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Introduction
Longevity and aging are still one of the most fascinating topics of 

human knowledge. Despite all the achievements in molecular biology 
and genomics, the mechanism for aging processes is still greatly 
unknown. There are several theories of aging. In 1990, an excellent 
review by Mevdevev,1 indicated that there were more than 300 theories 
of aging and the number is increasing.2–5 There is consensus today that 
aging processes are multifactorial and complex, which constitutes the 
main difficulty in reaching a single approach or theory. Lopez-Otin 
et al.6 identify and categorize the cellular and molecular hallmarks 
of aging and propose nine candidate hallmarks that are generally 
considered to contribute to the mammalian aging processes and 
together determine the aging phenotype: genomic instability, telomere 
attrition, epigenetic alterations, loss of proteostasis, deregulated 
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion, and altered intercellular communication. In general, 
the theories of aging can be grouped into three major groups:

1.	 Those related to the action of reactive oxygen species, ROS.7,8

2.	 The theories that establish a link between metabolic rate and the 
longevity of organisms.9

3.	 Those that focus on the aging process from a thermodynamically 
point of view.10–14 

According to the theory by Harman7 the main factor that induces 
the aging processes is the deleterious action of free radicals on 
biopolymers. The main portion of the oxygen used by the aerobic 
organisms is converted to water. However, some enzymes such as 
triptofan-oxigenasa, and the xanthine-oxydase, can catalyze oxidative 
reactions by transferring one electron from the substrate to each oxygen 
molecule, generating mainly free radicals such as radical superoxide, 
hydroxyl radical and hydrogen peroxide and so on (ROS).8

The ROS can react in several ways; e.g., acting on a stable 

molecule, can produce another one radical in a complex network of 
reactions. This causes the oxidation of unsaturated fatty acids and 
phospholipids from biological membranes and the generation of by-
products such as aldehydes, and hydrocarbons as methane and ethane. 
Free radicals are too able to react with nucleic acids, DNA, proteins 
and polysaccharides,15 disturbing the cellular normal functions

According to the theory given by Sohal,9 the rate of aging and 
metabolic rate of organisms are inversely correlated. Effects of 
metabolic rate on aging may be mediated by ROS. Antioxidant 
defences tend to decline during aging, whereas, the ROS induced 
damage appears to increase with age.

These two approaches are closely related, and both consider several 
facts including how the aging is operating through the degenerative 
diseases, such as, cardiovascular disorders, cancer, atherosclerosis, 
diabetes, Alzheimer dementia (SDAT), and so on.16–18 It leads to 
progressive loss of physiological integrity, leading to impaired 
function and increased vulnerability to death. The incidence of all of 
these diseases increases rapidly with aging (in the case of cancer, the 
increasing is remarkable fast).

Cancer is the generic name given to a complex network of 
interactions of malignant cells which have lost their specialization and 
control over normal growth. This network of malignant cells could 
be considered as a nonlinear dynamical system, self-organized in 
time and space, far from thermodynamic equilibrium, exhibiting high 
complexity, robustness and adaptability.19

In general, biological systems can be considered as complex 
dynamical systems that are self-organized far from the 
thermodynamical equilibrium. Complexity and diversity of these 
systems are the main features that have lead to find a multi-factor 
theory for aging.

A great step in the understanding of the complexity of the 
biological systems was given by Prigogine.20 Dissipative structures 
are able to self-organize themselves far from the thermodynamical 
equilibrium, and emerge as a consequence of processes that operate 
in the threshold of the instabilities of stationary states, maintaining its 
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Abstract

This work discusses the relationship between the biological aging and cancer in a 
unified approach from the perspective of thermodynamics. Taking calorimetric 
data from some published studies on normal and altered by metastatic carcinoma 
human metabolism, it is calculated the entropy production rate. It is observed that 
the entropy production rate in normal individuals decays with age, and develops a 
kind of first order phase transition. In metastatic carcinoma patients, we observed a 
similar tendency of decay with age; but metastatic carcinoma patients showed a larger 
entropy production rate than healthy humans. This can be interpreted in terms of a 
cancer higher robustness in metastatic phase. Furthermore, it is shown that the entropy 
production rate per surface area as a function of chronological age can be considered 
as a Lyapunov function. So, the entropy production per unit time could be considered 
as a physical marker of biological age and a predictor of longevity.
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structure by dissipating toward the environment. Those structures are 
observed by hierarchical ordering on the matter.

The complexity of the biological systems confers themselves 
robustness21 and represents a purposeful factor that enables capacity 
to perform specific actions and functions. From this point of view, 
complexity and diversity in biological systems are results of self-
organized forms and represent qualitative features of them.

The third group of theories on aging, no less important than 
the two other ones, has oriented the study of aging process from a 
thermodynamic point of view.10–14 Despite of not enjoy the same 
popularity as the formers, this approach provides much essential 
information. Only a systems analysis approach can offer an integrated 
picture of a phenomenon as complex and multifaceted as aging. 
Furthermore, a thermodynamical systems viewpoint may be useful 
for theory testing, since the adequacy of a postulated mechanism of 
aging is best judged by its compatibility with senescent changes.10

The main purpose of the present work is to discuss the relationship 
between the biological aging and cancer, with a unified approach using 
the thermodynamic point of view. The manuscript is organized as 
follow: In Section 5 is presented the methodology of work; theoretical 
framework based on thermodynamic formalism, particularly the 
entropy production rate due to metabolic rate for healthy humans 
and patients with metastatic carcinoma. In Section 6 the results and 
the discussion are presented. Finally, some concluding remarks are 
presented in section 7.

The methodology of work
The development of the complex systems theory,22 systems 

biology23 and thermodynamics of irreversible processes20 made 
possible to widen the scope of the study of biological systems. For 
example, those observations that show an age-related loss of complex 
variability in multiple physiologic processes including cardiovascular 
control, pulsatile hormone release, and electroencephalographic 
potentials.24–26

Fenninger & Mider27 observed unexplained elevation of the 
basal metabolic rate in some patients with cancer. Altered energy 
metabolism is proving to be as widespread in cancer cells as many of 
the other cancer-associated traits that have been accepted as hallmarks 
of cancer.28 The regulation of metabolism, relevant to senescence 
process,29 would be a key to improve as well as to identify new anti-
cancer therapies in the future.

Thermodynamic framework of the aging process for the biologic 
systems permits us to see this problem as a whole, taking into account 
that the “whole” is more than the sum of its parts. As emphasized 
in the introduction, a thermodynamical systems viewpoint may 
be useful for theory testing, since the adequacy of a postulated 
mechanism of aging is best judged by its compatibility with senescent 
changes.10 Moreover, in previous works,19 we have shown how 
the thermodynamic formalism, allows to evaluate the evolution, 
robustness and complexity of cancer.

We can ask too basic questions about aging, which would allow us 
to approach the issue:

1.	 How to explain the onset of the aging process for the human 
species?

2.	 How to explain the emergence of degenerative diseases, in 
particular, cancer?

As we know from classic thermodynamics, if the constraints of 
a system are the temperature T and the pressure P, then the entropy 
production can be evaluated us ing Gibbs’s free energy,30 (see formula 
(1)). If the time derivative of (1) is taken, we obtained the entropy 

production rate (see Formula (3)); where iS

dt

δ
 represents the entropy 

production rate, iS


 The term TpdG
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can be developed by means of 

the chain rule as a function of the degree of advance of the reaction 
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(4), we get that the entropy production rate can be rewritten as (see 
formula (5)). The formula (5) is an approximation to determine the 
entropy production rate of a living organism.32 The equation (5) can be 
rewritten according to Zotin33 using the metabolic rate as follows (see 
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, respectively. Under aerobic 
conditions GIq
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 is negligible, except for cancerous cells where the 
glycolysis is the main process.34 although the significant increase of 
glycolysis rate in tumors has recently been verified, yet few oncologists 
or cancer researchers understand the full scope of Warburg’s work35 
despite of its great importance.

For healthy humans, the rate of entropy production Si can be 
determined from the formula (7); where GIq
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 related to metabolic rates 
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resting as complete as possible using pleasant room temperature and 
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			    (6)

			 
 (7) 
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			    (9) 

Results and discussion
In Figure 1 is shown the rate of entropy production per surface area 

iS


 (see formula (7)) for the healthy humans under basal conditions 
for both sex and different age. For calculations, the data reported by 
Boothby36 was used.

Figure 1 The rate of entropy production per surface area, iS


 , for the healthy 
humans under basal conditions for both sex (black points-male, red points-
female) and different age.

For   both   sex   it    was   obtained   the   polynomial	 regression:   
2 3

iS a b c d= + Ω + Ω + Ω
  where Ω represent the age and the constants 

are: for male (a=0.178±0.006,b= -0.0027±0.0006,c=4E-5± 2E-5,d = 
–2E-7 ± E-7; R-square =0.91564, SD=0.00344, N=54,P<0.0001); and 
for female (a = 0.194±0.006,b= -0.0062±0.0006,c =1.6E-4±2E-5,d= 
–1.3E-6 ±2E-7;R-square=0.88505,SD=0.00349,N=54, P<0.0001).

The polynomial regression, reminds the van der Waals equation of 
state,37 which it is useful to describe the first order phase transitions. 
As can be seen (Figure 1), aging processes are activated for both sexes 
about the 20 years old in a kind of first order phase transitions. This is 
coincident with what is already accepted in the literature.38

It is obvious that these calculations are approximations. But the 
trend starting from the 20-years-old age clearly shown that the aging 
processes begin to be activated and hence the bio systems are more 
sensitive to perturbations. Experimental facts indicate this trend. For 
example, the breathing capacity of the human being is optimal and 
begins to decline, curiously, after the twenty years age.39 Moreover, 
it has been pointed out in the literature25 that the complexity of the 
cardiac rhythm changes with the age of the healthy individual going 

from more complex electrocardiograms to other ones simpler and, 
finally, to the periodical ones. It has also been seen in heart diseases 
patients.26

This evidence, gives us a plausible response to the emergence of 
aging processes, and allows us to postulate that they are activated 
through what it could be called “biological phase transition”. 
Furthermore, although the human males exhibit greater complexity    
( iS>



) than to the females ones, which implies greater robustness,40–42 
it is observed that slope in healthy females from 20 to 50 years, is 
lower than that of males (Figure 1). It gives some stability and also 
robustness during the active period of the women.

Starting from about the 50 years, women undergo a drastic reduction 
of its complexity, i.e. become less robust. Curiously, it is known that 
during these ages the women experience strong hormonal changes, 
particularly menopause that accelerates the aging processes.43–45

Generally, it is seen that with increase of age, the entropy 
production rate decreases, i.e., decreases the complexity, as other 
authors have pointed out.46 

 In a previous work47 we have shown that the rate of entropy 
production is a Lyapunov function, in fact we extended this formalism 
to the development of cancer.41,42,48–50 Thus we have the entropy 
production per unit time meets the necessary and sufficient conditions 
for Lyapunov function,51 see formula (8); where Ω is the vector of 
control parameters. In this case, we take the age of the subjects as the 
control parameter (Ω ≡ chronological age). The Eulerian derivative 
(8) must hold (see formula (9)).

Since, as it is natural, Ω is related with chronological age, 0
d

dt

Ω
> , 

then it fulfills that: 0
iS∂
≤

∂Ω



, which can be demonstrated from Eq. (8) 

and also shown in Figure 1. That allows us to affirm that the rate of 
entropy production is a Lyapunov function, i.e., shows the directional 
character of the aging process.

Figure 2 The entropy production rate per surface area Si for the patient with 
metastatic carcinoma for both sex (black points-male, red points-female) at 
different ages.
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We arrive by this way of thinking that the activation of the aging 
processes occurs on a natural way for the biosystems. This conjecture 
is according to the theory given by Cutler52–54 where each mammalian 
species is characterized by a particular lifespan. Physiological and 
psychological changes that occur by aging have shown to indicate the 
biological age of the individual.55

In relation to the second aspect: how to explain the emergence 
of the degenerative diseases? According to the Harman theory56 of 
free radicals, these species, ROS, are generated by chain reactions and 
are present in the onset of the degenerative diseases such as cancer, 
atherioesclerosis, etc. In the theory given by Sohal,57 the rate of aging 
and metabolic rate of organisms are inversely correlated. Effects 
of metabolic rate on aging may be mediated by ROS. Antioxidant 
defences tend to decline during aging, whereas, the ROS induced 
damage seems to increase with age.58

Here is precisely established the link between the present 
thermodynamic framework and the Harman and Sohal theories.7,9 

In particular in cancer, it is well known the significant increase of 
glycolysis rate observed in tumors.28,34

Consequently, for cancer we need to add the term related to the 
entropy production due to the glycolysis GIq



 to Eq. (7) as it is in the 
Eq. (6). To evaluate the entropy production rate for cancer patients, 
we use data of the caloric expenditure report by Holroyde et al.59 for 
patient with metastatic carcinoma.

Figure 2 shows the entropy production rate per surface area, iS


 , 
for the patients with metastatic carcinoma for both sex and different 
age.

In the patients for metastatic carcinoma, we observed a 
phenomenological tendency like that of healthy people (Figure 1). On 
the other hand, the complexity decreases with age for both sex and in 
the case of males is observed higher complexity compared to females.

Figure 3 shows the entropy production rate per surface area iS


 for 
both sexes (left-female, right-male) for the healthy humans and cancer 
patients, taking the same ages for both healthy and diseased.

Figure 3 The entropy production rate per surface area Si  for the healthy humans and the patient with metastatic carcinoma for both sex (left-female, right-
male), (black points-cancer, red points- health) at different ages.

If we compare the healthy individuals with patients of both 
sexes for the same chronological age, we observe that people with 
cancer exhibit greater value the entropy production rate, which can 
be interpreted as that the cancer exhibits a higher robustness, an 
aspect that we have found in previous works.40–42 Moreover, these 
results give a plausible explanation to the unexplained elevation of 
the basal metabolic rate that has previously been reported for cancer 
patients.27,60

Conclusions and remarks
As point out by Strehler,61 who defines aging by means of four 

postulates, we could add a fifth one: the aging is a complex network 
of interactions that could be considered as a nonlinear dynamical 
system, self-organized in time and space, far from thermodynamic 
equilibrium, exhibiting high complexity, robustness and adaptability, 
whose functions decline with age.

As has been postulated,62,63  the dynamics of biological organisms, 
in their various levels of organization, are not “just” processes, but 
permanent critical transitions and, therefore, changes of symmetry. 
The dynamics of symmetries and symmetry breakings provide a new, 
crucial role for symmetries in biology with respect to physics.

In summary, in this paper we arrive as following theoretical 
assumptions:

1.	 The aging processes arises at the age of about twenty years and 
appear as a kind of first order phase transitions, what it we could 
call “biological phase transition”.

2.	 We have shown that the entropy production rate per surface area 
iS


 as a function of the age of the subjects, with Ω as control 
parameter, can be considered as a Lyapunov function.

3.	 The entropy production rate could be considered as a physical 
marker of biological age and a predictor of longevity.

4.	 The entropy production rate may provide new ways to monitor 
senescence and test the efficacy of specific interventions to 
modify the age-related decline in adaptive capacity.

The current theoretical framework will hopefully provide a better 
understanding of the aging processes and cancer and contribute to 
improvements in human health span and longevity and in the cancer 
treatment.
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