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Abbreviations: MPH: Modified Pseudo Harmonicpotential; NC: 3D–RSP: Noncommutativity Three Dimensional Real Spaces; CCRs: 
Canonical Commutations Relations; NNCCRs: New Noncommutative Canonical Commutations Relations; MDE: Modified Dirac equation, 
SP: Schrödinger Picture; HP: Heisenberg Picture 

Introduction
The analytical solution of Dirac equation plays a vital role in relativistic quantum mechanics and solving the Dirac equation to obtain the 

bound–state energies for with different potential models using various methods for example Nikiforov–Uvarov method, The Laplace transform 
approach (LTA), factorization method and so on.1–6 The quantum algebraic structure based to the ordinary CCRs in both of SP, HP and Dirac 
picture (the operators are depended on time), as ( 1c = = ):

( ) ( ) ( ) ( ) ( ) ( ), ,   and   , , , , 0i j i j i j i j i j i jij
x p x t p t i x x x t x t p p p t p tδ           = = = = = =                                                                                     (1) 

Very recently, non–commutative geometry plays an important role in modern physics and has sustained great interest, for example.7–21 and 
our works in this context.22–47 in the case of relativistic and nonrelativistic quantum mechanics. The new quantum structure of NC space based 
on the following NC CCRs in both of SP, HP and Dirac picture respectively, as follows.7–25

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,   and  , , 0i j i j i j i j i j i jij ij
x p x t p t i x x x t x t i p p p t p tδ θ
∗ ∗ ∗ ∗ ∗ ∗           

  =   =   =   =   =   =
                      

                                                        (2)

 

The very small parameters 
µνθ  (compared to the energy) are element of antisymmetric real matrix and ( )∗  denote to the new star product, 

which generalized to two arbitrary functions ( ( ) ( )ˆ ˆ f x f x→ and ( ) ( )ˆ ˆg x g x→ t) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆf x g x f g x≡ ∗  instead of the usual product 
( ) ( )fg x .17–27

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆ exp( , (
2 2
i ix x x xf x g x f g x fg x p fg f g O

x x
µν

µ νν

µνθ θ θµ νµ ν≡ ∗ ≡ ∂ ∂ ≡ − ∂ ∂ +
=

                                                                 (3)

 

The new term ( ( ) ( )
2
i x xf x g xµνθ µ ν− ∂ ∂ ) is induced by (space–space) noncommutativity properties. A Bopp’s shift method can be used, 

instead of solving any quantum systems by using directly star product procedure.18–33

ˆ ˆ ˆ ˆ, and , 0i j i jij
x x i p pθ   = =                                                                                                                                                                             (4)

The new three–generalized coordinates ( )1 2 3ˆ ˆ ˆ ˆ ˆˆ, ,x x y x z x= = =  are given by.22–34

12 13 21 23 31 32ˆ ˆ ˆ,        and 
2 2 2 2 2 2y z x z x y

x x p p y y p p z z p p
θ θ θ θ θ θ

= − − = − − = − −
                                                                                     

 (5)

Where ( ), ,x y z  and ( ), ,p p px y z  
are three–usual coordinates and momentum ,which allow us to getting the operator 2r̂  on NC three 

dimensional spaces as follows.22–33
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Abstract

In this paper, we present solutions of the modified Dirac equation (MDE) with modified 
pseudoharmonic (MPH) potential for spin–1/2 particles by means Bopp’s shift method, in 
the framework of noncommutativity 3–dimensional real space (NC: 3D–RS) symmetries. 
The exact corrections for thn  excited states are found straightforwardly by means of 
the standard perturbation theory. It is found that the energy eigenvalues strongly depend 
on the potential parameters, two infinitesimal parameter (Θ  and χ ), which induced by 
position–position noncommutativity, in addition to the discreet atomic quantum numbers (

( ) ( )1 / 2, 1 / 2,j l l s l l= ± = ±   and m  ( m ) ) and we have also shown that, the usual 
states in ordinary 3–.dimensions are canceled and has been replaced by new degenerated 
( )2 2 1l +  and ( )2 2 1l+  sub–states under the pseudo spin symmetry and spin symmetry 

conditions, respectively in the new quantum group (NC: 3D–RS).
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2 2

12 23 13
ˆ             with      and 

2
ij

ijx z
r r L L Ly

θ 
= − Θ Θ ≡ Θ + Θ + Θ Θ = 

 
L L
 

                                                                                                    (6)

In recent years, the study of PH potential has attracted a lot of interest of different authors, it have the general features of the true interaction 
energy, inter atomic and dynamical properties in solid–state physics and play an important role in the history of molecular structures and 
interactions; this potential is considered as an intermediate between harmonic oscillator and Morse–type potentials which are more realistic 
anharmonic potentials, furthermore, the PH potential is extensively used to describe the bound state of the interaction systems, and has been 
applied for both classical and modern physics.5,6 This work is aimed at obtaining an analytic expression for the eigenenergies of a MPH 
potential in (NC: 3D–RS) symmetries using Bopp’s shift method to discover the new symmetries and a possibility to obtain another applications 
to this potential in different fields. This work based essentially on our previously works.22–43 it was studied in our works.34,35 in the case of 
nonrelativistic case. The organization scheme of the study is given as follows: In next section, we briefly review the DE with PH potential on 
based to.6 Sec. 3 is devoted to studying the MDE for MPH potential by applying Bopp’s shift method. In the fourth section and by applying 
standard perturbation theory we find the quantum corrections of spectrums of the 

thn  excited states in (NC–3D: RS) for relativistic spin–orbital 
interaction. In the next sub–section, we derive the magnetic spectrum for MPH potential. In the fifth section, we resume the global spectrum 
and corresponding NC Hamiltonian operator for MPH potential. Finally, the important results and the conclusions are discussed in last section.

Review of the dirac equation for ph potential
The Dirac equation for a spherically symmetric potential in 3–dimensional reads for a single–nucleon with the mass of M  and relativistic 

energy E  moving in an attractive scalar potential ( )S r  and a repulsive potential ( )V r  in natural units.6

( ) ( ) ( )( ) ( )p ( ( )) , , , ,M S r r E V r rα β θ φ θ φ+ + Ψ = − Ψ                                                                                                                                           (7)

Here (
0

0
i

i
i

σ
α

σ
 

=   
 

, 2 2

2 2

0
0

I
I

β ×

×

 
=   
 

),
1

0 1
1 0

σ
 

=   
 

,
2

0
0
i

i
σ

 −
=   
 

and 
3

1 0
0 1

σ
 

=   − 
 are the usual Dirac matrices while the PH 

potential ( )rV  for the spin symmetric and the pseudo–spin spin–symmetry.6 

( )
2

20
0 2

0

br rV r D ar c
r r r

 
= − ≡ + +  

 
                                                                                                                                                                   (8)

Where, 0
D  and 0

r  are two constants related to the dissociation energy of a molecule and an equilibrium distance, respectively while 

2

0 0
,a D r −=  2

0 0
b D r +=  and 0

2c D= − , thus, the corresponding ordinary Hamiltonian operator ˆ
ph

H  can ban be expressed as:

( ) ( )ˆ p ( ( ))
ph

H M S r V rα β= + + +                                                                                                                                                                   (9)

The spinor ( ), ,r θ φΨ  can be written as.6

( )
( )
( )

( ) ( )

( ) ( )

,1
, ,

,

l
nk nk jm

nk l
nk nk jm

f r F r Y
r

rg r iG r Y

θ φ
θ φ

θ φ

  
  Ψ = =         









                                                                                                                                              (10)

Where, ( )
nk

F r  and ( )
nk

G r


 are the upper and lower components of the Dirac spinor, ( ),l

jm
Y θ φ  and ( ),l

jm
Y θ φ


 are the spin and pseudo–spin 

spherical harmonics while k  ( k ) is related to the total angular momentum quantum numbers for spin symmetry l  and p–spin symmetry l  as.6

( ) ( ) ( ) ( )

( ) ( )

1/2 3/2

1/2 3/2

11   if  - j 1/2 , s , , , , aligned spin k 0
2

1 1    if  , p , , , , unaligned spin k 0
2 2

l p etc j l
k

l j l d etc j l


− + + = + 〈

= 
+ = + = − 〉

                                                                                                                     (11)

( ) ( ) ( )

( ) ( ) ( )

1/2 3/2

1/2 3/2

1    if  - j 1/2 , s , , , , aligned -spin k 0
2

1 11     if   , p , , , , unaligned- spin k 0
2 2

l p etc j l
k

l j l d etc j l


− + = − 〈

= 
+ + = + = + 〉

 



  

                                                                                                           (12)

The radial functions ( ( )
nk

F r , ( )
nk

G r ) are obtained by solving the following differential equations.6

( ) ( )

( )

( )
( )

2

2 2

( 1) 0nk nk nk
nk

d r d k
d k k dr dr rM E r M E r F r

M E rdr r

 ∆  +  +     − − + −∆ − +Σ + =   + −∆ 
  

                                                                                                 (13)
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( ) ( )

( )

( )
( )

2

2 2

( 1) 0nk nk nk
nk

d r d k
d k k dr dr rM E r M E r G r

M E rdr r

 Σ  −  −     − − + −∆ − +Σ + =   + −Σ 
  



                                                                                            (14)

The bound state solutions of the PH potential for the spin symmetric case obtained in the exact spin symmetry 
( )

0
d r

dr
∆

=  and then the 

energy eigenvalues depend on n  and l . According to LTA and asymptotic interaction method, which was applied in.6 the upper component 

( )
nk

F r  of the Dirac spinor gives by:

( )

2

1 232 , ,1 1 2nk

r

F r Nr e F n rν

µ

ν+
−  = − + 

 
                                                                                                                                                         (15)

Where, N and ( )
1 1

,2 1,2F n rγ ε− +  are the normalization constant and the confluent hyper–geometric functions, 

the relativistic positive energy eigenvalues with the PH potential under the spin–symmetry condition is obtained as.6 

( ) ( ) ( ) ( )20 2 2
0 0 0

0
2 2 1 4 4 1/2

r
D E M M E C k D r M E C n

D
+ − + − − + + + − = +                                                                                                         (16)

For the exact pseudo–spin symmetric case, the lower ( )
nk

G r  component of the Dirac spinor.6

( ) ( ) ( ) ( )

2

1 2 2 02
1 1 0 0 2

0

32 , ,  with 1 ( 1)  and 
2nk

r
D

G r Nr e F n r k k M E C D r M E C
r

ν

µ

ν ν ν µ+
−  = − + + = + + + − = + − 

 
                                           (17)

Here N  denote to the normalization constant and the relativistic negative energy eigenvalues with the PH potential under the pseudo–spin 

spin–symmetry condition is obtained as.6 ( ) ( ) ( ) ( )20 2 2
0 0 0

0
2 2 1 4 4 1/2

r
D E M E M C k D r M E C n

D
+ − − − − + + − + = +                                      (18)

It is well known that, the generalized Laguerre polynomials 
( ) ( )p
n xL  can be expressed as a function of the confluent hyper–geometric 

functions as: 
( ) ( ) ( )

( ) ( )1
, 1;11! 1

p
n

n p
x n p xL Fn p

Γ + +
= − +

Γ +
                                                                                                                                                          (19)

Which allow us to rewritten the upper component ( )
nk

F r  and the lower ( )
nk

G r  component of the Dirac spinor for the spin symmetric case 
and the pseudo–spin spin–symmetry, respectively: 

( )
( ) ( ) ( )

( ) ( )
2 2

1 1

12 22 2

3 3
2 21 2 2!   and !3 3

2 2

e n nnk nk

r r

F r Nn r r G r Nn r e rL L
n n

ν ν
ν

µ µν ν
ν

ν ν

+ +
+

   Γ + Γ +− −   +   = =
   Γ + + Γ + +   
   

                                               (20)

NC relativistic hamiltonian operator for mph potential
Overview of bopp’s shift method

In order to obtain the MDE for MPH potential ( )ˆV r , we replace both ordinary Hamiltonian operator ( )ˆ ,i iH p x , ordinary spinor ( )rΨ


 and 

ordinary energy E  by NC Hamiltonian operator ( )ˆ ˆ ˆ,i iH p x , new spinor ( )rΨ






 and new energy 
nc ph

E
−

 and the ordinary product will be replace 

by new star product ∗ , respectively. Allow us to writing the new MED for MPH potential as follows.22–34 

( ) ( ) ( )ˆ ˆ ˆ,i i nc ph
H p x r E r

−
∗ Ψ = Ψ

 

 

 

                                                                                                                                                                    (21)

It is worth to motioning that the Bopp’s shift method permutes to reduce the above equation to simplest the form:

( ) ( ) ( )ˆ ˆ,i inc ph nc ph
H p x r E rψ ψ

− −
=

 

                                                                                                                                                               (22)

Where, ( )rψ   is a solution of the Dirac equation and the new operator of Hamiltonian ( )ˆ ˆ, inc ph iH p x
−

 can be expressed in three general 

varieties: both NC space and NC phase (NC–3D: RSP), only NC space (NC–3D: RS) and only NC phase (NC: 3D–RP) as, respectively.35–44

( ) 1 1ˆ ˆ ˆ ˆ, ;   for NC-3D: RSP
2 2iji i i i j i i ij jnc ph

H p x H p p x x x pθ θ
−

 ≡ = − = − 
                                                                                                         

 (23)
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( ) 1ˆ ˆ ˆ ˆ, ;   for NC-3D: RS
2i i i i i i ij jnc ph

H p x H p p x x pθ
−

 ≡ = = − 
 

                                                                                                                          (24)

( ) 1ˆ ˆ ˆ ˆ, ; , for NC-3D: RP  
2 iji i i i j i inc ph

H p x H p p x x xθ
−

 ≡ = − = 
 

                                                                                                                     (25)

In recently work, we are interest with the above second variety and then the new modified Hamiltonian ( )ˆ ˆ,i inc ph
H p x

−
 defined as a function 

of 1ˆ
2i i ij j

x x pθ= −  and ˆ
i i

p p= :

( ) ( )ˆˆ ˆ ˆ ˆ, P ( ( ))i inc ph
H p x M S r V rα β

−
= + + +                                                                                                                                                  (26)

Where the MPH potential ( )ˆV r  is given by:

( )
2

ˆ
ˆˆ

a b
V r c

rr
= − +                                                                                                                                                                                             (27)

The Dirac equation in the presence of above interaction ( )ˆ V r  can be rewritten according Bopp’s shift method as follows:

( ) ( ) ( )( ) ( )ˆ ˆP ( ( )) , , , ,M S r r E V r rα β θ φ θ φ+ + Ψ = − Ψ                                                                                                                                     (28)

The radial functions ( ( )
nk

F r , ( )
nk

G r ) are obtained, in the absence of tensor interaction, by solving two equations:

( ) ( ) ( )ˆnc phnk nk

d k F r M E r G r
dr r −
   + = + −∆    

                                                                                                                                                (29)

( ) ( ) ( )ˆnc phnk nk

d k G r M E r G r
dr r −
   + = − +Σ    

                                                                                                                                                 (30)

with ( ) ( ) ( )ˆ ˆ ˆr V r S r∆ = −  and ( ) ( ) ( )ˆ ˆ ˆr V r S rΣ = + , eliminating ( )
nk

F r  and ( )
nk

G r  from Eqs. (29) and (30), we can obtain the following 

two Schrödinger–like differential equations as follows in (NC–3D: RS) symmetries: 

( )( ) ( )( ) ( )
2

2 2

( 1) ˆ ˆ 0nc ph nc ph nk

d k k M E r M E r F r
dr r

− −

 + − − + −∆ − +Σ =
  

                                                                                                                 (31)

( )( ) ( )( ) ( )
2

2 2

( 1) ˆ ˆ 0nc ph nc ph nk

d k k M E r M E r G r
dr r

− −

 − − − + −∆ − +Σ =
  

                                                                                                                    (32)

After straightforward calculations one can obtains the two terms in (NC–3D: RS) spaces as follows:

( ) ( )2 2
2 2 4 3

    and   ˆˆ 2

a a a b b b
O O

r rr r r r
θ θ= + Θ + − = − Θ +L L

   

                                                                                                                  (33)

Which allow us to writing the MPH potential ( )ˆV r  as follows:

( )
( )

( )

1 4 3

2

2 4 3

ˆ , , ,    for  spin symmetric case 
2ˆ  

ˆ , , , for  p-spin symmetric case 
2

pert ph

pert ph

a bV r a b
a b r rV r c

rr a bV r a b
r r

−

−

  
 Θ = − Θ 
  = − + + 

 
Θ = − Θ 

 

L

L

 

 



                                                                                   (34)

It is clearly that the star product inducing the non–commutativity is replaced by the usual product plus non local corrections ( )
1
ˆ , , ,

pert ph
V r a b

−
Θ  

and ( )
2
ˆ , , ,

pert ph
V r a b

−
Θ  in the scalar potential ( )ˆV r . This allows writing the modified Dirac equation in the non–commutative case as an 

equation similarly to the usual Dirac equation of the commutative type with a non local potential. Furthermore, using the unit step function (also 
known as the Heaviside step function or simply the theta function) we can rewrite the MPH potential to the following form:

( ) ( ) ( ) ( ) ( )
1 22
ˆ ˆˆ  , , , , , ,nc ph nc phpert ph pert ph

a b
V r c E V r a b E V r a b

rr
θ θ− −− −

= − + + Θ + − Θ                                                                                 (35)

Where 

( ) 1     for x 0 
0     for x 0

xθ
 〉

= 
〈

                                                                                                                                                                                   (36)

We generalized the constraint for the pseudo–spin (p–spin) symmetry ( ( ) ( )r V r∆ =  and ( ) constants
ps

r CΣ = =  which presented in.6 

into the new form ( ) ( )ˆ ˆr V r∆ =  and ( ) ˆˆ constants
ps

r CΣ = =  in (NC–3D: RS) and inserting the potential ( )ˆV r  into the two Schrödinger–like 
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differential Eqs. (31) and (32), one obtains:

( )( ) ( ) ( ) ( )
2

2 2 2 4 3

( 1) ˆ ˆ ˆ 0
2

nc ph nc ph ps nc ph ps nc ph ps nk

d k k a b a bM E M E C c M E C M E C F r
rdr r r r r

− − − −

    + − − + − + − − + − + − − Θ − + =   
     

L
 

                      (37)

( )( ) ( ) ( ) ( )
2

2 2 2 4 3

( 1) ˆ ˆ ˆ 0
2

nc ph nc ph ps nc ph ps nk ps nk

d k k a b a bM E M E C c M E C M E C G r
rdr r r r r

− − −

    − − − + − + − − + − + − − Θ − + =   
     

L
 

                         (38)

and two similarly equations obtained by →L L
 

 . It’s clearly that, the additive new parts ( )
1
ˆ , , ,

pert ph
V r a b

−
Θ  and ( )

2
ˆ , , ,

pert ph
V r a b

−
Θ  are 

proportional with infinitesimal parameterΘ , thus, we can considered as a perturbations terms. Our aim is to derive the energy spectrum for a 
moving charged particle in the presence of a potential given by (35) analytically in a very simple way.

The exact relativistic spin–orbital hamiltonian and the corresponding spectrum for mph 
potential in (nc: 3d– rs) symmetries for 

thn  excited states for one–electron atoms
The exact relativistic spin–orbital Hamiltonian for MPH Potential in (NC: 3D– RS) symmetries for one–electron 
atoms

 The results (34) can be rewritten in a more accessible physical form, we replace both ΘL
 

 and ΘL
 

  by S L




  and S L


   and then the two 

perturbative terms ( )
1
ˆ , , ,

pert ph
V r a b

−
Θ  and ( )

2
ˆ , , ,

pert ph
V r a b

−
Θ  for the spin symmetric case and the pseudo–spin spin–symmetry, respectively 

can be rewritten to the equivalent new form for MPH potential: 

( ) ( )
1 24 3 4 3
ˆ ˆ, , ,   and   , , ,

2 2pert ph pert ph

a b a bV r a b S L V r a b S L
r r r r− −

   
   Θ = Θ − Θ = Θ −   
   

 



                                                                                         (39)

Furthermore, the above perturbative terms ( )
1
ˆ , , ,

pert ph
V r a b

−
Θ  and ( )

2
ˆ , , ,

pert ph
V r a b

−
Θ  can be rewritten to the following new equivalent 

form for MPH potential.35–47

( ) ( )2 22 2 2

1 24 3 4 3

1 1ˆ ˆ, , ,   and  , , ,
2 22 2pert ph pert ph

a b a bV r a b J L S V r a b J S
r r r r− −

      
   Θ = Θ − − − Θ = Θ − − −            

2L
 

  




                                                 (40)

To the best of our knowledge, we just replaced the coupling spin–orbital (pseudo spin–orbital) S L


 and SL



  by the two expressions: 

22 21
2

J L S
 

− − 
 



 

  and 
22 21

2
J S

 
− − 

 
L








 , respectively, in relativistic quantum mechanics. The set ( ( )ˆ ˆ,i inc ph
H p x

−
,

2J ,
2L ,

2S and )
z

J  forms a 

complete of conserved physics quantities and the spin–orbit quantum number k( )k  is related to the quantum numbers for spin symmetry l  
and p–spin symmetry l  as follows.6

( ) ( ) ( )

( ) ( ) ( )

1 1/2 3/2

2 1/2 3/2

1    if  - j 1/2 , s , , , , aligned spin k 0
2

1 11     if   , p , , , , unaligned spin k 0
2 2

k l p etc j l
k

k l j l d etc j l


≡− + = − 〈

= 
  ≡+ + = + = + 〉   

  



   

                                                                                               (41)

( ) ( ) ( ) ( )

( ) ( )

1 1/2 3/2

2 1/2 3/2

11     if  - j 1/2 , s , , , , aligned spin k 0
2

1 1    if   , p , , , , unaligned spin k 0
2 2

k l p etc j l
k

k l j l d etc j l


≡− + + = + 〈

= 
  ≡+ = + = − 〉   

                                                                                                        (42)

With ( ) ( )1 1k k l l− = +     and ( ) ( )1 1k k l l− = + , which allows us to form two diagonal ( )3 3×  matrixes ( )1 2
ˆ ,

so ph
H k k

−
 and ( )1 2

ˆ ,
so ph

H k k
−

 
 , 

for MPH potential, respectively, in (NC: 3D–RS) symmetries as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1/2 3/21 4 311

2 2 1/2 3/24 322

33

1ˆ    if     - j 1/2 , s , , , ,  aligned spin k 0
22

1 1ˆ    if     , p , , , , unaligned spin k 0
2 22

ˆ

so ph

so ph

so ph

a bH k k p etc j l
r r

a bH k k j l d etc j l
r r

H

−

−

−

 
 = Θ − + = − 〈 
 

   = Θ − = + = + 〉   
  

=

  


   


 0

                                                                    (43)
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1/2 3/21 4 311

2 2 1/2 3/24 322

33

1ˆ    if     - j 1/2 , s , , , ,  aligned spin k 0
22

1 1ˆ     if    , p , , , , unaligned spin k 0
2 22

ˆ 0

so ph

so ph

so ph

a bH k k p etc j l
r r

a bH k k j l d etc j l
r r

H

−

−

−

 
 = Θ − + = + 〈 
 

   = Θ − = + = − 〉   
  

=

                                                                                      (44)

The exact relativistic spin–orbital spectrum for MPH potential symmetries for 
thn  excited states for one–

electron atoms in (NC: 3D– RSP) symmetry

 In this subsection, we are going to study the modifications to the energy levels ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ  ) for ( ( )- j 1/2+ ,

( )1/2 3/2s , ,p etc , 1
2

j l= + , aligned spin k 0〈  and spin–down) and ( 1
 

2
j l= + , ( )1/2 3/2p , ,d etc , 1

2
j l= − , un aligned spin k 0〉  and spin up), 

respectively, at first order of infinitesimal parameter Θ , for 
thn  excited states, for the spin symmetric and the pseudo–spin spin–symmetry 

obtained by applying the standard perturbation theory, using Eqs. (20) and (35) as:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 2

1 2

ˆ ˆ, , , , , , , , , ,

* *ˆ ˆ, , , , , ,

nc ph pert ph nc ph pert ph nknk

nc ph nk pert ph nk nc ph nk pert ph nk

r E V r a b E V r a b r r drd

E F r V r a b F r dr E G r V r a b G r dr

θ φ θ θ θ φ

θ θ

− − − −

− − − −

+
 Θ + − Θ Ψ Ω∫ Ψ  

= Θ − Θ∫ ∫  

                                                                (45)

The first part represents the modifications to the energy levels for the spin symmetric while the second part represent the modifications to 

the energy levels ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ  ) for the pseudo–spin spin–symmetry, then we have explicitly:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1: 1 4 3

2: 2 4 3

*,
2

*,
2

nc ph nk nknc per d

nc ph nk nknc per u

a bE k E k G r G r dr
r r

a bE k E k G r G r dr
r r

θ

θ

−−

−−

 
Θ ≡ − −∫  

 

 
Θ ≡ − −∫  

 

 

 

 

 

                                                                                                                       (46)

Now, we use eqs. (20), (40), (41) and (42) to obtain the explicit expressions for modified energy eigenvalues ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ 

) for MDE with MPH potential under the pseudo spin symmetry conditions obtained as:

( ) ( ) ( )( )
2

2
1

2
2 2 22

1: 1 4 3
0

3
2, !

3 2
2

r
nc ph nnc per d

a bE k E k Nn r e r drL
r rn

ν
ν µ

ν
θ

ν

+∞ +
+ −

−−

    Γ +       Θ ≡ − − Θ −∫        Γ + +      

 
                                                                   (47)

( ) ( ) ( )( )
2

2
1

2
2 2 22

2: 2 4 3
0

3
2, !

3 2
2

r
nc ph nnc per u

a bE k E k Nn r e r drL
r rn

ν
ν µ

ν
θ

ν

+∞ +
+ −

−−

    Γ +       Θ ≡ − − Θ −∫        Γ + +      

 
                                                                 (48)

And using the transformation 2X r= , we have:

( ) ( ) ( )
( )

2
2

1

2
1: 1 2

0

3 11 2, ! 2 32 3
2 22

X
nc ph nnc per d

a bE k E k Nn X e X dXL
Xn X

ν
µ

ν ν
θ

ν

+∞ +
−

−−

     Γ +    −    Θ ≡ − − Θ −∫        Γ + +        

 
                                                      (49)

( ) ( ) ( )

2 2

2: 2 2
0

3 111 2 2, ! 2 32 3
2 22

X
nc phnc per u

a bE k E k Nn X e X dXLn
Xn X

µ
ν νν

θ
ν

+∞
−

−−

        Γ + +       −      Θ ≡ − − Θ −∫        Γ + +          

 
                                                 (50)

A direct simplification gives:
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( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

1

1 1 0 0 1 2 0 0 1: 1
1

2

1

2 1 0 0 2 2 0: 2
1

3
1 2, ! , , , , , ,
2 3

2

3
1 2, ! , , ,
2 3

2

nc ph ph phnc per d

nc phnc per u ph ph

E k E k Nn T D r n T D r n
n

E k E k Nn L D r n L D
n

ν
θ ν ν

ν

ν
θ ν

ν

− − −−

−− − −

  Γ +  
  Θ ≡ − − Θ +

  Γ + +  
  

  Γ +  
  Θ ≡ − − Θ +

  Γ + +  
  

 


 
 ( )( )0 2, , ,r nν

                                                             

 (51)

Where, the four terms ( )0 0 11
, , ,

ph
T D r nν

−
, ( )0 12 0, , ,

ph
T D r nν

−
, ( )0 0 21

, , ,
ph

L D r nν
−

 and ( )0 0 22
, , ,

ph
L D r nν

−
 are given by, respectively:

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )

2 2
1 1

1 11 2 21
0 1 0 0 11 2

0 0

2
1 1

2 22 2 22
0 0 1 0 0 11 2

0

0

5
2, , , , , , ,2 2

5
2, , ,  and , , ,2 2

X X
n nph ph

X
n nph ph

b
T D r n a X e X dX T D r n X e X dXL L

bXL D r n a X e X dX L D r n X e XL L

ν ν
µ µ

ν ν
µ

ν νν ν

ν µ νν ν

+∞ +∞+ +
− −

− −

+∞ + +
−

− −

   
−    −= = −∫ ∫   

   
   

  
−  − −= = −∫  

 
 

2

0

dX
+∞


 

∫  
 
                            

 (52)

Now we apply the special integral.48

( ) ( ) ( ) ( )
( ) ( )

2

21 2
1 2 1 1

0

1 ,1 ;1 ;1 1 2 2( )
2 ! ! 1 1

0

k

k k k

AFa a k d Bx s a x a x dxx L Le k k dh h B

h

α αα β
α α β

α β α β αα β α
α

∞
+

+ + +

  + + +   + + + Γ + + Γ + +     − + =∫   Γ +  − 
     =

                                             (53)

Where 
( )

2 1 2
2

4

1

a a h
A

h
=

−
, 1 2 1

2 1
a a h

B s
h

+ +
= +

−
, 1 2 0

2
a aR s + + 〉 

 
, 1

0a 〉 , 2
0a 〉  and ( ) 1R α β+ 〉 − , which allow us to obtaining ( )0 0 11

, , ,
ph

T D r nν
−

 

and ( )0 0 12
, , ,

ph
T D r nν

−
 as:

( )
( )

2
1 1

11 1 22
0 0 11 0 0 2

1 1 1
1

0

3/2 3/2 33 3 ,1 ; ;
2 2 22 2, , , 3 3! 3/212 2

ph

h

AFn nd BT D r n D r ndhn h B

ν ν νν ν
ν

ν ν ν

−

−

=

  − −       + +Γ − Γ + +             =      Γ + + −   −      

                                                                        (54)

( )
( )

( )

2
1 1

11 12 20 0
0 0 12 2

1 1 1

0

1 33 ,1 ; ;
2 2 22, , , 3 32 ! 12 2

n

ph n

h

AFn
D r d BT D r n

dhn h B

ν ν νν ν
ν

ν ν ν

+

−

=

  −     + +Γ Γ + +         = −      Γ + +   −      

                                                                                 (55)

Here ( ) ( ) 2
11 1 1 0 0

1 ( 1)k k M E C D rν ν + = + + + −  , 
( )

2

2

4

1

h
A

h
=

−
 and 1

1
1

h
B

h
µ

+
= − +

−
 , thus, the new factors 

( ) ( )0 0 2 0 0 1 21 1
, , , , , ,

ph ph
L D r n T D r nν ν ν

− −
= →  and ( ) ( )0 0 2 0 0 1 22 2

, , , , , ,
ph ph

L D r n T D r nν ν ν
− −

= →  are determined by the following results:

( )
( )

( )
( )

2
2 2

22 2 22
0 0 21 0 0 2

2 2 2
1

0

2 22
0 0

0 0 22 2
2

3/2 3/2 33 3 ,1 ; ;
2 2 22 2, , , 3 3! 3/212 2

3
2, , , 32 !
2

n

ph n

h

ph

AFn
d BL D r n D r
dhn h B

n
D r

L D r n
n

ν ν νν ν
ν

ν ν ν

ν ν
ν

ν

−

−

=

+

−

  − −       + +Γ − Γ + +             =      Γ + + −   −      

 Γ Γ + + 
 = −
Γ + ( )

2
2 2

2 2

2 2

0

1 3,1 ; ;
2 2 2

3
1 2

n

n

h

AF
d B
dh

h B

ν ν ν

ν ν

=

  −   + +     
     +   −      

                                                                   (56)
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Where, ( ) ( ) 2
22 2 2 0 0

1 ( 1)k k M E C D rν ν + = + + + −  , substituting Eqs. (54), (55) and (56) into Eq. (51), we obtain the modifications to the 

energy levels ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ  ) produced by relativistic spin–orbital effect under the pseudo–spin symmetry conditions. Now, 

the energy levels ( ( )1:
,

nc per d
E k

−
Θ , ( )2:

,
nc per u

E k
−

Θ ) produced by relativistic spin–orbital effect under the spin symmetry conditions, can be 

determined by means of same procedures as before, and to avoid repetition we just make the following steps:

( ) ( )1 1 2 2
, ,    and   nc ph nc phN N k k k k E Eθ θ− −→ → → − → − 

                                                                                                                        (57)

This implies that ( ( )1:
,

nc per d
E k

−
Θ , ( )2:

,
nc per u

E k
−

Θ ) can be expressed as, respectively:

( ) ( )
( )

( )
( )( ) ( )( )( )

( ) ( )
( )

( )
( )( )

2

2

1 1 0 0 2 2 0 0 2: 1
2

2

1

2 1 0 0 1 2 0: 2
1

3
1 2, ! , , , , , , ,
2 3

2

3
1 2, ! , , , ,
2 3

2

nc ph ph phnc per d

nc ph phnc per u

k
E k E k Nn T D r k n T D r k n

n k

k
E k E k Nn L D r k n L Dph

n k

ν
θ ν ν ν

ν

ν
θ ν

ν

− − −−

− −−

  Γ +  
  Θ ≡ Θ +

  Γ + +  
  

  Γ +  
  Θ ≡ Θ + −  Γ + +  

  

( )( )( )0 1, ,r k nν

                                               (58)

The negative and positive signs of the coefficients ( )nc phEθ −−  and ( )nc phEθ −  are necessary to ensure that the modifications to the energy 

levels under the pseudo spin symmetry conditions and spin symmetry conditions are negative and positive, respectively.

The exact relativistic magnetic spectrum for MPH potential for 
thn  excited states for one–electron atoms in 

(NC: 3D– R S) symmetries

Having obtained the exact modifications to the energy levels ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ  ) and ( ( )1:
,

nc per d
E k

−
Θ , ( )2:

,
nc per u

E k
−

Θ ) 

under the pseudo spin symmetry conditions and spin symmetry conditions, respectively, for 
thn  exited states, produced by NC spin–orbital 

Hamiltonian operator, we now consider another interested physically meaningful phenomena, which also produced from the perturbative 
terms of PH potential related to the influence of an external uniform magnetic field, it’s sufficient to apply the following two replacements to 
describing these phenomena:

2 2 2 2 2 2
0 0 0 0 0 0

0 0 04 3 4 3 4 3
   or   

2 2 2

r r r r r rD D BL D BL
r r r r r r

χ χ
− + − + − +     

     − Θ → − −     
     

L


 
 

  and     BχΘ →                                                                                (59)

Here χ  is infinitesimal real proportional’s constants, and we choose the magnetic field  B Bk=
 

, which allow us to introduce the modified 

new magnetic Hamiltonian ( )ˆ , , ,
mag ph

H r a b χ
−

 in (NC: 3D–RS), as: 

( )
2 2

0 0
0 0 0 4 3

      for pseudo spin symmetry ˆ , ,
      for  spin symmetry 2mag ph

BLr rH D r D
BLr r

χ χ
− +

−

   = −     









                                                                                                  (60)

Here ( )S B−


 denote to the ordinary Hamiltonian of Zeeman effect. To obtain the exact NC magnetic modifications of energy 

( )0 0mag-ph
, , , ,E n m D rχ   and ( )0 0mag-ph

, , , ,E n m D rχ  for modified PH potential, under the pseudo spin symmetry conditions and spin symmetry 

conditions, respectively, which produced automatically by the effect of ( )0 0
ˆ , , ,

m ph
H r D r χ

−
, we make the following two simultaneously 

replacements:

1 1
m    , m    and        Bk k χ→ → Θ →

                                                                                                                                                             (61)

Then, the relativistic magnetic modification ( )0 0mag-ph
, , , ,E n m D rχ   and ( )0 0mag-ph

, , , ,E n m D rχ  corresponding 
thn  excited states, in (NC–3D: 

RS) symmetries, can be determined from the following relation:
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( ) ( ) ( )

( ) ( )
( )

( )
( )

1

0 0 1 2mag-ph
1

1

0 0 1 2mag-ph
1

3
1 2, , , ,  B !
2 3

2

3
1 2, , , ,  B !
2 3

2

nc ph ph ph

nc ph ph ph

E n m D r E Nn L L m
n

k
E n m D r E Nn L L m

n k

ν
χ θ χ

ν

ν
χ θ χ

ν

− − −

− − −

  Γ +  
  = − − +

  Γ + +  
  

  Γ +  
  = +

  Γ + +  
  



 

                                                                                        (62)

Where, m  and m denotes to the angular momentum quantum numbers l m l− ≤ ≤ + 

  and l m l− ≤ ≤ + , which allow us to fixing ( 2 1l +
) and ( )2 1l+  values, respectively. 

The exact modified global spectrum for mph potential in (nc–3d: rs) symmetries for one–
electron atoms

Let us now resume the 
thn  excited states eigenenergies ( ( )1 0 0, , , , , ,

nc pd
E k n m r Dχ

−
Θ 

 , ( )2 0 0:
, , , , , ,

nc p u
E k n m r Dχ

−
Θ 

 ) and (

( )001 ,,,,,, DrmnkE dnc χΘ− , ( )2 0 0, , , , , ,
ncr u

E k n m r Dχ
−

Θ ) of MDE corresponding the pseudo spin symmetry conditions and spin symmetry 

conditions, respectively, at first order of two parameters ( ),χΘ  for MPH potential in (NC: 3D–RS) symmetries, on based to the obtained 
results (51), (58), and (62), in addition to the original results (18) and (20) of energies in commutative space, we obtain the following original 
results:

( ) ( ) ( )

( ) ( ) ( )

2

1

1 2 1
1

1

2

1

1 2 2: 2
1

3
1 2!  B
2 3

2

3
1 2!  B
2 3

2

nc ph ph phnc pd

nc ph ph phnc p u

E E E Nn T T k m
nk n

E E E Nn T T k m
nk n

ν
θ χ

ν

ν
θ χ

ν

− − −−

− − −−

  Γ +  
  = − − + Θ+

  Γ + +  
  

  Γ +  
  = + − + Θ+

  Γ + +  
  















                                                                                         (63)

( ) ( ) ( )

( ) ( ) ( )

2

1

1 2 1
1

1

2

1

1 2 2
2

1

3
1 2!  B
2 3

2

3
1 2!  B
2 3

2

nc ph ph phnc d nk

nc ph ph phncr u nk

E E E Nn L L k m
n

E E E Nn L L k m
n

ν
θ χ

ν

ν
θ χ

ν

− − −−

− − −−

  Γ +  
  = − + Θ+

  Γ + +  
  

  Γ +  
  = + + Θ+

  Γ + +  
  

                                                                                               (64)

Now, it is important to constructing the Hamiltonian operator ˆ
nc ph

H
−

 for MPH potential on based to previously obtained results. Naturally, 

to consider the first term in the modified Hamiltonian operator represents the kinetic energy and the potential energy in ordinary commutative 

space ˆ
ph

H  of the fermionic particle which presented by eq. (9), the second term ( )1 2
ˆ ,

so ph
H k k

−
 or ( )1 2

ˆ ,
so ph

H k k
−

 
  represents, the induced 

spin–orbital parts for the pseudo spin symmetry conditions and spin symmetry and the last term is the modified new magnetic Hamiltonian 

( )ˆ , , ,
mag mt

H r a b χ
−

:

( )

( )

2 2
0 0

1 2 0 4 3

2 2
0 0

1 2 0 4 3

ˆ ,    for pseudo spin symmetry 
2ˆ ˆ

ˆ ,    for  spin symmetry 
2

so ph

nc ph ph

so ph

r rH k k D BL
r r

H H
r rH k k D BL
r r

χ

χ

− +

−

− − +

−

  
  + −
    = + 

 
 + −
   





 
 



                                                                                      (65)

In this way, one can obtain the complete energy spectra for MPH potential in (NC: 3D–RS) symmetries. Know the following accompanying 
constraint relations:
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a.	 The original spectrum contains two possible values of energies in ordinary three dimensional spaces which presented by Eqs. (16) and 
(18),

As mentioned in the previous subsection, the quantum numbers m  and m  satisfied the two intervals: l m l− ≤ ≤ + 

  and l m l− ≤ ≤ + , 

thus we have ( 2 1l + ) and ( )2 1l+  values, respectively, 

We have also two values for ( 1
2

j l= +  and 1
2

j l= − ) and ( 1
2

j l= +  and 1
2

j l= − ) for pseudo spin symmetry conditions and spin 

symmetry. Allow us to deduce the important original results: every state in usually 3–dimensional spaces will be replacing by ( )2 2 1l +  and 

( )2 2 1l+ sub–states.

Then the degenerated state can be take ( )
1 2

0
2 2 1 2

n

i
l n

−

=

∑ + ≡ values in (NC: 3D–RS) symmetries. Finally, we resume our original results in 

this article, the first one is the induced pseudo–spin–orbital and spin–orbital Hamiltonian operators ( ( )1 2
ˆ ,

so ph
H k k

−
 

  and ( )1 2
ˆ ,

so ph
H k k

−
) and 

corresponding eigenvalues ( ( )1:
,

nc per d
E k

−
Θ  , ( )2:

,
nc per u

E k
−

Θ  ) and ( ( )1:
,

nc per d
E k

−
Θ , ( )2:

,
nc per u

E k
−

Θ ), respectively as:

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 : 1
11

1 2 2 : 1
22

1
33

ˆ , , ,  

ˆ ˆ, , , , , ,

ˆ ,

nk nkl l
so ph jm nc per d jm

nk nkl l
so ph jm nc per u jmso ph nk

nk l
so ph jm

G r G r
H k i Y E k i Y

r r

G r G r
H k k r H k i Y E k i Y

r r

G r
H k i Y

r

θ φ θ φ

θ φ θ φ θ φ

θ φ

− −

− −−

−

   
= Θ   

   
   

Ψ ⇒ = Θ   
   
 

= 
 

  

  

 

 


   
 


 0










                                                       

 (66)

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 : 1

1 2 2 : 2

1 2

ˆ , , ,  
11

ˆ ˆ, , , , , ,
22

ˆ , , 0
33

nk nkl l
so ph jm nc per d jm

nk nkl l
so ph jm nc per u jmso ph

nk l
so ph jm

F r F r
H k Y E k Y

r r

F r F r
H k k r H k Y E k Ynk r r

F r
H k k Y

r

θ φ θ φ

θ φ θ φ θ φ

θ φ

− −

− −−

−

    
 = Θ   
    


   
Ψ ⇒ = Θ    

    
   =   

                                                          (67)

The second original results are the induced the modified new magnetic Hamiltonian operator ( )ˆ , , ,
mag mt

H r a b χ
−

 and corresponding 

eigenvalues ( )0 0mag-ph
, , , ,E n m D rχ   and ( )0 0mag-ph

, , , ,E n m D rχ , respectively as:

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 mag-ph 0 0
0 0 0

4 3

mag-ph 0 0

, , , , ,, 0ˆ , , , , ,
2 0 , , , , , ,

nk ll jmnk jm

mag mt nk l nk lnk jm jm

F r
E n m D r YF r YBLD r r rH r a b r

r G rr r BL iG r Y E n m D r i Y
r

χ θ φθ φχ
χ θ φ

θ φ χ θ φ

− +

−

 
           Ψ ≡ − =             

 



 

















                (68)

It is worth to mention that (in the limit 0Θ →  ) we obtain the commutative result of the relativistic negative energy eigenvalues and positive 
energy eigenvalues under pseudo spin symmetry and spin–symmetry in addition to the relativistic Hamiltonian operator for PH potential.

Concluding remarks
In this paper we have performed the exact analytical bound state solutions: the energy spectra and the corresponding NC Hermitian 

Hamiltonian operator for three dimensional MDE in spherical coordinates for MPH potential by using Bopp’s Shift method and standard 
perturbation theory. It is found that the energy eigenvalues depend on the dimensionality of the problem and new atomic quantum numbers 

( 1 / 2, 1 / 2j l j l= ± = ± , 1 / 2, ,  s l l= ± 

 , m  and m ) in addition to the two infinitesimal parameters( Θ  and χ ), and we also showed 

that the obtained energy spectra degenerate and every old state will be replaced by ( )2 2 1l +  and ( )2 2 1l+  sub–states under the pseudo spin 

symmetry and spin symmetry conditions, respectively, for 
thn  exited states. 
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