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Abstract

The discovery of stem cells opened up a whole new arena of research for scientists. And
the realizations of their therapeutic potential, promises sustainable cure for previously
untreated diseases. Stem cells may broadly be classified into totipotent, pluripotent and
multipotent and each of these classes show enormous therapeutic function. Totipotent
stem cells can differentiate into 200 cell types of the body and also has the ability to
reconstitute a stem cell-deprived organ, thereby opening ways to tissue regeneration
and replacement therapies respectively. Similarly, Pluripotent stem cells have been
made to differentiate into neural tissues, insulin secreting cells, cardiomyocytes,
hematopoietic cells, osteoblasts, endothelial cells and hepatocytes successfully. Also,
the prospects for reprogramming human somatic cells into induced Pluripotent Stem
(iPS) cells have heralded a new era in the field of Stem Cell Therapeutics. In contrast,
Multipotent stem cells also promises self-renewal as well as demonstrates plasticity to
transdifferentiate into muscle, skeletal, liver, kidney, muscle, skin, neural, and cardiac
cell lineages. Additionally, they are shown to serve as a gene delivery vehicle in vivo.
This review spans around the therapeutic applications of these three major types of
stem cells.
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Introduction

The two fundamental characteristics of stem cells are the ability
of unlimited self-regeneration and the production of at least one type
of differentiated progeny cells.! Different kinds of stem cells have
different potentials of differentiation. Totipotent stem cells are able
to produce all types of cells. A zygote is a totipotent stem cell which
can even produce cells that are not actually the part of the embryo,
example placental cells. During embryonic development, cells
gradually become confined to distinct paths of differentiation and
hence become pluripotent that is they lose the capacity of forming
extra embryonic tissue but retains the ability of differentiating into all
types of adult cells.> As the development continues, cells, previously
pluripotent become restricted hence now called as multipotent. Distinct
characteristic of multipotent stem cells is they can only differentiate
into cells of a particular lineage. For example hematopoietic stem cells
possess the ability to produce all kinds of blood cells but not neurons
or lung cells.? The continuous self-renewal and differentiating ability
of stem cells has created modern research emphasis on it, especially
in relation to its therapeutic use.’

Therapeutic potential of totipotent stem cells

Totipotent stem cells: Totipotent stem cells, however, out of all the
other types, presents an ideal approach to deal with the therapies
related to the diseases.* Totipotency- a potential exhibited by the cell
upon fusion of an egg with a sperm characterizes it among the most

versatile class of cells.” The zygote that develops as a result of fusion
of the gametes is a single totipotent cell which has the capability to
divide into numerous identical cells; giving rise to any of the three
germ layers of human (endoderm, ectoderm or mesoderm) as well
as extra embryonic cells which include cytotrophoblast layer and a
syncytiotrophoblast layer of the placenta.® In addition, the feature
which makes these cells so distinctive from the others is the potential
to proliferate and differentiate into a complete organism.* Unlike
pluripotent cells which can specialize to form only the embryonic
cells” and multipotent cells which can give rise to only two or more
mature cell types,® totipotent cells can replicate unlimitedly and
differentiate into nearly all human cells such as of nerve and heart.’
Correspondingly, the totipotent cells do not just have the potential to
replicate into 16 identical cells within 4 days but they do so without
even losing their Totipotency. When the zygote replicates to reach a
16-celled stage, it, however, starts to lose its Totipotency and transits
to differentiate into a specialized cell.®

Differentiating and regenerative potential: In accordance with
studies and the experiments that have been conducted so far, the
potency of the totipotent cells cannot be undermined by the fact that
it can differentiate itself into about 200 cell types of a human body.°®
Several experiments have been carried out to observe this potential
which includes the pioneering efforts made on rats as well as some on
mammalian species by numerous scientists.” '

In 1992, results were documented that totipotent hematopoietic
stem cells pretreated with 5-fluorouracil when injected into the mouse
were observed to differentiate into myeloid and lymphoid progeny
with a long term in vivo reconstituting ability even after 7 months of
transplantation.'® Similarly, another research conducted in the earlier
years also reported the same result of differentiation of totipotent
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hematopoietic stem cells into myeloid and lymphoid lineages when
seeded into the mouse with mild and severe endogenous defects.'*
Also, the research conducted using the totipotent cells and inducing
them to differentiate into a variety of cells when cultured as embryonic
bodies along with the adult neural stem cells in order to induce
differentiation, has resulted in the generation of myocytes- the cells
found in muscle tissue.'*1¢

Therefore, successful differentiation and enormous therapeutic
potentials of the totipotent cells has led scientists to envision the
possible treatments of diseases through cell and gene therapy as well as
tissue regeneration.’ The replacement therapy whereby the totipotent
stem cells are differentiated into the desired cells and subsequently
transplanted into the damaged tissue has proved to be one of the ideal
approaches in restoring the functions of the tissue.'” Moreover, stem
cell based treatments via regenerative strategy wherein the abnormal
cells are replaced by the differentiated stem cells and tropic strategy
which involves the secretion of several different mediators such as
interleukins and neurotrophic factors has also enabled scientist to cure
diseases, particularly retinal associated diseases.'®

Therapeutic potentials of pluripotent stem cells

Replacing the pluripotent stem cells: Several diseases are
characterized by exhaustion of stem cells in body such as Fanconi
Anemia (Genetic defects in hematopoietic stem cells) or failure of
bone marrow due hematopoietic stem cells which results in leukemia
and lymphoma. Other diseases like type 1 diabetes due to auto immune
destruction of pancreatic beta cells and liver cirrhosis generate a
condition in which cells of the affected organ cannot be replenished
actively from stem cells of the body. Such diseases can be treated by
replacing the stem cell pool or with direct organ transplantation. The
lack of healthy and matched donors has made the method of using
pluripotent stem cells more ideal.”” Another report showed that the
presence of hoxB4 gene stimulates the production of hematopoietic
stem cells in mice, henceforth promising a therapy for humans with
impaired hematopoiesis.?

Differentiation and therapeutic application: In several trials, mouse
pluripotent stem cells derived dopaminergic neurons have shown to
repair motor dysfunction of Parkinson cases in rodent models.?'*
Human pluripotent stem cells have also been differentiated into
pancreatic cells producing insulin which can play a significant role for
treating type I diabetes. Somatostatin and glucagon secreting pancreatic
cells have also produced.” Aging and accidental injuries can cause
irreversible destruction of cardiac tissues due to their rare mitosis
characteristic which restricts the natural regeneration of myocardial
cells. Successful attempts have been made to use pluripotent stem
cells for cardiac grafting.*** Trials for whole blood formation have
also being done in mouse models.?® However, obtaining stable blood
derived from pluripotent embryonic stem cells was challenging.?’
Using human pluripotent stem cells neural tissues, insulin secreting
cells, cardiomyocytes, hematopoietic cells, osteoblasts, endothelial
cells and hepatocytes are being successfully produced."

Limitations

As inevitable, among all types of stem cells pluripotent stem cells
have invaluable potential for therapeutic purposes but the problem
of immune rejection of transplanted cells is a major hindrance in its
wide spread clinical use. For example, embryonic pluripotent stem
cells derived hematopoietic cells express a low level of class | MHC

Copyright:

©2015 Makhani ecal. 137

and hence become a target of natural killer cells. Along with this,
the use of human embryos has become a major social and religious
concern.”?

Induced pluripotent stem cells

Inconsiderationto such problems, recently, trials forreprogramming
human somatic cells into induced pluripotent stem cells are being
performed using Oct4, Sox2, KIf4 and Myc transcription factors.*
Induced pluripotent stem cells hold great promise for drug discovery,
understanding disease mechanisms, cells and tissue replacement
therapies and regenerative medicine.”

Reprogramming of anemic mouse fibroblast cells and correction of
gene by homologous recombination led to successful differentiation
of the resulting iPS cells into hematopoietic progenitor cells which
were subsequently transplanted back in to the mouse. Visible recovery
was observed in the mouse after transplantation.** Dopamine neurons
derived from iPS cells that were transplanted into adult rat brain
suffering with Parkinson disease proved to provide substantial
recovery from the diseased phenotype.’! Ebert AD et al.** reports the
generation of motor neurons using iPS cells derived from somatic cells
of a patient diagnosed with spinal muscular atrophy.*?> Mice suffering
with hemophilia A were protected in a death inducing bleeding assay
after injection of iPS cells derived endothelial cells into the liver.* As
the production of iPS cells involves the reprogramming of somatic
cells therefore the use of iPS cells in the treatment of epigenetic
related defects like myelodysplastic syndrome is valuable and
possesses the potential to completely reverse the disease condition.*
Robust advancements in iPS cells production have also led to the
generation of clinically relevant cell lines free of genomic integration
and oncogenes which will ultimately contributes to the development
of several therapies for genetic and epigenetic defects.”

Therapeutic potential of multipotent stem cells

Multipotent stem cells are cells that have the capacity to self-
renew by dividing and to develop into multiple specialized cell types
present in a specific tissue or organ.*

Self-renewal: Mesenchymal stem cells (MSCs) found in many adult
tissues are an attractive multipotent stem cell source.*® During the
last two decades, mesenchymal stem cells (MSCs) have emerged as a
potential player for cell-based therapeutics. They have demonstrated
efficacy in multiple types of cellular therapeutic strategies, including
applications in treating children with osteogenesis imperfect,
hematopoietic recovery, and bone tissue regeneration strategies.*’
Moreover, the ability of MSCs to differentiate into a variety
of connective tissue cell types has rendered them useful in the
augmentation, local repair and regeneration of bone, cartilage and
tendon.*** MSCs are also located in the wall of large and small blood
vessels in, but not limited to, brain, spleen, liver, kidney, lung, muscle,
thymus, and pancreas.*** Therefore, they may serve as a cell source
for therapies of diverse disorders such as diabetes, osteoporosis,
arthritis, muscular degenerative disorders, and the regeneration blood
vessel walls after tissue injuries.***

Human studies have reported autologous whole bone marrow to
improve posterior spinal fusion in adolescent idiopathic scoliosis
when administered along with demineralize bone matrix.*® Similar
human trials have reported the efficacy of using autologous bone
marrow aspirates combined with mineralized collagen matrix grafts
for fusion of thoracolumbar fractures.*!
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In addition to the MSCs, Hematopoietic Stem Cells may be used
in autologous or allogeneic transplantations for the treatment of
patients with diverse hematopoietic disorders and several inherited
immune-deficient and autoimmune diseases and to reconstitute the
hematopoietic cell lineages and immune system defense.’>

The in vivo induction of mobilization of BM-derived Endothelial
Progenitor Cells (EPCs) into peripheral circulation or their activation
can open prospects to promote neo-angiogenesis and vascular repair
of injured areas.**7 As evidence, it has been observed that the
injection of isolated human CD34-/CD133+/VEGFR2+/ CD14-
EPC sub-population in nude mice with an injury in carotid artery
led to their differentiation into endothelial cells and their subsequent
incorporation into the endothelial layer of carotid artery lesion,
resulting in a decrease in lesion size.*

NSCs, genetically modified NSCs, or their further differentiated
progeny could be used as therapeutic agents, owing to their intrinsic
capacity to restore dysfunctional neurons in the brain by releasing
neuro-regenerative molecules.*® They are proposed to treat a variety
of central nervous system disorders and several progressive and
neurodegenerative diseases, characterized by deterioration and/or loss
of neuronal cells, like, multiple sclerosis, Parkinson’s, Alzheimer’s,
Amyotrophic Lateral Sclerosis, and Huntington’s diseases.’% ¢4
Moreover, this restoration of lost neuronal cells could also improve
impairment in memory loss, abnormal control of movement, sensation,
and other autonomic nervous functions.

Trans-differentiation: Recent advancements suggest that adult
multipotent stem cells, previously thought to undergo tissue-specific
differentiation, are potent of trans-differentiation as well. Trans-
differentiation refers to differentiation of a cell into lineages other than
its tissue of origin. For instance, bone marrow (BM) cells are observed
to possess the ability to repopulate many non-hematopoietic tissues,
such as neuro-ectodermal cells, skeletal myoblasts, cardiomyocytes,
endothelium, hepatocytes and lung, gut, and skin epithelia.®7
Whereas, BM-derived circulating Hematopoietic Stem Cells and
Endothelial Progenitor Cells within peripheral circulation are able
to Trans-differentiate into cells of damaged non-hematopoietic
tissues.” Also, BM-derived stem cells, such as endothelial progenitor
cells, angioblasts, or CD34+ cells, when transplanted into ischemic
myocardium incorporate into the sites of neovascularization and
have shown to improve cardiac function.”*7¢ Another evidence of
trans-differentiation of multipotent stem cells reside in the ability
of Mesenchymal Stem Cells to not only regenerate tissues of
mesenchymal lineages, but also differentiate into cells derived from
other embryonic layers, including neurons and epithelia in skin, lung,
liver, intestine, kidney, and spleen.” 7

Application in Gene transfer: Apart from their ability to self-renew
and transdifferentiate, Multipotent Stem Cells have been used as
vehicle to introduce exogenous DNA, making them important for
tissue regeneration therapies. For example, MSCs infected with an
adenovirus vector carrying dominant-negative mutant collagen type I
gene have shown to repair the bone in individuals with osteogenesis
imperfect, a brittle bone disease.*

Prospects: Despite of such vast therapeutic potential of multipotent
stem cells, adult MSCs lack telomerase activity.®! Therefore, they show
definite ex vivo proliferation capability, reach senescence and lose
multi-lineage differentiation ability after 34-50 population doublings
in culture. Thus, in order to utilize them to the maximum, it is required
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to develop methods to prolong the replicative capacity of MSCs with
least unfavorable effects on their multi-potency. In this regard, several
studies have shown forced ectopic expression of human telomerase
reverse transcriptase (WTERT) in postnatal MSCs to extend their life
span to more than 260 population doublings, without any impairment
in their osteogenic, chondrogenic, adipogenic, neurogenic, and
stromal differentiation potential >3

Discussion

Intense research on stem cells during the last decades has
provided vital information on the processes that govern tissue
and organ formation, maintenance, regeneration, and repair after
injuries.**3*%8487 Moreover, these advancements have offered great
promise for developing novel successful stem cell-based medical
treatments.”® This is based on the possibility of stimulating their ex
vivo and in vivo expansion and differentiation into functional progeny
that could regenerate the injured tissues/organs in humans.” The
field of stem-cell biology has further been catapulted forward by
the startling development of reprogramming technology which has
created powerful new opportunities for modeling human diseases and
offers hope for personalized regenerative cell therapies.*®

Despite of immense development in the field of stem cell biology,
further studies appear to be necessary for clinical therapeutic
applications in humans. This includes investigation to optimize the
experimental conditions for isolation, expansion, and differentiation
of human stem/progenitor cells in vitro, ex vivo, and in vivo. Also,
the identification of specific biomarkers to each type of adult stem/
progenitor cells is a precursor for the characterization of their specific
physiological functions. In addition, the loss functions of adult stem/
progenitor cells with aging and in specific pathological disorders
need to be understood by the elucidation of the complex network of
environmental signals that govern the self-renewal and differentiating
capacities of these cells. This, in turn, can provide information on the
sequence of molecular events that may be associated with each stage
of development of a particular disease in humans, hence allowing
for personalized therapy designing. In addition, the establishment
of engraftment mechanisms of transplanted stem/progenitor cells in
contrast to their nonfunctional or malignant counter-part could also
lead to new, less toxic therapeutic transplant strategies.”

Other obstacles in the way of this type of theory are mostly due
to tissue transport, pharmacokinetics, and protein stability, which
emphasizes the need to identify all the components of the secretome
from which stem cells are extracted for the therapy and to develop
novel release and delivery methods.® With the immense flow of
research being carried out in the field of stem cell biology, these above
mentioned issues will soon be encountered with success, paving way
to life-saving therapies.

Conclusion

Extensive studies and numerous experiments carried out by the
scientists have made substantial amount of information available over
the years and has unfolded a new chapter of the promising use of
stem cells as a therapeutic agent. With the ability to differentiate and
proliferate into a spectrum of cells and therefore hold a prominent
position in the field of regenerative as well as personalized
medicine. Correspondingly, disorders associated with liver, retina,
cardiovascular system or neurodegeneration which were previously
untreatable due to the limitations exhibited by the immune system
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and also with respect to tissue regeneration have now been cured
successfully and effectively.” Furthermore, in accordance with
the results of Allison D. Ebert & Clive N. Svendsen published in
Nature, stem cells provide a foothold platform for the process of drug
screening as well as drug development; thereby, enabling scientists to
study the effects of a drug directly on a human cell line rather than on
animal models."'*> Consequently, with the aim to repair and replace
the damaged organ or tissues, stem cells promise a vivid future and
an unparallel approach for the treatment of nearly all pervasive and
debilitating human diseases.
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