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Editorial

The control of salt homeostasis is essential in complex organisms
with closed circulatory system and the kidney regulates this salt
balance by modulating the connection between renal glomeruli and
tubules.! Indeed, the glomeruli respond to changes in salt delivery to
the tubules through the tubuloglomerular feedback (TGF), whereas
tubules respond to changes in Glomerular Filtration Rate (GFR) in
the glomeruli with the glomerulotubular balance (GTB). The TGF-
GTB system contributes to the kidney’s ability to regulate renal
microcirculation, fluid homeostasis and blood pressure. It compensates
for approximately 66% of an outside disturbance such as changes in
salt and fluid intake.'

In the TGF, changes of salt concentration in the tubular fluid
at the end of the thick ascending limb of loop of Henle are sensed
by the macula densa cells and result in inverse change in GFR.>?
As a consequence of the TGF, salt and fluid delivery to the distal
nephron is kept within certain limits, facilitating the adjustments of
re-absorption along the late part of the nephron. The mechanism by
which the macular densa converts the luminal salt and fluid signal
into the signaling of one or more autocrine mediator(s) has been under
debate until recent findings on the indispensable role of adenosine in
mediating the underlined mechanism.*

GTB refers to the ability of the proximal tubule segment of the
kidney to adjust salt and fluid transport in proportion to variations of
the GFR. An involvement of changes merely of the net re-absorption
pressure in the peritubular capillary has failed to fully explain GTB.
Recent models favor mechanisms underlying balanced tubular re-
absorption that include both peritubular capillary effects and luminal
factors which directly modulate proximal tubular transport.’”’
Specifically, changes in renal Na*-H" exchanger-3 (NHE3) activity,
which is of major importance for the maintenance of the trans-tubular
Na* re-absorption homeostasis and acid-base balance in the proximal
tubule, were found to associate with flow-dependent transport. NHE3
activity was enhanced with an increase in luminal flow rate® and
NHES3 kinetic parameters stratified according to decreased, normal,
and increased GFR.” Consistent with NHE3 being involved in the
control of GTB are studies in NHE3-deficient mice, where it was
shown that GTB is significantly reduced.!” The cellular signals from
torque to NHE3 remain to be delineated. Nevertheless, one recurring
theme in descriptions of transport regulation has been the targeting of
both luminal and peritubular membranes in a coordinated fashion by
one (or more) hormones.

Adenosine is a purine nucleoside produced locally in normoxic
kidneys. It acts via activation of specific G protein-coupled adenosine
receptor subtypes (Al, A2A, A2B and A3).* Interestingly, the
renal content of adenosine is increased of several folds within few
minutes of renal ischemia. This increase in adenosine concentration
is completely blocked by inhibition of salt transport indicating that
adenosine generation and release is dependent on salt re-absorption
and on a compromise balance between energy supply and expenditure,
e.g. when salt-re-absorption, hence transport work, is increased
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or when oxygen supply and ATP content is limited such as during
ischemia.'*

Osswald and coworkers first proposed that local generation of
adenosine, as a consequence of increased salt transport, may elicit
TGF-induced afferent arteriole vasoconstriction.”” Studies have
revealed that mice deficient of adenosine receptor 1 (AIR) lack
the TGF,'®!7 confirming what was first suggested by Osswald and
colleagues.'® The proposed model of adenosine action foresees that
an increase in concentration-dependent update of salt and potassium
by the Na*-K"-2CI" co-transporter leads to an enhanced hydrolysis
of ATP in part due to the activity of the basolateral Na'-K*-ATPase,
which would result in a transport dependent intra- and extracellular
generation of adenosine. Extracellular adenosine via activation of A1IR
would trigger an increase in intracellular calcium concentration in the
smooth muscle cells and vasoconstriction of the afferent arteriole.*

We propose that in addition and in parallel of being a key
mediator of TGF, adenosine is that fundamental humoral signal that
controls GTB. Our proposition is based on several evidences. ARs
are expressed on both luminal and peritubular membranes in the
kidney* and GTB is suppressed in AIR deficient mice." Adenosine
is released by renal endothelial cells in response to changes in blood
flow and ARs expressed on endothelial cells control vascular tone.
Adenosine, via ARs expressed in renal tubules,'*? directly regulates
salt and fluid transport, in addition to and independent from their
hemodynamic effects. Furthermore, we found that A1R activation
exerts a bimodal effect on NHE3 activity: a low concentration of
A1R agonists stimulates NHE3 activity, while a high concentration
of AIR agonists inactivates NHE3 activity. A1R antagonists block
both effects.?'*> Our hypothesis is that the adenosine released by both
endothelial and epithelial cells cooperatively controls salt and fluid
re-absorption in response to change in GFR. On one hand, adenosine
receptors in the endothelium would affect net re-absorption pressure in
the peritubular capillary possibly by modulating the capillary vascular
tone. On the other hand, adenosine receptors in the epithelium would
modulate directly salt and fluid re-absorption by regulation of NHE3
activity. Interestingly, the dual effect induced by adenosine receptor
activation on NHE3 activity might be the mechanism by which
adenosine switches from a phase of increased to a phase of decreased
salt and fluid re-absorption. This dual effect is depended on adenosine
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concentration and, hence, Na'-transport work and is medicated by
AI1R activation. In summary, A1R-dependent adenosine action via
regulation of TGF-GTB system is a key signaling mechanism in the
control of renal salt and fluid handling. Modulation of A1R activation
might be fundamental in restoring compromised extracellular body
fluid volume and composition, blood volume and pressure.
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