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Abbreviations: GI: Gastro–Intestinal; ND–CKD: Non–
Dialysis Chronic Kidney Disease; URTI: Upper Respiratory Tract 
Infection; Hb: Haemoglobin; IV: Intravenous

Introduction
The gastro–intestinal (GI) tract facilitates the digestion and 

adsorption of food, fluid and other biologically active compounds. 
Although human evolution evidently demonstrates the efficacy of 
this process, many molecules are (very) poorly adsorbed. Indeed, 
many vitamins and herbs have adsorption levels of ≤10%. As the 
active effect(s) of a nutrient is directly related to the quantity and 
rate in which the unchanged nutrient reaches the blood stream, the 
administrative route (i.e. oral, enteral or parenteral) and formulation 
(e.g. food, capsule, tablet, solution etc.) play significant roles in 
both of these outcomes for numerous nutritional supplements.1 This 
presents the obvious issue that nutrients or compounds which could 
have a variety of positive effects on the human body, particularly in 
specific therapeutic situations, are being prevented from doing so. 
For example, despite the reported multiple medicinal benefits of 
curcumin, its bioavailability is affected by poor absorption, extensive 
intestinal and hepatic metabolism and rapid elimination/clearance 
from the body.2 Moreover, the poor bioavailability of curcumin has 
been acknowledged as the likely major obstacle for greater use in 
humans.3 In an attempt to circumvent the reduced bioavailability of 
some nutrients, individuals might ingest larger than recommended 
doses. Such practice is relatively commonplace with consumption 
of ascorbic acid (vitamin C), although, due to poor absorption and 
subsequent osmotic effects, this can result in skin rashes or GI issues 
such as diarrhoea with intakes > 2000 mg/d.4,5 However, some 
evidence indicates intakes > 4000 mg/d are well tolerated in the 
general population.4 suggesting that, in those people suffering from 
the aforementioned side effects, bypassing any negative side effects 
of oral ingestion of vitamin C could provide significant therapeutic 
benefit. 

Liposomal technology

Unsurprisingly, scientists have been exploring technological 
advancements with the aim of increasing nutrient bioavailability. 
Although a variety of encapsulation methods have been developed 
on both micro and nano–scales, liposomal technology (also called 
nanotechnology when liposomes are in the nanoscale range) has 
received significant interest from industry in recent years. With 
these technology solids, liquids or gaseous materials are packed into 
miniature capsules (membranes) that can subsequently release their 
contents at controlled rates under particular circumstances. Indeed, 
based on their ability to act as micro– or nanocarrier systems for 
the secure delivery of bioactive agents, liposomes are undergoing 
extensive research and development in, amongst others, the 
pharmaceutical, cosmetic and food industries.6,7

Liposomes, reportedly first described in the mid–1960s.8 are 
spherical (although shape is influenced by the structure of the different 
components) particles consisting of a membranous system formed 
by single (unilamellar) or multiple (multilamellar) lipid bilayers, 
resembling the lipid membrane of cells.9 which can be either small or 
large (Figure 1). These lipid bilayers are made of polar lipids which 
have a lipophilic and hydrophilic group. When hydrated in aqueous 
solution, polar lipids self–assemble, form bilayers and self–close into 
liposomes. Consequently, water soluble compounds are captured in 
the aqueous section, whilst lipid soluble materials collect in the lipid 
compartment.10 Due to having both lipophilic and hydrophilic groups 
in their structure, liposomes are unique in that they can be employed 
to encapture, transport and release water soluble, lipid soluble and 
amphiphilic materials, an advantage that not all encapsulation 
technologies possess.11 Liposomes are typically composed of lecithin 
(phosphatidylcholines) and kepalins (phosphatidylethanolamines), 
frequently containing negatively charged lipids such as phosphatidyl 
serine and phosphatidyl inositol. Additionally, sterols, such as 
cholesterol, and ceramides, such as sphingomyelin, are included.1 
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Abstract

There are many orally ingested nutrients which cannot be fully absorbed by the human body. 
For this reason scientists have been experimenting with different techniques to improve 
nutrient bioavailability. Among these techniques microencapsulation has been extensively 
used in industry in recent years, especially liposomal technology. Briefly, polar lipids are 
used to create spherical capsules, called liposomes, where solids, liquids or gaseous materials 
compounds can be entrapped. This technique is used to stabilize certain compounds in 
nutritional supplements and fortified foods, which would otherwise slowly degrade and 
lose their nutritional value, as well as improve their bioavailability. Although there has been 
limited research investigating nutrients that potentially might impact exercise performance 
(e.g. liposomal vitamin C and liposomal iron), there is currently no published evidence for 
the use of liposomal supplementation in this context. With the potential to augment nutrient 
bioavailability, further research should consider the application of liposomal formulations 
as a strategy to improve exercise performance. 
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Furthermore, liposomes can be prepared using natural ingredients 
or molecules innate to the human body meaning they are highly 
biologically compatible and suitable for human consumption.11 

Figure 1 Types and typical sizes of different liposomes (*nm = nanometres, 
µm = micrometers; information based on 11.

Discussion
Liposomal technology and nutrition

A key challenge in producing (fortified) foods and nutritional 
supplements is that certain compounds slowly degrade and lose 
their nutritional value. In order to improve their stability, different 
microencapsulation techniques can be used. Whilst liposomal 
technology was originally created for pharmaceutical purposes, 
in recent years its advantageous characteristics have been adopted 
by the food industry. In fact, a wide range of nutritionally relevant 
constituents such as essential oils, amino acids, antioxidants, enzymes, 
vitamins and minerals can be encapsulated in liposomes and nano–
liposomes.11 For example, as explained by Schrooyen et al.12 vitamin 
C is added to a variety of food products to improve shelf life. For solid 
foods (e.g. biscuits, bread etc.) vitamin C is added by spray–cooling 
or spray–chilling and fluidized–bed coating, while for liquid products 
by liposomal encapsulation. Whilst vitamin C is added to some food 
products to enhance shelf life, it is also added for its functional and /or 
potential therapeutic benefits. Vitamin C is considered an anti–oxidant 
nutrient and essential cofactor for a variety of enzymes involved in 
physiological processes. Despite being essential for many functions, 
vitamin C has low bioavailability and cannot be synthesized de novo 
by the body.13 thus it has to be introduced through the diet.14 

Although nowadays most western civilizations have easy access 
to sources of vitamin C such as fruit and vegetables, the tendency to 
use microwaved food has contributed to an increased incidence of 
scurvy (severe deficiency of vitamin C).15 A lack of vitamin C intake 
has also been associated with the incidence of chronic diseases such 
as obesity.16,17 whilst vitamin C supplementation has been shown to 
improve triglyceride accumulation.18 and endothelial function.19 In 
order to improve vitamin C bioavailability and thus boost its beneficial 
effects, researchers have started to consider liposomal formulations as 
a good alternative to standard oral vitamin C supplementation. The first 
study to describe the pharmacokinetics of different single doses (5, 20, 
and 36 g) of liposomal vitamin C, versus ‘standard’ oral vitamin C (5 
g), was conducted by Hickey and colleagues.20 The authors reported 
that the highest peak plasma level (~ 400 uM/L) was achieved with 
36 g, peaking after ~5–6 hours post–ingestion. A more recent study 
investigated the efficacy of liposomal vitamin C and its effects on 
ischemia–reperfusion injury.21 Oral placebo or 4 g of vitamin C via 
oral unencapsulated, oral liposomal, or intravenous delivery were 
administered. Liposomal vitamin C produced higher blood levels of 
vitamin C than those elicited by unencapsulated vitamin C, but less 
than that following intravenous vitamin C administration (Figure 2). 
Moreover all treatments, except placebo, provided equal protection 
from ischemia–reperfusion injury.21 

Figure 2 Plasma concentrations of vitamin C (ascorbic acid) before (time = 
0 minutes) and after supplementation. (A) All treatments. (B) All treatments 
excluding intravenous administration. *P < 0.001 vs. all other treatments; # 
P < 0.001 vs. unencapsulated oral and placebo; and ^P < 0.001 vs. placebo. 
(Reproduced in full with permission from 21).

As iron deficiency is a common cause of anaemia in non–dialysis 
chronic kidney disease (ND–CKD) and controversy still exists about 
the optimal mode of iron therapy, Pisani et al.22 recently evaluated 
whether liposomal iron improved anaemia in ND–CKD patients. 
Using a randomized experimental approach, 99 patients with CKD 
and iron deficiency anaemia were assigned to receive 30 mg/day oral 
liposomal iron (LI; n=66) or intravenous iron gluconate (IV: total 
dosage = 1000 mg; n=33) for 3 months. After three months both LI 
(5.6%) and IV groups (9.3%) had significantly increased Hb levels 
compared with baseline with no difference between treatments. 
However, the trajectory of increase was more pronounced for the 
IV group which had significantly higher Hb at the end of months 
1 and 2 compared to LI. In contrast, although no ‘serious’ adverse 
effects were reported, the proportion of participants who experienced 
at least one treatment related adverse event was substantially lower 
for LI (~3.1%) compared to IV (~35%). As iron deficiency and iron 
deficiency anemia are major concerns for the health and performance 
of male and female elite athletes.23 and the fact that liposomal iron has 
shown improvements of exercise associated anemia in a vitro model.24 
further research examining liposomal iron in athletic individuals is 
warranted.

Liposomal technology and sport and exercise nutrition 

The antioxidant potential of vitamin C to improve sport and 
exercise performance, either directly or indirectly, has been extensively 
researched. Due to the volume of training/physiological stress 
encountered elite athletes tend to suffer more from upper respiratory 
tract infections (URTIs) than the general population.25 In populations 
undergoing severe physical stress, including athletes, vitamin C 
has been shown to be effective in reducing not only symptoms and 
duration, but also incidence of colds.26 making vitamin C a useful 
strategy in preventing training interruptions. Moreover, vitamin C has 
been reported to ameliorate exercise–induced bronchoconstriction.27 
enhance carnitine synthesis.28 and to regulate fatty acid utilisation 
during exercise.29
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Although current approaches to oral vitamin C supplementation 
(e.g. 500 mg oral capsules) might provide some benefit during 
exercise.29 the potential effects of liposomal vitamin C on exercise 
performance is yet to be explored. Moreover, there appears to be 
no research with respect of liposomal technology applied to sport 
nutrition generally. This is somewhat surprising as this technique could 
be used for oral administration of other nutrients valuable to sport 
and exercise performance, which could be more extensively studied 
upon improvement in their bioavailability. For instance, phenols, 
known for their very low bioavailability but high anti–oxidant and 
anti–inflammatory characteristics, have also been demonstrated to be 
useful in improving exercise performance. In fact, there is evidence 
that resveratrol, quercetin and catechins have positive effects on 
aerobic capacity.30–32 and curcumin on preventing muscle damage.33 
Moreover, liposomal phenols are already extensively utilised in 
cancer treatment: resveratrol and catechins liposomes to target cancer 
cells.34,35 liposomal resveratrol combined with quercetin to improve 
pre–cancerous/cancerous skin lesions.36 and liposomal curcumin 
and resveratrol to prevent cancer.37 Therefore, the already existing 
beneficial effects of these phenols might be augmented by the use of 
liposomal formulations within a sport and exercise context.

Conclusion 
Liposomal technology is a promising adjunct that could address 

limitations regarding the bioavailability and absorption of a plethora 
of nutrients/compounds. As such, the use of liposomal technology has 
numerous important applications in both sport and exercise and health 
settings. However, despite its potential, research on oral liposomal 
formulations in these contexts is scarce. To the best of our knowledge 
only a few studies have explored the absorption and effects of oral 
nutritional liposomal formulations on human health and no research 
has been conducted on exercise performance in humans. Further 
research looking at liposomal nutrients for sport nutrition is therefore 
warranted.
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