equations of lengths, areas or trabecular 
volume given in (29).

Fractal scaling of the bone volume

Starting from the unit volume considered in the geometric 
model

2 1
4

oV Nl
π

= −
 
 
  ,                        (70)

The Real Volume of Bone Mass can be written by substituting ( 
69) into ( 70) and obtaining:

1

2 1
4

o
o

o

L
V l

l

α
π

+

= −
   

      ,           (71)

We can also write this real volume in terms of the apparent 
volume given by:

2
o oV L= ,        (72)

and obtain

1

2
2 1

4
o o

o
o o

V L
V l

L l

α
π

+

= −
   

      ,                (73)

Or

12

2 1
4

o o
o

o o

l LV V
L l

α
π

+
   = −   

   ,            (74)

Therefore,

1

1
4

o
o

o

L
V V

l

α
π

−

= −
   

      ,                (75)

This is the equation that according to the proposed monofractal 
model describes the actual bone volume of the irregular structures 

of the trabecular structure in an area of ​​observation delimited by 
an apparent volume 2

o oV L= .

Bone loss rate

To obtain a mathematical formulation for bone loss or gain 
as a function of time, it is enough to derive the previous result in 
relation to time and obtain:

2 1

1(1 ) 1
4

o o
o

o

L dVdV
V

dt l dt

α

α π
α

−

−= − −
   

      ,               (76)

Multiplying everything by bone density ρ we have:

2 1

1(1 ) 1
4

o o
o

o

L dVdm
V

dt l dt

α

α π
ρ α

−

−= − −
   

      ,                    (77)

Note that the rate of bone loss can be calculated in terms of the 
rate of change in apparent bone volume.

Variation of bone density

Knowing that we have:

dM dVρ= ,           (78)

Considering that the same bone mass is analyzed we have;

odM dM= ,                    (79)
Then

o odV dVρ ρ= ,               (80)
So

o
o

dV

dV
ρ ρ=

,                                 (81)

From ( 75) we have to:

12

21
4

o o

o o o

l LdV

dV L l

α
π

+

= −
  

       ,                          (82)

Therefore,

( )

1
4

4
o

o
o

L

l

α

ρ ρ
π

−

=
−

 
 
  ,                     (83)

Note that the actual bone density can be calculated in terms of 
the apparent density of the bone.

Bone remodellig rate

Knowing that:
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o
o

o

M
V

ρ
=

,                  (84)

Considering that a same bone volume is analyzed we have;

1 2o oV V= ,               (85)

Then

1 2

1 2

o o

o o

M M

ρ ρ
=

,                (86)

From ( 75) we have to:

1

1
4

o
o

o

L
V V

l

α
π

−

= −
   

      ,                       (87)

Then

1 11 2

1 2
1 2

4 4

4 4
o o

o o

L L
V V

l l

α α

π π

− −

=
− −

      
             ,                  (88)

And 1 11 2

1 2
1 2

o o

o o

L L
V V

l l

α α− −

=
   
   
    ,              (89)

Multiplying everything by ρ we have:

1 11 2

1 2
1 2

o o

o o

L L
V V

l l

α α

ρ ρ

− −

=
   
   
    ,                        (90)

All these results of these calculations are mathematical 
equations that can represent the characteristics of a trabecular 
structure according to the monofractal and multifractal models. 
What remains is its application in practice to verify its validity 
in the geometric and physical characterization of the processes 
that take place in the bone matrix in the osteoporosis and healing 
phenomena. 

Materials and Methods
Based on the following figures obtained in a microscopic 

analysis of a trabecular structure, as shown in the Figure 20, we 
will use the box-counting method to analyze these structures. For 
this first analysis we used Fractal Vision Software to obtain the 
fractal dimension of these structures.

We used the microscopic analysis shown in Figure 21, to apply 
the Box Counting technique with half mesh reduction at each 
count as shown in the Figure 22-24 [6-12].

Figure 20: Change in the shape of the trabecular structure with the 
calcium content in a case of osteoporosis. 

Figure 21: Trabecular structure in two different calcification conditions.
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Figure 22: Counting boxes using a mesh size of δ

Figure 23: Counting boxes using a mesh of size δ/2.

Figure 24: Counting boxes using a mesh size of δ/4.

http://dx.doi.org/10.15406/mojor.2017.07.00271


Citation: Alves LM, Argenta MA, Farani LA, Hecke MB (2017) Monofractal and Multifractal Approach for the Fractal Modeling of the Porous Structure of 
the Trabecular Bone Matrix. MOJ Orthop Rheumatol 7(3): 00271. DOI: 10.15406/mojor.2017.07.00271

Monofractal and Multifractal Approach for the Fractal Modeling of the Porous Structure 
of the Trabecular Bone Matrix

17/18
Copyright:

©2017 Alves et al.

Results and Discussion
In this section we describe the fractal characterization of some 

bone structures to verify the models presented in item 5.0 of this 
article.

Measures of the fractional dimensions of the bone dies

Applying the Box-Counting method to the case shown in Figure 
22-24 the results shown in Table 1 & 2.

Table 1: Fractional Measures of the Case – 1.

Size Box Fractal Dimension Number of Structural Elements

Normal - 1 Osteoporótico - 1 Normal - 1 Osteoporótico - 2

2 1,705,463 1,355,219 2,55835949 3,26133581

4 1,602,282 1,128,430 4,77950099 9,21870435

6 1,600,730 1,225,713 8,99062955 17,6039469

8 1,863,938 1,269,649 14,0154581 48,2284988

Table 2: Fractional Measures of the Case – 2.

Size Box Fractal Dimension Number of Structural Elements

Normal - 2 Osteoporótico - 2 Normal - 2 Osteoporótico - 2

2 15,483,350 180,088 29,247,940 34,843,366

4 13,984,410 17,444 69,493,691 112,262,485

6 12,724,950 181,622 97,767,290 258,996,945

8 13,314,510 18,006 159,374,952 422,773,194

Graphing the count of boxes obtained in the structures 
analyzed we have the results shown in Figure 25 & 26.

Variation of Volume with the sizes of voids

By calculating the variation of bone volume with the apparent 
length, L0 we have the result shown in Figure 27.Figure 25: Variation of the fractal dimension with the measurement 

scale.

Figure 26: Variation of the fractal dimension with the measurement 
scale.
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Analyzing the volumetric fraction of the bones as a function of 
the size of the observed voids, we have the graph of Figure 28 The 
analyzes provided a volume equation given by:

1

1
4

o
o

o

l
V V

L

α
π

−

= −
   

      ,                       (91)

Where the fractal dimension of the analyzed bones had a value 
of:

1 1,17D α= − = ,                           (92)

Conclusion
Bone remodeling is an extremely complex process and 

difficult to understand. Referencing this process with geometric 
measurements capable of visualizing and identifying irregularities 
of bone trabeculae may be a way of simplifying this process to 
facilitate analysis.

Results obtained up to the present moment show that the 
variation of the irregularity of the images is always related to an 
external process. In the case of the images shown in Figure 21-
24, the process for bone loss in the generation of the figures was 
a simple modification in the accuracy level of a bitmap image 
tracking algorithm.

We conclude that there is a direct relationship between the 
Fractional Quantities and the Thermodynamic Powers, because 
all the Extensive and Intensive magnitudes that depend on the 
bone geometry can use the relation of Bone Volume in the models.

Therefore, modeling and fractal geometric characterization 
can provide important information to be used in the models of 
Bone Reshaping, Osseointegration, Bone Fracture, and dynamic 
evolution phenomena that can use the bone volume derivative in 
time.

In the next analyzes will be made scans and checks on 
tomography images for the attempt to observe this parameter of 
variation of the remodeling and try to identify it next to the theory 
of fractals.
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