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Abbreviations: MHC, major histocompatibility complex; 
IPS, induced pluripotent stem cells; MSCs, mesenchymal stem cells; 
EPCs, endothelial progenitor cells; BM, bone marrow; hTERT, human 
telomerase reverse transcriptase

Introduction
The two fundamental characteristics of stem cells are the ability 

of unlimited self-regeneration and the production of at least one type 
of differentiated progeny cells.1 Different kinds of stem cells have 
different potentials of differentiation. Totipotent stem cells are able 
to produce all types of cells. A zygote is a totipotent stem cell which 
can even produce cells that are not actually the part of the embryo, 
example placental cells. During embryonic development, cells 
gradually become confined to distinct paths of differentiation and 
hence become pluripotent that is they lose the capacity of forming 
extra embryonic tissue but retains the ability of differentiating into all 
types of adult cells.2 As the development continues, cells, previously 
pluripotent become restricted hence now called as multipotent. Distinct 
characteristic of multipotent stem cells is they can only differentiate 
into cells of a particular lineage. For example hematopoietic stem cells 
possess the ability to produce all kinds of blood cells but not neurons 
or lung cells.3 The continuous self-renewal and differentiating ability 
of stem cells has created modern research emphasis on it, especially 
in relation to its therapeutic use.2

Therapeutic potential of totipotent stem cells

Totipotent stem cells: Totipotent stem cells, however, out of all the 
other types, presents an ideal approach to deal with the therapies 
related to the diseases.4 Totipotency- a potential exhibited by the cell 
upon fusion of an egg with a sperm characterizes it among the most 

versatile class of cells.5 The zygote that develops as a result of fusion 
of the gametes is a single totipotent cell which has the capability to 
divide into numerous identical cells; giving rise to any of the three 
germ layers of human (endoderm, ectoderm or mesoderm) as well 
as extra embryonic cells which include cytotrophoblast layer and a 
syncytiotrophoblast layer of the placenta.6 In addition, the feature 
which makes these cells so distinctive from the others is the potential 
to proliferate and differentiate into a complete organism.4 Unlike 
pluripotent cells which can specialize to form only the embryonic 
cells7 and multipotent cells which can give rise to only two or more 
mature cell types,8 totipotent cells can replicate unlimitedly and 
differentiate into nearly all human cells such as of nerve and heart.5 
Correspondingly, the totipotent cells do not just have the potential to 
replicate into 16 identical cells within 4 days but they do so without 
even losing their Totipotency. When the zygote replicates to reach a 
16-celled stage, it, however, starts to lose its Totipotency and transits 
to differentiate into a specialized cell.6

Differentiating and regenerative potential: In accordance with 
studies and the experiments that have been conducted so far, the 
potency of the totipotent cells cannot be undermined by the fact that 
it can differentiate itself into about 200 cell types of a human body.6 
Several experiments have been carried out to observe this potential 
which includes the pioneering efforts made on rats as well as some on 
mammalian species by numerous scientists.9–12

In 1992, results were documented that totipotent hematopoietic 
stem cells pretreated with 5-fluorouracil when injected into the mouse 
were observed to differentiate into myeloid and lymphoid progeny 
with a long term in vivo reconstituting ability even after 7 months of 
transplantation.13 Similarly, another research conducted in the earlier 
years also reported the same result of differentiation of totipotent 
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Abstract

The discovery of stem cells opened up a whole new arena of research for scientists. And 
the realizations of their therapeutic potential, promises sustainable cure for previously 
untreated diseases. Stem cells may broadly be classified into totipotent, pluripotent and 
multipotent and each of these classes show enormous therapeutic function. Totipotent 
stem cells can differentiate into 200 cell types of the body and also has the ability to 
reconstitute a stem cell-deprived organ, thereby opening ways to tissue regeneration 
and replacement therapies respectively. Similarly, Pluripotent stem cells have been 
made to differentiate into neural tissues, insulin secreting cells, cardiomyocytes, 
hematopoietic cells, osteoblasts, endothelial cells and hepatocytes successfully. Also, 
the prospects for reprogramming human somatic cells into induced Pluripotent Stem 
(iPS) cells have heralded a new era in the field of Stem Cell Therapeutics. In contrast, 
Multipotent stem cells also promises self-renewal as well as demonstrates plasticity to 
transdifferentiate into muscle, skeletal, liver, kidney, muscle, skin, neural, and cardiac 
cell lineages. Additionally, they are shown to serve as a gene delivery vehicle in vivo. 
This review spans around the therapeutic applications of these three major types of 
stem cells.

Keywords: totipotent stem cells, pluripotent stem cells, multipotent stem cells, 
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hematopoietic stem cells into myeloid and lymphoid lineages when 
seeded into the mouse with mild and severe endogenous defects.14 
Also, the research conducted using the totipotent cells and inducing 
them to differentiate into a variety of cells when cultured as embryonic 
bodies along with the adult neural stem cells in order to induce 
differentiation, has resulted in the generation of myocytes- the cells 
found in muscle tissue.15,16 

Therefore, successful differentiation and enormous therapeutic 
potentials of the totipotent cells has led scientists to envision the 
possible treatments of diseases through cell and gene therapy as well as 
tissue regeneration.5 The replacement therapy whereby the totipotent 
stem cells are differentiated into the desired cells and subsequently 
transplanted into the damaged tissue has proved to be one of the ideal 
approaches in restoring the functions of the tissue.17 Moreover, stem 
cell based treatments via regenerative strategy wherein the abnormal 
cells are replaced by the differentiated stem cells and tropic strategy 
which involves the secretion of several different mediators such as 
interleukins and neurotrophic factors has also enabled scientist to cure 
diseases, particularly retinal associated diseases.18

Therapeutic potentials of pluripotent stem cells

Replacing the pluripotent stem cells: Several diseases are 
characterized by exhaustion of stem cells in body such as Fanconi 
Anemia (Genetic defects in hematopoietic stem cells) or failure of 
bone marrow due hematopoietic stem cells which results in leukemia 
and lymphoma. Other diseases like type 1 diabetes due to auto immune 
destruction of pancreatic beta cells and liver cirrhosis generate a 
condition in which cells of the affected organ cannot be replenished 
actively from stem cells of the body. Such diseases can be treated by 
replacing the stem cell pool or with direct organ transplantation. The 
lack of healthy and matched donors has made the method of using 
pluripotent stem cells more ideal.19 Another report showed that the 
presence of hoxB4 gene stimulates the production of hematopoietic 
stem cells in mice, henceforth promising a therapy for humans with 
impaired hematopoiesis.20

Differentiation and therapeutic application: In several trials, mouse 
pluripotent stem cells derived dopaminergic neurons have shown to 
repair motor dysfunction of Parkinson cases in rodent models.21,22 
Human pluripotent stem cells have also been differentiated into 
pancreatic cells producing insulin which can play a significant role for 
treating type I diabetes. Somatostatin and glucagon secreting pancreatic 
cells have also produced.23 Aging and accidental injuries can cause 
irreversible destruction of cardiac tissues due to their rare mitosis 
characteristic which restricts the natural regeneration of myocardial 
cells. Successful attempts have been made to use pluripotent stem 
cells for cardiac grafting.24,25 Trials for whole blood formation have 
also being done in mouse models.26 However, obtaining stable blood 
derived from pluripotent embryonic stem cells was challenging.27 
Using human pluripotent stem cells neural tissues, insulin secreting 
cells, cardiomyocytes, hematopoietic cells, osteoblasts, endothelial 
cells and hepatocytes are being successfully produced.19

Limitations

As inevitable, among all types of stem cells pluripotent stem cells 
have invaluable potential for therapeutic purposes but the problem 
of immune rejection of transplanted cells is a major hindrance in its 
wide spread clinical use. For example, embryonic pluripotent stem 
cells derived hematopoietic cells express a low level of class I MHC 

and hence become a target of natural killer cells. Along with this, 
the use of human embryos has become a major social and religious 
concern.28,29

Induced pluripotent stem cells

In consideration to such problems, recently, trials for reprogramming 
human somatic cells into induced pluripotent stem cells are being 
performed using Oct4, Sox2, Klf4 and Myc transcription factors.30 
Induced pluripotent stem cells hold great promise for drug discovery, 
understanding disease mechanisms, cells and tissue replacement 
therapies and regenerative medicine.29

Reprogramming of anemic mouse fibroblast cells and correction of 
gene by homologous recombination led to successful differentiation 
of the resulting iPS cells into hematopoietic progenitor cells which 
were subsequently transplanted back in to the mouse. Visible recovery 
was observed in the mouse after transplantation.30 Dopamine neurons 
derived from iPS cells that were transplanted into adult rat brain 
suffering with Parkinson disease proved to provide substantial 
recovery from the diseased phenotype.31 Ebert AD et al.32 reports the 
generation of motor neurons using iPS cells derived from somatic cells 
of a patient diagnosed with spinal muscular atrophy.32 Mice suffering 
with hemophilia A were protected in a death inducing bleeding assay 
after injection of iPS cells derived endothelial cells into the liver.33 As 
the production of iPS cells involves the reprogramming of somatic 
cells therefore the use of iPS cells in the treatment of epigenetic 
related defects like myelodysplastic syndrome is valuable and 
possesses the potential to completely reverse the disease condition.34 
Robust advancements in iPS cells production have also led to the 
generation of clinically relevant cell lines free of genomic integration 
and oncogenes which will ultimately contributes to the development 
of several therapies for genetic and epigenetic defects.29

Therapeutic potential of multipotent stem cells

Multipotent stem cells are cells that have the capacity to self-
renew by dividing and to develop into multiple specialized cell types 
present in a specific tissue or organ.35

Self-renewal: Mesenchymal stem cells (MSCs) found in many adult 
tissues are an attractive multipotent stem cell source.36 During the 
last two decades, mesenchymal stem cells (MSCs) have emerged as a 
potential player for cell-based therapeutics. They have demonstrated 
efficacy in multiple types of cellular therapeutic strategies, including 
applications in treating children with osteogenesis imperfect, 
hematopoietic recovery, and bone tissue regeneration strategies.37–39 
Moreover, the ability of MSCs to differentiate into a variety 
of connective tissue cell types has rendered them useful in the 
augmentation, local repair and regeneration of bone, cartilage and 
tendon.40–43 MSCs are also located in the wall of large and small blood 
vessels in, but not limited to, brain, spleen, liver, kidney, lung, muscle, 
thymus, and pancreas.44,45 Therefore, they may serve as a cell source 
for therapies of diverse disorders such as diabetes, osteoporosis, 
arthritis, muscular degenerative disorders, and the regeneration blood 
vessel walls after tissue injuries.46–49

Human studies have reported autologous whole bone marrow to 
improve posterior spinal fusion in adolescent idiopathic scoliosis 
when administered along with demineralize bone matrix.50 Similar 
human trials have reported the efficacy of using autologous bone 
marrow aspirates combined with mineralized collagen matrix grafts 
for fusion of thoracolumbar fractures.51
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In addition to the MSCs, Hematopoietic Stem Cells may be used 
in autologous or allogeneic transplantations for the treatment of 
patients with diverse hematopoietic disorders and several inherited 
immune-deficient and autoimmune diseases and to reconstitute the 
hematopoietic cell lineages and immune system defense.52,53

The in vivo induction of mobilization of BM-derived Endothelial 
Progenitor Cells (EPCs) into peripheral circulation or their activation 
can open prospects to promote neo-angiogenesis and vascular repair 
of injured areas.45,53–57 As evidence, it has been observed that the 
injection of isolated human CD34-/CD133+/VEGFR2+/ CD14-
EPC sub-population in nude mice with an injury in carotid artery 
led to their differentiation into endothelial cells and their subsequent 
incorporation into the endothelial layer of carotid artery lesion, 
resulting in a decrease in lesion size.55

NSCs, genetically modified NSCs, or their further differentiated 
progeny could be used as therapeutic agents, owing to their intrinsic 
capacity to restore dysfunctional neurons in the brain by releasing 
neuro-regenerative molecules.58 They are proposed to treat a variety 
of central nervous system disorders and several progressive and 
neurodegenerative diseases, characterized by deterioration and/or loss 
of neuronal cells, like, multiple sclerosis, Parkinson’s, Alzheimer’s, 
Amyotrophic Lateral Sclerosis, and Huntington’s diseases.53,59–64 
Moreover, this restoration of lost neuronal cells could also improve 
impairment in memory loss, abnormal control of movement, sensation, 
and other autonomic nervous functions.

Trans-differentiation: Recent advancements suggest that adult 
multipotent stem cells, previously thought to undergo tissue-specific 
differentiation, are potent of trans-differentiation as well. Trans-
differentiation refers to differentiation of a cell into lineages other than 
its tissue of origin. For instance, bone marrow (BM) cells are observed 
to possess the ability to repopulate many non-hematopoietic tissues, 
such as neuro-ectodermal cells, skeletal myoblasts, cardiomyocytes, 
endothelium, hepatocytes and lung, gut, and skin epithelia.65–72 
Whereas, BM-derived circulating Hematopoietic Stem Cells and 
Endothelial Progenitor Cells within peripheral circulation are able 
to Trans-differentiate into cells of damaged non-hematopoietic 
tissues.73 Also, BM-derived stem cells, such as endothelial progenitor 
cells, angioblasts, or CD34+ cells, when transplanted into ischemic 
myocardium incorporate into the sites of neovascularization and 
have shown to improve cardiac function.74–76 Another evidence of 
trans-differentiation of multipotent stem cells reside in the ability 
of Mesenchymal Stem Cells to not only regenerate tissues of 
mesenchymal lineages, but also differentiate into cells derived from 
other embryonic layers, including neurons and epithelia in skin, lung, 
liver, intestine, kidney, and spleen.77–79

Application in Gene transfer: Apart from their ability to self-renew 
and transdifferentiate, Multipotent Stem Cells have been used as 
vehicle to introduce exogenous DNA, making them important for 
tissue regeneration therapies. For example, MSCs infected with an 
adenovirus vector carrying dominant-negative mutant collagen type I 
gene have shown to repair the bone in individuals with osteogenesis 
imperfect, a brittle bone disease.80

Prospects: Despite of such vast therapeutic potential of multipotent 
stem cells, adult MSCs lack telomerase activity.81 Therefore, they show 
definite ex vivo proliferation capability, reach senescence and lose 
multi-lineage differentiation ability after 34-50 population doublings 
in culture. Thus, in order to utilize them to the maximum, it is required 

to develop methods to prolong the replicative capacity of MSCs with 
least unfavorable effects on their multi-potency. In this regard, several 
studies have shown forced ectopic expression of human telomerase 
reverse transcriptase (hTERT) in postnatal MSCs to extend their life 
span to more than 260 population doublings, without any impairment 
in their osteogenic, chondrogenic, adipogenic, neurogenic, and 
stromal differentiation potential.82,83

Discussion
Intense research on stem cells during the last decades has 

provided vital information on the processes that govern tissue 
and organ formation, maintenance, regeneration, and repair after 
injuries.53,54,59,84–87 Moreover, these advancements have offered great 
promise for developing novel successful stem cell-based medical 
treatments.73 This is based on the possibility of stimulating their ex 
vivo and in vivo expansion and differentiation into functional progeny 
that could regenerate the injured tissues/organs in humans.53 The 
field of stem-cell biology has further been catapulted forward by 
the startling development of reprogramming technology which has 
created powerful new opportunities for modeling human diseases and 
offers hope for personalized regenerative cell therapies.88

Despite of immense development in the field of stem cell biology, 
further studies appear to be necessary for clinical therapeutic 
applications in humans. This includes investigation to optimize the 
experimental conditions for isolation, expansion, and differentiation 
of human stem/progenitor cells in vitro, ex vivo, and in vivo. Also, 
the identification of specific biomarkers to each type of adult stem/
progenitor cells is a precursor for the characterization of their specific 
physiological functions. In addition, the loss functions of adult stem/ 
progenitor cells with aging and in specific pathological disorders 
need to be understood by the elucidation of the complex network of 
environmental signals that govern the self-renewal and differentiating 
capacities of these cells. This, in turn, can provide information on the 
sequence of molecular events that may be associated with each stage 
of development of a particular disease in humans, hence allowing 
for personalized therapy designing. In addition, the establishment 
of engraftment mechanisms of transplanted stem/progenitor cells in 
contrast to their nonfunctional or malignant counter-part could also 
lead to new, less toxic therapeutic transplant strategies.73

Other obstacles in the way of this type of theory are mostly due 
to tissue transport, pharmacokinetics, and protein stability, which 
emphasizes the need to identify all the components of the secretome 
from which stem cells are extracted for the therapy and to develop 
novel release and delivery methods.89 With the immense flow of 
research being carried out in the field of stem cell biology, these above 
mentioned issues will soon be encountered with success, paving way 
to life-saving therapies.

Conclusion
Extensive studies and numerous experiments carried out by the 

scientists have made substantial amount of information available over 
the years and has unfolded a new chapter of the promising use of 
stem cells as a therapeutic agent. With the ability to differentiate and 
proliferate into a spectrum of cells and therefore hold a prominent 
position in the field of regenerative as well as personalized 
medicine. Correspondingly, disorders associated with liver, retina, 
cardiovascular system or neurodegeneration which were previously 
untreatable due to the limitations exhibited by the immune system 
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and also with respect to tissue regeneration have now been cured 
successfully and effectively.90 Furthermore, in accordance with 
the results of Allison D. Ebert & Clive N. Svendsen published in 
Nature, stem cells provide a foothold platform for the process of drug 
screening as well as drug development; thereby, enabling scientists to 
study the effects of a drug directly on a human cell line rather than on 
animal models.1,91,92 Consequently, with the aim to repair and replace 
the damaged organ or tissues, stem cells promise a vivid future and 
an unparallel approach for the treatment of nearly all pervasive and 
debilitating human diseases.
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