MedCrave

Step into the World of Research

@

MOJ Gerontology & Geriatrics

Research Article

a Open Access

‘ i) CrossMark‘

On the relationship between aging & cancer

Abstract

Volume 3 Issue 2 - 2018

This work discusses the relationship between the biological aging and cancer in a

unified approach from the perspective of thermodynamics. Taking calorimetric
data from some published studies on normal and altered by metastatic carcinoma
human metabolism, it is calculated the entropy production rate. It is observed that
the entropy production rate in normal individuals decays with age, and develops a
kind of first order phase transition. In metastatic carcinoma patients, we observed a
similar tendency of decay with age; but metastatic carcinoma patients showed a larger
entropy production rate than healthy humans. This can be interpreted in terms of a
cancer higher robustness in metastatic phase. Furthermore, it is shown that the entropy
production rate per surface area as a function of chronological age can be considered
as a Lyapunov function. So, the entropy production per unit time could be considered

as a physical marker of biological age and a predictor of longevity.
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Introduction

Longevity and aging are still one of the most fascinating topics of
human knowledge. Despite all the achievements in molecular biology
and genomics, the mechanism for aging processes is still greatly
unknown. There are several theories of aging. In 1990, an excellent
review by Mevdevev,' indicated that there were more than 300 theories
of aging and the number is increasing.?® There is consensus today that
aging processes are multifactorial and complex, which constitutes the
main difficulty in reaching a single approach or theory. Lopez-Otin
et al.® identify and categorize the cellular and molecular hallmarks
of aging and propose nine candidate hallmarks that are generally
considered to contribute to the mammalian aging processes and
together determine the aging phenotype: genomic instability, telomere
attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem
cell exhaustion, and altered intercellular communication. In general,
the theories of aging can be grouped into three major groups:

1. Those related to the action of reactive oxygen species, ROS.”#

2. The theories that establish a link between metabolic rate and the
longevity of organisms.’

3. Those that focus on the aging process from a thermodynamically
point of view.!*#

According to the theory by Harman’ the main factor that induces
the aging processes is the deleterious action of free radicals on
biopolymers. The main portion of the oxygen used by the aerobic
organisms is converted to water. However, some enzymes such as
triptofan-oxigenasa, and the xanthine-oxydase, can catalyze oxidative
reactions by transferring one electron from the substrate to each oxygen
molecule, generating mainly free radicals such as radical superoxide,
hydroxyl radical and hydrogen peroxide and so on (ROS).?

The ROS can react in several ways; e.g., acting on a stable

molecule, can produce another one radical in a complex network of
reactions. This causes the oxidation of unsaturated fatty acids and
phospholipids from biological membranes and the generation of by-
products such as aldehydes, and hydrocarbons as methane and ethane.
Free radicals are too able to react with nucleic acids, DNA, proteins
and polysaccharides,' disturbing the cellular normal functions

According to the theory given by Sohal,’ the rate of aging and
metabolic rate of organisms are inversely correlated. Effects of
metabolic rate on aging may be mediated by ROS. Antioxidant
defences tend to decline during aging, whereas, the ROS induced
damage appears to increase with age.

These two approaches are closely related, and both consider several
facts including how the aging is operating through the degenerative
diseases, such as, cardiovascular disorders, cancer, atherosclerosis,
diabetes, Alzheimer dementia (SDAT), and so on.'*'® It leads to
progressive loss of physiological integrity, leading to impaired
function and increased vulnerability to death. The incidence of all of
these diseases increases rapidly with aging (in the case of cancer, the
increasing is remarkable fast).

Cancer is the generic name given to a complex network of
interactions of malignant cells which have lost their specialization and
control over normal growth. This network of malignant cells could
be considered as a nonlinear dynamical system, self-organized in
time and space, far from thermodynamic equilibrium, exhibiting high
complexity, robustness and adaptability.'

In general, biological systems can be considered as complex
dynamical systems that are self-organized far from the
thermodynamical equilibrium. Complexity and diversity of these
systems are the main features that have lead to find a multi-factor
theory for aging.

A great step in the understanding of the complexity of the
biological systems was given by Prigogine.?’ Dissipative structures
are able to self-organize themselves far from the thermodynamical
equilibrium, and emerge as a consequence of processes that operate
in the threshold of the instabilities of stationary states, maintaining its
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structure by dissipating toward the environment. Those structures are
observed by hierarchical ordering on the matter.

The complexity of the biological systems confers themselves
robustness®' and represents a purposeful factor that enables capacity
to perform specific actions and functions. From this point of view,
complexity and diversity in biological systems are results of self-
organized forms and represent qualitative features of them.

The third group of theories on aging, no less important than
the two other ones, has oriented the study of aging process from a
thermodynamic point of view.!*'* Despite of not enjoy the same
popularity as the formers, this approach provides much essential
information. Only a systems analysis approach can offer an integrated
picture of a phenomenon as complex and multifaceted as aging.
Furthermore, a thermodynamical systems viewpoint may be useful
for theory testing, since the adequacy of a postulated mechanism of
aging is best judged by its compatibility with senescent changes.!

The main purpose of the present work is to discuss the relationship
between the biological aging and cancer, with a unified approach using
the thermodynamic point of view. The manuscript is organized as
follow: In Section 5 is presented the methodology of work; theoretical
framework based on thermodynamic formalism, particularly the
entropy production rate due to metabolic rate for healthy humans
and patients with metastatic carcinoma. In Section 6 the results and
the discussion are presented. Finally, some concluding remarks are
presented in section 7.

The methodology of work

The development of the complex systems theory,? systems
biology? and thermodynamics of irreversible processes® made
possible to widen the scope of the study of biological systems. For
example, those observations that show an age-related loss of complex
variability in multiple physiologic processes including cardiovascular
control, pulsatile hormone release, and -electroencephalographic
potentials. 22

Fenninger & Mider”” observed unexplained elevation of the
basal metabolic rate in some patients with cancer. Altered energy
metabolism is proving to be as widespread in cancer cells as many of
the other cancer-associated traits that have been accepted as hallmarks
of cancer.”® The regulation of metabolism, relevant to senescence
process,” would be a key to improve as well as to identify new anti-
cancer therapies in the future.

Thermodynamic framework of the aging process for the biologic
systems permits us to see this problem as a whole, taking into account
that the “whole” is more than the sum of its parts. As emphasized
in the introduction, a thermodynamical systems viewpoint may
be useful for theory testing, since the adequacy of a postulated
mechanism of aging is best judged by its compatibility with senescent
changes.!” Moreover, in previous works,” we have shown how
the thermodynamic formalism, allows to evaluate the evolution,
robustness and complexity of cancer.

We can ask too basic questions about aging, which would allow us
to approach the issue:

1. How to explain the onset of the aging process for the human
species?
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2. How to explain the emergence of degenerative diseases, in
particular, cancer?

As we know from classic thermodynamics, if the constraints of
a system are the temperature T and the pressure P, then the entropy
production can be evaluated us ing Gibbs’s free energy,* (see formula
(1)). If the time derivative of (1) is taken, we obtained the entropy

SS.
production rate (see Formula (3)); where —— represents the entropy
dt

G
' can be developed by means of
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the chain rule as a function of the degree of advance of the reaction
g; (see formula (3)); where [6G]
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(4), we get that the entropy production rate can be rewritten as (see
formula (5)). The formula (5) is an approximation to determine the
entropy production rate of a living organism.?? The equation (5) can be
rewritten according to Zotin®® using the metabolic rate as follows (see

formula (6)); where (i:l =q= éoz+écl , are the metabolic rate
P

of oxygen Consumption q.Uz because of oxidative phosphorylation

(OxPhos) and due also to glycolysis g, , respectively. Under aerobic

conditions ch, is negligible, except for cancerous cells where the

glycolysis is the main process.** although the significant increase of

glycolysis rate in tumors has recently been verified, yet few oncologists

or cancer researchers understand the full scope of Warburg’s work?
despite of its great importance.

For healthy humans, the rate of entropy production S, can be
determined from the formula (7); where q'GI related to metabolic rates
for different individuals and is determined under mental and physical
resting as complete as possible using pleasant room temperature and
12-14 hours after the last meal; the term ‘1.61 related to the glycolysis
process is negligible under aerobic conditions.
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Results and discussion

In Figure 1 is shown the rate of entropy production per surface area
S (see formula (7)) for the healthy humans under basal conditions
for both sex and different age. For calculations, the data reported by
Boothby*® was used.
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Figure | The rate of entropy production per surface area, S, , for the healthy
humans under basal conditions for both sex (black points-male, red points-
female) and different age.

For both sex it was obtained the polynomial regression:
Si = a+bQ+cQ> +dQ° where Q represent the age and the constants
are: for male (a=0.178+0.006,b= -0.0027+0.0006,c=4E-5+ 2E-5,d =
—2E-7 + E-7; R-square =0.91564, SD=0.00344, N=54,P<0.0001); and
for female (a = 0.194+0.006,b= -0.0062+0.0006,c =1.6E-4+2E-5,d=
—1.3E-6 +2E-7;R-square=0.88505,SD=0.00349,N=54, P<0.0001).

The polynomial regression, reminds the van der Waals equation of
state,’” which it is useful to describe the first order phase transitions.
As can be seen (Figure 1), aging processes are activated for both sexes
about the 20 years old in a kind of first order phase transitions. This is
coincident with what is already accepted in the literature.*®

It is obvious that these calculations are approximations. But the
trend starting from the 20-years-old age clearly shown that the aging
processes begin to be activated and hence the bio systems are more
sensitive to perturbations. Experimental facts indicate this trend. For
example, the breathing capacity of the human being is optimal and
begins to decline, curiously, after the twenty years age.* Moreover,
it has been pointed out in the literature® that the complexity of the
cardiac rhythm changes with the age of the healthy individual going
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from more complex electrocardiograms to other ones simpler and,
finally, to the periodical ones. It has also been seen in heart diseases
patients.?

This evidence, gives us a plausible response to the emergence of
aging processes, and allows us to postulate that they are activated
through what it could be called “biological phase transition”.
Furthermore, although the human males exhibit greater complexity

(> S, ) than to the females ones, which implies greater robustness,****

it is observed that slope in healthy females from 20 to 50 years, is
lower than that of males (Figure 1). It gives some stability and also
robustness during the active period of the women.

Starting from about the 50 years, women undergo a drastic reduction
of its complexity, i.e. become less robust. Curiously, it is known that
during these ages the women experience strong hormonal changes,
particularly menopause that accelerates the aging processes.*

Generally, it is seen that with increase of age, the entropy
production rate decreases, i.e., decreases the complexity, as other
authors have pointed out.*

In a previous work?” we have shown that the rate of entropy
production is a Lyapunov function, in fact we extended this formalism
to the development of cancer.**>4° Thus we have the entropy
production per unit time meets the necessary and sufficient conditions
for Lyapunov function,’' see formula (8); where Q is the vector of
control parameters. In this case, we take the age of the subjects as the
control parameter (Q = chronological age). The Eulerian derivative
(8) must hold (see formula (9)).

. ., - . . . dQ
Since, as it is natural, Q is related with chronological age, — >0,
dt

oS

then it fulfills that: aig) <0, which can be demonstrated from Eq. (8)
and also shown in Figure 1. That allows us to affirm that the rate of
entropy production is a Lyapunov function, i.e., shows the directional
character of the aging process.
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Figure 2 The entropy production rate per surface area S, for the patient with
metastatic carcinoma for both sex (black points-male, red points-female) at
different ages.
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We arrive by this way of thinking that the activation of the aging
processes occurs on a natural way for the biosystems. This conjecture
is according to the theory given by Cutler’>>* where each mammalian
species is characterized by a particular lifespan. Physiological and
psychological changes that occur by aging have shown to indicate the
biological age of the individual.*

In relation to the second aspect: how to explain the emergence
of the degenerative diseases? According to the Harman theory® of
free radicals, these species, ROS, are generated by chain reactions and
are present in the onset of the degenerative diseases such as cancer,
atherioesclerosis, etc. In the theory given by Sohal,*’ the rate of aging
and metabolic rate of organisms are inversely correlated. Effects
of metabolic rate on aging may be mediated by ROS. Antioxidant
defences tend to decline during aging, whereas, the ROS induced
damage seems to increase with age.*

Here is precisely established the link between the present
thermodynamic framework and the Harman and Sohal theories.”’
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In particular in cancer, it is well known the significant increase of
glycolysis rate observed in tumors.?3*

Consequently, for cancer we need to add the term related to the
entropy production due to the glycolysis ¢g; to Eq. (7) as it is in the
Eq. (6). To evaluate the entropy production rate for cancer patients,
we use data of the caloric expenditure report by Holroyde et al.*® for
patient with metastatic carcinoma.

Figure 2 shows the entropy production rate per surface area, S, ,
for the patients with metastatic carcinoma for both sex and different
age.

In the patients for metastatic carcinoma, we observed a
phenomenological tendency like that of healthy people (Figure 1). On
the other hand, the complexity decreases with age for both sex and in
the case of males is observed higher complexity compared to females.

Figure 3 shows the entropy production rate per surface area S‘l. for
both sexes (left-female, right-male) for the healthy humans and cancer
patients, taking the same ages for both healthy and diseased.
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Figure 3 The entropy production rate per surface area S, for the healthy humans and the patient with metastatic carcinoma for both sex (left-female, right-

male), (black points-cancer, red points- health) at different ages.

If we compare the healthy individuals with patients of both
sexes for the same chronological age, we observe that people with
cancer exhibit greater value the entropy production rate, which can
be interpreted as that the cancer exhibits a higher robustness, an
aspect that we have found in previous works.***? Moreover, these
results give a plausible explanation to the unexplained elevation of
the basal metabolic rate that has previously been reported for cancer
patients.?"-¢

Conclusions and remarks

As point out by Strehler,®’ who defines aging by means of four
postulates, we could add a fifth one: the aging is a complex network
of interactions that could be considered as a nonlinear dynamical
system, self-organized in time and space, far from thermodynamic
equilibrium, exhibiting high complexity, robustness and adaptability,
whose functions decline with age.

As has been postulated,®*® the dynamics of biological organisms,
in their various levels of organization, are not “just” processes, but
permanent critical transitions and, therefore, changes of symmetry.
The dynamics of symmetries and symmetry breakings provide a new,
crucial role for symmetries in biology with respect to physics.

In summary, in this paper we arrive as following theoretical
assumptions:

1. The aging processes arises at the age of about twenty years and
appear as a kind of first order phase transitions, what it we could
call “biological phase transition”.

2. We have shown that the entropy production rate per surface area
S, as a function of the age of the subjects, with Q as control
parameter, can be considered as a Lyapunov function.

3. The entropy production rate could be considered as a physical
marker of biological age and a predictor of longevity.

4. The entropy production rate may provide new ways to monitor
senescence and test the efficacy of specific interventions to
modify the age-related decline in adaptive capacity.

The current theoretical framework will hopefully provide a better
understanding of the aging processes and cancer and contribute to
improvements in human health span and longevity and in the cancer
treatment.
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