Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by - Products in Animal Feeding

Abstract

The worldwide increasing demand for proteins as human nutrition and animal feeding leads to a growing interest in other protein sources. Therefore, rapeseed as an established raw material for the production of edible oils could be a promising alternative protein sources for animals. Mustard seed or rapeseed meals are one of the major protein sources for animals in most parts of the world. The utilization and marketing of these rapeseed meals is very limited due to the presence of anti-nutritional factors in the form of mainly Glucosinolates and erucic acid. But there are still a lot of techniques which reduces the Glucosinolates content to a substantial level and make available as protein source in the diets of livestock and poultry. Therefore, the purpose of this review paper is to identify the limitations and explore the opportunities of using rapeseed meal/cake in livestock and poultry diets and propose a recommendation for better use of the resources.

Introduction

Mustard seeds (Brassica napus) also known as Rape seeds and oil seed rape is very widely cultivated crop throughout the world as major source of oil and protein meal [1]. The oil recovery from mustard seed ranges between 38-44% depending upon the variety and crushing processes [2]. Rapeseed ranks third in the world production of other oil seed crops [2]. The protein of rapeseed has a well balanced amino acid profile and in terms of essential amino acids which is far better than cereals [1,3]. The remain after oil extraction is used as meal for livestock feed. Despite the significant amounts of highly valued nutrients, use of rapeseed in human diets and in animal feeding has been limited, mainly because both oil and protein in rapeseed are accompanied by certain anti-nutritional factors which limited its use as animal feed called Glucosinolates and others [4-5]. Glucosinolates are group of sulphur-containing secondary plant metabolites produced mainly in Brassica vegetables [4]. Glucosinolates themselves are not toxic, however, their hydrolytic products are. Brassica seed meals contain an enzyme myrosinase, which catalyzes the hydrolysis of Glucosinolates to harmful products, including goitrogenic and potential hepatoxic compounds, such as isothiocyanates and thiocyanates [4].

The seed is primarily cultivated for the extraction of oil, the meal that is remained after oil extraction is protein rich (30-45%) and may be used either as high protein feed supplement provided that glucosinolate level is reduced or as organic fertilizer [6]. Amongst these, crop breeding is the most effective one which is followed by solvent extraction of oil which does not affect the nutritional composition of the feed. Ruminant animals are less susceptible to glucosinolates and other anti-nutritional factors than mono gastric animals. Conventional rapeseed meal can be included up to 10-15% in broiler diets and 7-8 % in layers diets and can replace up to 50% of the soybean meal. But canola seeds can be used up to 20% in compound feed formulation and replacing 25-30% of the dietary soybean meal in layers ration without significantly affecting laying performance. This low glucosinolate rapeseed meal can be used freely as soybean meal in the diets of ruminants and up to 20% in broiler diets and 15 in finishing pigs diets. But for better use of these products, further research on development of varieties, treatment methods, economics of feeding, further investigation on amino acid composition and digestibility of different varieties are very important and introduction and evaluation of canola varieties is required.

Keywords: Anti-nutritional factors; Full fat soybean meal; Glucosinolates; Rapeseed meal; Solvent extraction
Ethiopian mustard seed (Brassica carinata), stands fifth after noug, sesam, linseed and groundnut in total production and area coverage in Ethiopia [8]. High levels of proteins, suitable amount of essential amino acids, minerals and the bio-availability of these nutrients has given mustard/rape seed cake, prime importance as a quality protein sources to be used as animal feed [7]. However, low palatability of mustard cake is said to be the main problem for its utilization in ruminant diets. This problem is attributed to its glucosinolates content which yield hot and pungent metabolites upon hydrolysis due to the action of endogenous enzymes [3,9]. As evidenced by Ethiopia spice extraction factory report and [6], oil extraction through the use of solvents has proven to be beneficial in improving the feed quality of the oil seed cake produced as by-product. This is as a result of removing the anti-nutritional factors like glucosinolates by the solvents acetone, methanol and ethanol. The technologies are under evaluation at a pilot level in Ethiopia by Ethiopia Spice Extraction Factory. The preliminary result indicated that, the level of glucosinolates reduced significantly as a result of detoxification which was confirmed by standard laboratories (personal communication). Therefore, the purpose of this review study is to assess the pros and cons of using rape seed meal and/or rape seed by-products containing diets on the performance of different livestock species including poultry and propose recommendations for further use.

Global Overview of Rapeseed Production and Use

Mustard seeds (Brassica Napus) also known as Rape, Oilseed rape, Rapeseeds and Canada are very widely cultivated throughout the world [10]. The seeds can come from three different plants: black mustard, brown Indian mustard, and white mustard. Mustard seed is the third leading source of vegetable oil in the world after Soya bean oil and palm oil [7,11]. It is world’s second leading sources of protein meal after soybean meal [7].

Global production of rape seed increased from 37.33 million tons in 2000 to 59.38 million tons in 2009 [10,11]. With an annual harvest of a little over 450 million tons, oilseed production accounts for just 20% of the world grain production [10]. The major contributors to global rape seed production are China, India, EU-27, Canada and others with the share of 22%, 11%, 36%, 20% and 11% respectively [10]. Annual export trade of rapeseed stands at around 12 million tons. In temperate climate like UK, oilseed rape is the only commercially viable crop that provides edible oil [12,13]. The rapeseed meal that is produced by the extraction of this oil is the major locally produced high protein feed for livestock [12]. The use of whole oilseed rape in the diets of livestock has also increased in recent years, as the oil provides a concentrated source of energy [7]. According to Patrick [11], rape seed is the second major oilseed meal produced worldwide (after soybean meal) and its consumption has grown strongly in the EU (which is deficient in protein feed), in China (due to its extraordinary economic development), and in USA (due to milk producers’ demand for the feed). The main exporters of rapeseed meals in the world are Canada and India [11].

Nutritional Profile and Feeding Values of Rapeseed Meal

Nutritional composition

Rapeseed meal is an excellent protein source owing to its relatively high protein level (30-40%), Lysine, Methionine and Tryptophan levels [1,14-16]. But the protein from rapeseed meal is less digestible than that of soybean meal (72% vs. 88%), but the amino acids balance is similar, even better than in the soybean meal (for the sulphur amino acids) [17]. The Calcium, Phosphorous, Silicon, Iron and Manganese content in rapeseed meal are very high, but up to 65% of the P content is bound in P-phytate and this reducing its bioavailability [3,14]. The high levels of nicotinic acid and Choline as well as low Carotenoid and vitamin D levels are the main vitamins characteristics of rapeseed meal [7,18]. The amino acid content of RSM is comparable well with that of soybean meal and richer in Methionine [1,3] as indicated in Table 1. The composition of Rapeseed meal and cake varies with the variety, growing conditions and processing methods as indicated in Tables 1 & 2. According to Swati et al. [16], the crude protein content varies from 33-40% of which 80-83% is true protein with appreciable proportion of albumin, gluten and globulin. The protein is rich in lysine and sulphur containing amino acid which are limiting in cereal protein, making it excellent complementary to cereals based diets Swati et al. [16]. Rape seed protein has a high biological value due to its nearly optimal amino acid composition; however the digestibility of the meal is relatively low, since the proteins are more or less strongly bound to dietary fibers Bellostas et al. [19].

Table 1: The Amino acid profiles of Rape Seed Meal and other oil seeds and by-products.

<table>
<thead>
<tr>
<th>Feed Source</th>
<th>Aspartic Acid</th>
<th>Threonine</th>
<th>Glycine</th>
<th>Alanine</th>
<th>Valine</th>
<th>Methionine</th>
<th>Leucine</th>
<th>Histidine</th>
<th>Lysine</th>
<th>Arginine</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSM</td>
<td>2.1</td>
<td>1.61</td>
<td>2.58</td>
<td>1.69</td>
<td>1.83</td>
<td>0.7</td>
<td>2.55</td>
<td>1</td>
<td>2.12</td>
<td>2.11</td>
</tr>
<tr>
<td>RSM</td>
<td>2.54</td>
<td>1.65</td>
<td>1.81</td>
<td>1.64</td>
<td>1.87</td>
<td>0.72</td>
<td>2.51</td>
<td>1.12</td>
<td>2.19</td>
<td>2.15</td>
</tr>
<tr>
<td>SBM</td>
<td>5.68</td>
<td>2.05</td>
<td>8.79</td>
<td>2.26</td>
<td>2.88</td>
<td>0.69</td>
<td>4.04</td>
<td>1.57</td>
<td>3.34</td>
<td>3.9</td>
</tr>
<tr>
<td>FFRS</td>
<td>1.63</td>
<td>0.94</td>
<td>1.08</td>
<td>0.94</td>
<td>1.14</td>
<td>0.48</td>
<td>1.45</td>
<td>0.63</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>FFSB</td>
<td>1.63</td>
<td>0.94</td>
<td>1.64</td>
<td>1.66</td>
<td>1.95</td>
<td>0.48</td>
<td>2.96</td>
<td>1.28</td>
<td>2.42</td>
<td>2.78</td>
</tr>
<tr>
<td>CM</td>
<td>2.53</td>
<td>1.48</td>
<td>1.81</td>
<td>1.57</td>
<td>1.91</td>
<td>0.69</td>
<td>2.54</td>
<td>0.99</td>
<td>1.99</td>
<td>2.14</td>
</tr>
<tr>
<td>RSC</td>
<td>-</td>
<td>1.34</td>
<td>-</td>
<td>-</td>
<td>1.57</td>
<td>-</td>
<td>2.23</td>
<td>1.16</td>
<td>1.62</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Note: RSM: Rape Seed Meal; RSC: Rape Seed Cake; FFRS: Full Fat Rape Seed; SBM: Soybean; CM: Canola Meal; Meal; FFSB: Full Fat Soybean; CM: Canola Meal;

Citation: Nega T, woldes Y (2018) Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by - Products in Animal Feeding. J Nutr Health Food Eng 8(1): 00254. DOI: 10.15406/ijnhe.2018.08.00254
Table 2: Nutritional composition of Rape seed meal and others from different sources.

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>Chemical Composition of Rape Seed Meal and Others in %</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSM</td>
<td>Dm (%) 88 CP% 38.6 EE% 1.4 CF% 11.8 NF% 28.9 ASH% 7.3 NDF% 20.7 ADF% 16.8 Ca% 0.65 TP% 1.02</td>
<td>Feng [18]</td>
</tr>
<tr>
<td>RSM</td>
<td>Dm (%) 89.9 CP% 40.2 EE% - CF% 11.1 NF% - ASH% - NDF% 29.5 ADF% 20.6 Ca% - TP% -</td>
<td>Rymer [7]</td>
</tr>
<tr>
<td>RSM</td>
<td>Dm (%) 90.8 CP% 34.9 EE% 1.1 CF% 9.14 NF% 38.5 ASH% 7.1 NDF% - ADF% 1.1 Ca% 0.68 TP% 0.58</td>
<td>Thanaseelaan [3]</td>
</tr>
<tr>
<td>RSC</td>
<td>Dm (%) 95.3 CP% 36.1 EE% - CF% 13.1 NF% 32.2 ASH% 12.5 NDF% 125 ADF% 9.1 Ca% - TP% -</td>
<td>Leming [20]</td>
</tr>
<tr>
<td>SBM</td>
<td>Dm (%) 88.6 CP% 49.3 EE% - CF% 7 NF% - ASH% 6.57 NDF% 39.6 ADF% 18.2 Ca% 0.58 TP% 1.01</td>
<td>Thacker & Petri [23]</td>
</tr>
<tr>
<td>RSC</td>
<td>Dm (%) 89.9 CP% 38.1 EE% 3.82 CF% 9.54 NF% - ASH% 13.4 NDF% 30.7 ADF% 18.5 Ca% 1.15 TP% 1.54</td>
<td>Tanawong M [22]</td>
</tr>
</tbody>
</table>

Note: RSM: Rape Seed Meal; RSC: Rape Seed Cake; SBM: Soybean Meal; CM: Canola Meal

Although the protein quality of rapeseed meal matches that of the soybean meal, certain essential amino acids, particularly lysine is observed to have a lower bioavailability than that of soybean meal because of the occurrence of mallard reaction during rapeseed processing into cake/meal [18]. The mean amino acid bioavailability of rapeseed cake, rape seed meal and low-temperature processing cake were also found to be 84.02%, 86.29% and 90.82%, respectively [19]. The lysine bioavailability of low temperature processing cake and rape seed meal were 89.1% and 73.3%, respectively. The amino acid profiles of both Full Fat Rape Seed and Full Fat Soy Bean, is lower as compared to their respective meals and cakes as indicated in Table 2. This may be related to the higher fat content that occupies most of the volumes of each of the ingredients.

Feeding values of rape seed meal

Rape seed meal is used as a feed for cattle, poultry and aquatic animals; however, the information on percentage of feed to be given is scanty and variable due to a number of limitations [16]. In case of sheep and goats, mustard cake do not affect feed intake, feed efficiency, nitrogen balance, mineral balance and growth performance of growing lambs [16]. The effect of feeding mustard cake to fish at a level of 20 to 30% resulted in abnormalities in liver, congestion and cystomasis in Indian major carps and an inclusion rate of 10% was found suitable [24]. If un-detoxified rapeseed meal containing the anti-nutritional agents is used in chicken rations, severe struma, bleeding of liver may happen [18]. According to this author, the common rapeseed meal is not usually used in formulating diets for young chickens. In the case of broiler chicks, up to 10-15% inclusion is possible but for the laying birds, 7.5-8% of rapeseed meal in the diet is suitable, but at 12% level inclusion, it will reduce egg weight as well as the rate of hatch [18]. Rapeseed meals with high content of glucosinolates lead to iodine deficiency disorders of young chicken [18].

On the other hand, feeding of mustard cake to layers indicated that, egg weight, shell thickness and yolk quality were affected adversely only upon 15% mustard cake inclusion, but the albumen quality started showing deterioration even at 10% inclusion itself [3]. Rapeseed meal can be included in the animal feed to an extent that ensures total glucosinolate level to be below 1-1.5 mmol per kg of diet [3]. This level can be considered safe for most monogastrics, although it can be subject to variations depending on structural types of glucosinolates, age of the animal and species [3]. Ruminants can accept much higher levels in their feed as compared to monogastrics [18]. On the other hand, Fenwick & Cruits [25] indicated that inclusion of rape seed meal more than 10 mg/kg of total glucosinolates is toxic to pigs and poultry and it is responsible for poor growth and lower thyroid hormone levels in ruminants [26-28].

Replacement values of rapeseed meal to other protein sources

According to Tripathy et al. [29], partial replacement of soybean meal by mustard cake amounting 80g/kg diet had no adverse effects on growth and health of growing rabbits. De-oiled rape seed meal appears to be the potential source of replacing ground nut cake in poultry ration [3]. Rape seed meal can be used in compound feeds formulation for broilers replacing up to 25% of the soybean meal without affecting broiler performance [14].

When rapeseed meal is replacing soybean meal in broiler starter and finisher ration in the following proportions order (0:30 (T1); 7.5:22.5 (T2); 15:15 (T3); 22.5:7.5 (T4); 30:0 (T5)) Total Dry Matter Intake (g/bird) DMI, Total Body Weight Gain (BWG) (g/bird) and ME intake (kcal/day/bird) for both starter and finisher phase indicated that as more level of rape seed meal is replacing soybean meal, the Total Body Weight Gain; ME intake and Total Dry Matter Intake (DMI) declined in a similar fashion as indicated in (Figure 1 & 2) [30]. As the level of RSM is increasing in the diet, Total Dry Matter Intake and Total Body Weight Gain decreasing accordingly in broiler finishers as well.

Similar study made by Tazar et al. [15] using RSM as a replacement of SBM in male broiler chicks rations in the ratio of 0:100; 25:75; 50:50; 75:25; 100:0 indicated that the size of the liver and relative weight of gabbledadder increased with increasing dietary rapeseed meal. So the study concluded that 25% of soybean meal can be replaced with rapeseed meal in the diets of broiler chicks without compromising their performance.
Antoni-nutritional factors their effect on production and productivities and treatment methods

The anti-nutritional factors, which exert adverse effect on growth, health and general welfare of animals, do so through variety of approach to affect digestion, absorbance and availability of nutrients in the feedstuffs [31]. Although the nutritional value of rapeseed meal is approximate to soybean meal, the application of rapeseed meal is practically limited due to the high levels of some harmful substances as well as many anti-nutritional factors such as glucosinolates, sinapine and its derivatives, tannin, phytic acid, crude fiber etc. [31].

Glucosinolates and sinapine are considered to exert the most effect in terms of the application of rapeseed [18]. Glucosinolates, generally exists in the potassium salts form, which include glucosinolates and glucoside [18,32]. Glucosinolates, commonly referred to as goitrogens, are uniform class of naturally occurring compounds found exclusively in the plant kingdom, and only in limited number of dicotyledonous families [15,33]. The products of hydrolysis of glucosinolates with endogenous thiglocucosidase, particularly oxazolidine thione, thiocyanate, isothiocyanate and nitriles are considered to be more harmful than the intact glucosinolates [34]. Glucosinolates in rape seed cake may go up to 200 mg/gm, whereas the permissible amount is up to 30 mg/gm for international standards [15].

Rape seed meal can be treated for their anti-nutritional factors in a number of ways like physical, chemical, biological and crop breeding [30,35]. Physical methods include inactivation of myrosinase and shelling, and the former consisted of steam heating, roasting, microwave treatment and bulking etc. Milling with water can activate myrosinase to reduce the glucosinolates. Drying enhances volatilization of isothiocyanates, while extraction causes glucosinolates to survive by 40-80% in rape seed meal [36]. The simplest method of detoxifying rapeseed meal is by immersion in water. The treatment with water (1:6), for 15-20 minutes can decrease glucosinolates by 98% [37]. Acid and alkaline degradation, metal salts degradation and solvent extractions constitute the chemical methods. Acid and alkaline degradation reduced toxicity when H₂SO₄, NaOH, KOH, NH₃, Ca(OH)₂ were used, however the treatments require heat treatment, expensive and goes with pollution [37]. The rapeseed meals from acid and alkaline degradation are of poor quality and also affect the palatability by the animal [36]. In the process of solvent extraction, the solvents including ethanol, carbinol, acetone and water etc decreases lower molecular weight glucosinolates [37]. Biological methods usually include fermentation using microorganisms and hydrolyzation catalyzed by enzyme to reduce the toxin [36]. Crop breeding is one way to develop new varieties with lower erucic acid and glucosinolates, which is the most successful among the four methods [18].

Due to continuous breeding and development of new crop varieties, rapeseed products from improved double and triple varieties can be included up to 25% in a poultry ration without any problem and the difference with soybean become almost negligible [31]. According to Bellostas et al. [19] the quality of the seed meal is especially influenced by the processing conditions. A certain level of heating during processing is needed for ensuring inactivation of enzymes, such as myrosinase, lipase and lipoxgenase, so as to avoid the formation of nutritionally unwanted compounds during oil extraction and use of the de-oiled meal Bellostas et al. [19]. Nevertheless, excessive heating can result in glucosinolate degradation, decreased available lysine, decreased protein solubility and reduced protein utilization in monogastric diets Bellostas et al. [19].

Other use of rapeseed meal

Mustard cake is rich in Nitrogen (4.8%), Phosphorous (2% as P₂O₅) and potassium (1.3% as K₂O) which are essential requirement to maintain fertility of soil and proper growth of plants fertilizers [38]. But being organic fertilizer, mustard cake,
Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by - Products in Animal Feeding

has got a slow release of nutrients timely to the soil which needs a combined application with other fertilizers [38]. Mustard cake can also serve as natural weedicide instead of inorganic fertilizer which pose health problems to human and other mammals [39]. According to Boydston et al. [40], due to the production of Allelochemicals produced during glucosinolates degradation in soil, mustard cake can serve as pesticide and weed suppression agent. Mustard cake in addition to the above characteristics can serve as fermentation medium for the growth of mushroom when it is added as a nitrogen source to rice straw substrate, it increased the yield of mushroom by 50-100% [41].

Conclusion

Mustard cake is used as a feed for cattle, poultry and aquatic animals; however, the information on percentage of feed to be given is scant and variable. In case of sheep and goats, mustard cake do not affect feed intake, feed efficiency, nitrogen balance, mineral balance and growth performance of growing lambs as compared with mono-gastric animals. The anti-nutritional factors in rapeseed can be reduced by a number of techniques including physical, chemical, biological and crop breeding. But their efficacy varies from one treatment method to the other. Amongst these, crop breeding is the most effective one which is followed by solvent extraction of oil which does not affect the nutritional composition of the diet. Ruminant animals are less susceptible to glucosinolates and other anti-nutritional factors than mono-gastric animals. Conventional rapeseed meal can be included up to 10-15% in broiler diets and 7-8 % in layers diets and can replace up to 50% of the soybean meal. But canola seeds can be used up to 20% in compound feed formulation and replacing 25-30% of the dietary soybean meal in layers ration without significantly affecting laying performance. This low glucosinolates rapeseed meal can be used freely as soybean meal in the diets of ruminants’ livestock and up to 20% in broiler diets and 15 % in finishing pigs diets. Rape seed meal/cake can be potentially be used in livestock diets, as one can manage the anti-nutritional factors through different treatment methods.

Recommendations

In developing countries including Ethiopia, the use of grains and conventional protein source to livestock in most cases not reality. Research on development of new rape seed varieties, treatment method; their efficacy on level of glucosinolates and other anti-nutritional contents, economics of feeding rape seed meals helps to utilize these non-conventional feed types. Further investigation on amino acid composition and digestibility of different varieties and introduction and evaluation of canola varieties etc is another options. Replacement values of rape seed meals with other oil seed meals using different livestock species and economics of using these products should be studied. The current global experience on rape seed meal feedings and its replacement value should be properly documented and applied. Rapeseed meal storage management to avoid aflatoxin is very important. The experience on solvent extraction method and its economic feasibilities and scale of production should be studied. Extension work on the use of rape seed meal feeding and its safe maximum level of inclusion should be promoted.

Acknowledgment

Author declares no acknowledgment.

Conflict of Interest

Author declares no conflict of interest.

References

11. Rape mustard seed. NCDEX.

Citation: Nega T, woldes Y (2018) Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by - Products in Animal Feeding. J Nutr Health Food Eng 8(1): 00254. DOI: 10.15406/jnhfe.2018.08.00254
Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by-Products in Animal Feeding

22. Tanawong M (2013) Evaluation of the nutritional value of Canola meal, 00-rapeseed meal and 00-rapeseed expellers fed to pigs. PhD Dissertation in the graduate College of the University of Illinois at Urbana-Champaign.

Citation: Nega T, woldes Y (2018) Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rape Seed by - Products in Animal Feeding. J Nutr Health Food Eng 8(1): 00254. DOI: 10.15406/jhfe.2018.08.00254