Critical reevaluation of methods of recording and assessing c-VEMPS

Abstract

The cervical Vestibular Evoked Myogenic Potential (c-VEMP) investigates otolith and vestibular nerve function. Dysfunction is characterized by feeling similar to being on a boat or an elevator. It may be a spinning sensation when people say that they are dizzy. The c-VEMP is a short-latency electromyographic (EMG) potential and it is evoked in response to high-level acoustic stimuli. The responses are mediated by the vestibular system. Clinical applications go beyond dizziness. Defining normative data is a first and crucial step to before implementing a new technique in the clinic for applications in patients.

Keywords: vestibular, dizziness, diagnosis, potential

Introduction

The cervical Vestibular Evoked Myogenic Potential (c-VEMP) is generally assumed to provide information about a different part of the vestibular system compared to the more routinely applied rotation, head impulse and caloric tests and can provide valuable additional diagnostic information. Defining normative data is a first and crucial step to before implementing a new technique in the clinic for applications in patients.

In most papers different protocols were used in those days describing various stimulation types (tone burst, clicks etc), stimulus intensities and frequencies, head and body positions, electrode positions, data-acquisition and signal processing, and output parameters like latencies, threshold and amplitude and symmetry of the responses.

In the following discussion it is presented in details the optimal protocol to apply in this test, according current literature.

Stimulation type

Various types of stimuli have been used to evoke c-VEMP responses. They include air and bone-conducted tone bursts, air-conducted clicks, forehead taps, and galvanic stimulation (short-duration transmastoid direct current stimulation).

A click stimulus is a block function containing a wide spectrum of frequencies. A short tone burst (STB) stimulus can be described as a short pure tone, predominantly containing one specific stimulus frequency. Clicks and STB are conducted through the middle ear and are still believed to activate - among others - saccular hair cells via movement of the endolymph near the oval window by the stapes. Bone conducted stimuli produce a wave of vibration that bypasses the middle ear and directly activate the vestibular apparatus on both sides simultaneously. Galvanic stimulation is assumed to act upon the distal part of the primary vestibular afferents. Fore head taps are shown also to be effective in eliciting c-VEMP’s. However, like bone-conducted stimulation, galvanic stimulation and fore head taps, induce worse signal to noise ration as compared to air-conducted sound stimulation.

Bone conduction stimulation produces a wave of vibration that bypasses the middle ear and directly activates the vestibular apparatus on both sides simultaneously. Galvanic stimulation is assumed to act upon the distal part of the primary vestibular afferents. Fore head taps are shown also to be effective in eliciting c-VEMP’s. However, like bone-conducted stimulation, galvanic stimulation and fore head taps, induce worse signal to noise ration as compared to air-conducted sound stimulation.

The low frequency sensitivity in humans is even more pronounced maybe due to the larger otoconia mass in the human sacculus, compared to that in smaller animals such as a cat.

Remarkably, in our hands, the responses we obtained with 1000 Hz toneburst were more clear than with 500 Hz tone burst. As it is not in line with the literature this could at least partly be due to the limitations of our equipment used those days.

At lower amplitudes and at 500 Hz we observed no clear and reproducible responses in quite a number of healthy subjects. At current specific equipment have been developed for c-VEMP which provide even a response with a better signal to noise ratio even when using much less intense stimulus amplitudes of 95 dBnHL at various frequencies. The advantage of these lower amplitudes is a better comfort for patients; less fatigue while still good responses can be obtained. It is applied as an advice - in line with the current opinion and in case of using c-VEMP amplitudes as output parameters - the use of 95 dBnHL tonebursts at 500 Hz for routine application.

Head and body positions

A constant muscular tension is a prerequisite to a reliable recording of c-VEMP. If the muscle is not contracted sufficiently, the c-VEMP responses may be absent. The response can be measured on several neck muscles, also. So both electrode position and contraction state of the muscle are crucial. Colebath et al.,13 described a valid method recording response from the sternocleidomastoid (SCM) muscle and proposed this as optimal.

The many different methods of SCM activation make it difficult to compare findings across studies and thus to determine the optimal VEMP test protocol. The various methods used to obtain a tonic contraction of the SCM muscle throughout C-VEMP recording include: 1) lifting the head off the support surface to bilaterally activate the SCM muscles while in supine position (supine elevation method),12 2) pressing the fore head against a padded bar,13-15 pushing
with their jaw against the hand-held inflated cuff to generate specific 
cuff pressures,19 pressing the chin against an adjustable stand,20 or 
squeezing a rubber ball placed between the chin and the manubrium,21 
to bilaterally activate the SCM muscles while in the sitting position 
(sitting forward flexion method), 3) rotating the head to the side 
opposite the stimulated ear to unilaterally activate the SCM on the side 
of the test ear while sitting,22,24 (sitting rotation method) or supine,25 
(supine rotation method) positions, and 4) simultaneously lifting and 
rotating the head to the side opposite the stimulated ear to unilaterally 
activate the SCM on the side of the test ear while in the supine position, 
26 (supine elevation rotation method). Few studies have compared 
different methods of SCM activation to determine those positions that 
yield the most robust and reliable VEMP responses.25,27

When the c-VEMP data were collected in our studies, the patient 
was seated with the head turned in the opposite direction of the neck 
muscle contraction to be induced and the stimulated labyrinth. At that 
time, it was not completely clear how latencies and amplitudes were 
fected by different head and body positions.

Nowadays, conclude based in the current literature that head and 
body position significantly affected the amplitude of the VEMP, but 
had no significant effect on latency. Although there is still no consensus 
all over the world regarding the optimal head-body position, there 
is a tendency in favor of using the supine position with the head in 
flexion without rotation but with visual feedback to control muscle 
contraction for routine application.

Electrode position

Electrode position is another variable in recording the c-VEMP. Sheykholeslami et al.,27 sought to determine the optimal electrode 
sites. The optimal ground electrode was considered to be at the fore 
head, and the reference (indifferent) electrode was positioned on the 
sternum.19 Like indicated in the introduction of this thesis, results 
from the Sheykholeslami study suggested that the active electrode 
placed on either the upper or middle portion of the SCM produced 
the clearest waveforms with largest amplitudes. This electrode 
configuration became more or less the standard.24,26,29

Electromyography (EMG) level

C-VEMP can be considered as a modulation of an existing tonic 
neck muscle contraction. The c-VEMP amplitude was shown and is 
known to increase with tonic muscle contraction.30 So, it is necessary 
to define the contraction state of the neck muscle to standardize the 
method and to overcome the large variation in c-VEMP amplitudes 
when muscle contraction is not kept constant during the measurements. 
To achieve a constant EMG level and thus comparable physiological 
conditions, a manual or automatic feedback mechanism is needed. 
Several devices monitor the tonic muscle activity itself and visualize 
the level of activation, including visual feedback of tonic EMG 
displayed via a LED array,31 or small monitor,3 auditory feedback,32 or 
visualize head pressure by pushing the jaw against a blood pressure 
manometer with inflatable cuff.33,35

The set points of the directly monitored tonic EMG levels used as 
a feed back to maintain the SCM muscle activation within specific 
levels, varied among researchers: 30–50 µV, 40–150 µV,34 and 50– 
200 µV.35

It is recommend visual feedback to control tonic EMG activity as a 
routine technique to optimize c-VEMP amplitude and reproducibility.

Out parameters

Latency

Among others c-VEMP latencies vary with stimulus type (e.g. 
sound, galvanic, taps), amplitude, frequency, shape, duration and 
age. But as not all independent parameters are fully recognized and 
understood, and also identification of the peak on-set is done manually 
and arbitrary, it is best to establish the normal range of the latencies 
at each institution.

A significant delay of peak latencies P13 and N23 is considered 
pathological. The peak latencies P13 show a better reproducibility 
than that of N23.

We advise to acquire adequate normative data of C-VEMP before 
using it as a diagnostic tool.

Amplitude

As not all independent parameters are fully recognized and 
understood, and because the identification of the peaks is done 
manually and arbitrary, it is best to establish the normal range of peak 
amplitudes or thresholds at each institution separately and not rely too 
much upon the data provided by the manufactory.

The c-VEMP response occurs as a stimulus synchronized reduction 
in tonic EMG activity. As the sacculo-collic reflex is inhibitory to 
the SCM contraction, c-VEMPs are therefore only detectable when the 
muscle is indeed contracted. The c-VEMP's amplitude therefore 
increases when the force exerted increase by recruitment of more 
motors units. C-VEMP amplitude also increases with a longer 
stimulus duration leading to a more prolonged and intense period of 
inhibition. The effect of both parameters would be an increase in the 
likelihood of a given motor unit being affected by the stimulus and 
thus a larger number of units to respond to each stimulus, evoking a 
larger response.33 Indeed, c-VEMP amplitude depends on the level of 
both the tonic SCM muscle activation and the stimulus intensity.31,26

The absolute c-VEMP amplitudes show a high inter-subject 
variability. Ochi et al.,41 concluded that the SD of the C-VEMP 
amplitude was too large to be used in clinical evaluation, even when 
the amplitude was normalized with the absolute EMG values.37 
Therefore c-VEMP amplitudes are in principle less appropriate for 
use in clinical practice.8,37

Nevertheless, many people used and still use the peak amplitudes 
because the total test duration is then shorter as compared to a 
threshold measurement. Some investigations show that amplitude 
symmetries between the right and left ear stimulation could provide 
useful information in diagnosing audio vestibular and neurological 
disorders as well as in determine the likely side of pathology.39 
The upper limit of the c-VEMP asymmetry ratio varies from 20% – 36% 
in the literature.26,27,30,37

Thresholds

The lowest stimulus intensity needed to evoke a c-VEMP 
response is called the threshold. They are all based on the fact that 
c-VEMP amplitudes increase with increasing stimulus intensity. The 
fundamental problem here is how to distinguish a small response from 
the background noise, which again is an arbitrary manual process.

VEMP thresholds in healthy subjects have been reported to range 
between 100–115 dBnHL,4 and 75–105 dBnHL,3 in response to click

Citation: Felipe L. Critical reevaluation of methods of recording and assessing c-VEMPS. J Otolaryngol ENT Res. 2018;10(5):260–263.
DOI: 10.15406/joentnr.2018.10.00263
stimuli. For tone burst stimuli the thresholds ranges from 85–100 dBnHL at 1000 Hz (40) and from 60–75 dBnHL at 250 Hz.41

Although identifying c-VEMP thresholds seem to be a useful clinical approach for identifying peripheral vestibular diseases42,43 no literature was available to our knowledge at the start of our study in 2004 for normative data regarding application of the VEMP methodology for central diseases.

This application of threshold detection to quantify the VEMP responses is applied more widely, showing consistent and reproducible amplitudes and latencies. It is recommended the evaluation of VEMP thresholds and not VEMP amplitudes in investigations with central diseases.

Conclusion

More consensuses have been obtained regarding the precise stimulus and peak detection protocols for c-VEMP application in Otoneurology.

Acknowledgments

None.

Conflicts of interest

The author declares there are no conflicts of interest.

References

34. Wang CT, Young YH. Comparison of the head elevation versus rotation methods in eliciting vestibular evoked myogenic potentials. Ear Hear. 2006;27(4):376–381.


