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Abbreviations: DHF, Dengue Hemorrhagic Fever; DF, Dengue 
Fever; ADE, Antibody Dependent Enhancement; APCs, Antigen 
Presenting Cells; VEE, Venezuelan equine encephalitis

Introduction
Dengue Virus (DENV) is a positive sense RNA virus belonging 

to the family flaviviridae. Four serotypes of Dengue Virus (DEN1 to 
DEN-4) have been isolated till now.1 Humans are infected by the bite 
of infected mosquito species known as Aedes Aegypti. A. Aegypti 
is the main vector of dengue virus transmission in humans and is 
prevalent in the tropical and subtropical parts of the world.

Primary infection with DENV causes an acute febrile illness 
known as dengue fever (DF) whereas secondary infection with 
dengue virus may sometime leads to fatal dengue hemorrhagic fever/ 
dengue shock syndrome (DHF/DSS).2 Dengue virus infection is 
affecting every population of the world with 50-100 million cases of 
DF and 250,000 to 500,000 cases of DHF/DSS annually. The disease 
is prevalent in more than 100 countries in Africa, America, the Eastern 
Mediterranean, Southeast Asia and the Western Pacific. But Southeast 
Asia and the Western Pacific are most serious victims. About 2500 
million people that are 2/5 of the world’s population are now in danger 
from dengue infection. Still no antiviral therapy or vaccine is available 
to cure the disease. Nevertheless, appropriate symptomatic treatment 
has been successful to decrease the rate of mortality by DHF.2

The classical DF is self-limiting but fatal febrile illness which 
results from the primary dengue virus infection. Dengue virus is 
generally cleared by the immune system within seven days after 
infection. Classical sign and symptoms of DF include fever, headache, 
myalgia and retro-orbital pain.3

DHF or DSS is a life-threatening disease which results from the 
secondary infection in which a different serotype of dengue virus 
is involved. It can have lethal outcomes due to antibody dependent 
enhancement (ADE) and can result in the death of the patients.4 The 
four classical signs and symptoms of DHF include fever, hemorrhagic 
manifestations, thrombocytopenia (platelets counts of < 100,000 
cells/mm3) and plasma leakage. DHF is further classified into four 
grades (Grade I to IV). DHF grades III and IV show extensive plasma 
leakage in various body cavities including pleura, pericardium and 
peritoneal cavities resulting in DSS.4

DHF has been found to occur upon subsequent infection with 
serotypes other than the one responsible for the primary infection.5 
The immunity against one particular serotype of dengue virus is 
long lasting whereas upon subsequent infection with other serotypes 
causes only partial immunity and leading to further complications.6 
A comprehensive understanding of the whole pathological process of 
the DF & DHF is still incomplete and further research is required. 
Better understanding of dengue virus pathogenesis will allow us to 
devise better strategies for the prevention and the treatment of DF & 
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Abstract

Dengue virus infections are a major cause of mortality and morbidity in Southeast Asia, 
South and Central America with 24’000 deaths annually. Two factors are accountable for 
the severe outcomes of Dengue Hemorrhagic Fever (DHF); one is the virulence of the virus 
and second is the cross-reactivity of various dengue serotypes with the immune system 
of the host. Rapid rise in the levels of various cytokines, particularly Tumor Necrosis 
Factor-alpha (TNF-α), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8) have 
a major role in inducing distinctive clinical presentations of DHF. These range from simple 
plasma leakage to hemorrhagic problems and even shock. Another hallmark of DHF is the 
presence of cross reactive primary antibodies which produce an intense immune response in 
secondary infection resulting in immune mediated pathology seen in DHF. There have been 
many attempts made in the past for the development of a suitable vaccine for dengue fever. 
Vaccination using plasmid DNA against dengue fever is an active area of research. In this 
review the role of different cells in the multiplication of dengue virus and viral interactions 
with the immune system have been discussed. Special emphasis is given to the nature of 
DNA vaccines in general developmental efforts of a dengue fever vaccine.
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DHF. This review will help scientists to better understand the immune 
interactions of dengue virus and help them devise a tetravalent DNA 
vaccine against dengue virus infection.

Role of dendritic Cells in DF

Dendritic cells (DC’s) are potent and professional antigen 
presenting cells (APCs) which are involved in establishing the primary 
immune response against the dengue virus. DC’s helps in the active 
multiplication of DENV as proven by the ability of DENV to enter 
cultured human DC’s and produce virus particles.7 DENV-stimulated 
DC’s expresses maturation markers such as B7-1, B7-2, Human 
leukocyte antigen- D related (HLA-DR), Cluster of differentiation 
molecule 11b (CD11b) and CD83.7

After infection with dengue virus, DC’s migrate from peripheral 
tissues to the lymph nodes and activate CD4+ and CD8+ T 
lymphocytes.6 The infection of DC’s by DENV induces production of 
TNF-α and Interferon- α (IFN-α).7

The production of TNF- α by DENV-infected DC’s correlate with 
the clinical signs and symptoms showing the highest levels of TNF- 
α in patients at the time of plasma leakage. TNF- α induces the up-
regulation of anti-apoptotic factors such as Bcl-xl that can protect DC 
from apoptosis.8 Hence, virus-induced production of TNF- α and IFN- 
α causes decreased apoptosis in DENV-infected DC in the late phase 
of virus infection.9 Cytokines produced in response to DC activation 
by DENV results in inflammation and shock as mentioned in (Figure 
1).

Figure 1  Pathway elaborates the immuno-pathogenesis of DENV; it can 
proceed in two ways, primary infection leads to direct entry of DENV into 
immune cells like Macrophages, Monocytes and Dendritic cells. This pathway 
can further activates DENV specific T cells, cause cytolysis, cytokines 
production, complement activation and finally leading to plasma leakage. In 
case of secondary infection antibody based enhancement occurs which leads 
to cytokines production and complement activation, high levels of cytokines 
and complement activation can damage vascular endothelial cells resulting in 
plasma leakage.

Role of cytokines in DF

The levels of TNF-α, IL-2, IL-6, IL-8, IL-10, IL-12 and IFN-γ 
have been found to be elevated in patients with DHF. Monocyte 
chemoattractant protein-1 (MCP-1) and IL-8 levels are also observed 
to be raised in the pleural effusion taken from DHF patients.10

TNF-α has been reported to be secreted by monocytes and 
endothelial cells infected by dengue virus. The activation of the 
immune effector cells and T lymphocytes leads to increased levels of 
soluble TNF receptors (TNFR175).11 Upon activation virus specific 
T lymphocytes produce some cytokines namely IL-2, TNF-α, IFN-γ. 
IL-1 and IL-6 are produced by mast cells and basophils infected 
with dengue virus.12 Raised levels of these cytokines cause increased 
vascular permeability in DHF/DSS patients.13 Cytokine production 
and cell inactivation seen in dengue virus infection can produce an 
anti-apoptotic effect during the last phase of the pathogenesis.14

Increasing levels of IFN-γ, IL-6, IL-8 can alter various cellular 
and body functions like raised Aspartate aminotransferase (AST)/ 
Alanine aminotransferase (ALT), cell damage, thrombocytopenia, 
increased hematocrit, pleural effusion/ascites. These entire features 
are indicative of endothelial cell dysfunction. Increased levels of IFN- 
γ are seen in large number of DHF cases with plasma leakage.15 The 
level of IL-8 is significantly higher in DHF compared to DF and it also 
correlates with thrombocytopenia and raised ALT. In vitro studies of 
HepG2 cells infected with dengue virus have shown increased level 
of expression of those genes that are responsible for the secretion of 
pro-inflammatory cytokines such as IL-6 and IL-8.14 Increased levels 
of IL-8 have been associated with plasma leakage.15

Role of complement activation in DF

DHF displays the activation of complement cascade as a clinical 
manifestation. Levels of C5a, C3a and complement activation 
products are at their highest levels although the plasma leakage is 
markedly apparent (Table 1). Immune complexes tend to activate 
the complement proteins in DHF.16 Monocytes and endothelial cells 
infected by dengue virus activate complement via alternative and 
classical pathway. Nonstructural-1 (NS1) and pre-membrane (prM) 
proteins of dengue virus bind to clusterin (CLU). This association of 
clusterin with NS1 and PrM may free C7, so helping in the formation 
of terminal complement complex (TCC).17

Table 1  Immune interactions of DENV

Immunological 
component Immunological response to dengue virus

Dendritic Cells

TNF-α, IFN-α production
Involved in Active Replication of Dengue Virus
Decreased Apoptosis in Late Phase of Viral Infection

Responsible for Inflammation and Shock due to 
Cytokine Production.

Cytokines

Elevated Levels of TNF-Α, IL-2, IL-6, IL-8, IL-10, IL-12 
and IFN-Γ during Fever resulting in

Liver Damage

Cell Damage
Thrombocytopenia
Platelet Destruction
Pleural Effusion.

Complement System

Activated by Immune Complexes, Infected Monocytes 
& Endothelial Cells
Increased Levels of Complement Proteins C5a And 
C3a During Plasma Leakage
Cause of Oxidative Burst

Macrophages

Principle Site of Viral Replication
Cause Production of IL-1, IL-6, IL-10, IL-12, IFN-a, 
IFN-b
Blood Monocytes Main Target During Secondary 
Infection
Production of Free Radicals During Infection.
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Immunological 
component Immunological response to dengue virus

Antibodies

Neutralization in Primary Infection
Antibody Dependent Enhancement (ADE) During 
Secondary Infection
IgG in Cross Protective Immunity
Cause Endothelial Cell Dysfunction
Cause Fibrinolysis by Antibodies Produced Against 
Plasminogen

In severe dengue infection large amounts of C3a have been 
detected, enlightening its role in dengue pathogenesis. C3a is one 
of the many important anaphylatoxins produced as a result of 
complement activation which in turn can disrupt the vasculature. C3a 
recruits macrophages, monocytes and dendritic cells and augment 
the effect of other pro inflammatory cytokines including IL-6, TNF-α 
and Stromal cell derived factor-1 (SDF-1). Although the precise 
mechanism of activation of complement anaphylatoxins has not 
been fully understood but the activation of C3aR enhances cytokine 
expression through AKT phosphorylation as well as MAP kinase 
activation. C3aR is expressed on major intermediaries of the immune 
system, fascinatingly not naïve T-cells. C5aR also activates a lot of 
downstream signaling pathways which includes Phospholipase D 
(PLD), Phospholipase C (PLC), Phosphoinositol -3 Kinase (PI3K-γ), 
rapidly accelerated fibro sarcoma (RAF) and Wiskott-Aldrich 
syndrome protein (WASP).18

Role of Macrophages in DF

Macrophages derived from monocytes are the principle cells of 
DENV replication and play an important role in the innate immunity.19 

As a result of primary infection, only about 1-2% of blood monocytes 
and macrophages are infected, furthermore, monocyte-derived 
dendritic cells (DCs) are also infected.20,21 Blood monocytes and 
macrophages are the main target cells being infected during secondary 
infection via antibody dependent enhancement (ADE) mechanism.22 

Dengue virus enters the macrophages through a virus receptor or Fc-
receptor as an immune complex. There are certain receptors reported 
that recognize the constant region of IgG, FcyR1 and FcyR2 are 
known to participate in this process.23 It has been also reported that 
there are no Fc receptors for Dengue serotype-2 in primary cultures 
of human macrophages.24 Reyes et al also showed that the heat shock 
protein 90 (HSP90) and HSP70 act as a receptor complex in human 
cell lines and in macrophages.

It is reported that the macrophages not only destroy the virus 
infected cells but also damage non infected bystander cells.25 Dengue 
virus infected macrophages present DENV antigens to B cells in 
vitro and which lead to their clonal expansion. Cytokines that are 
produced by the macrophages are tumor necrosis factor (TNF), IL-
1, IL-6, IL-10, IL-12, IL-15, IL-18, interferon-alpha (IFN-α), IFN-β, 
transforming growth factor-beta (TGFβ) and chemokines like IL-8, 
macrophage inflammatory protein (MIP)-1a, MCP-1 etc.26 Several 
cytokines are specific for DENV and are included in cytotoxic pathway 
and the suppressor pathways. Ray et al.27 proposed that there is a role 
of macrophages in the production of free radicals during DENV 
infection, and there is an alteration in antioxidant status in the patients 
with acute dengue infection which may restrict virus replication.27

Thus macrophages not only ingest, digest and eliminate dengue 
virus from the body but also serve as a host cell for replication of 
DENV and variation in the immune response depends upon various 
factors that include the virulence of the virus.

Role of Antibodies in DF

Antibodies are pivotal in dengue virus pathogenesis as they have 
dual role of virus neutralization as well as disease enhancement.

Antibody dependent enhancement (ADE)

The antibodies produced in the primary infection act as non-
neutralizing antibodies in secondary infection with a different 
serotype thus causing ADE of dengue virus infection.28 Fc portion 
of the immunoglobulin (Ig) is involved in the binding of virus-
antibody complexes via Fc-γ receptor. This in turn leads to ADE of 
viral infection as a result of allowance of viral entry into the cells 
expressing Fc-γ receptor via the receptor. Since the cells expressing 
Fc-γ receptor are usually macrophages or DCs, in case of DENV, viral 
replication is promoted. This ADE can be inhibited by pretreatment 
with appropriate blocking monoclonal antibodies. In addition to 
enhancement of infection through Fc-γ receptor linkage, increased 
infectivity is also observed when the antibodies interact with 
molecules such as β-2 microglobulin, CD15 or CD33.29

Role of IFN-γ in ADE

Previously sensitized human T lymphocytes are responsible 
for producing IFN-γ after secondary antigenic stimulation.30 It was 
demonstrated that DENV infection of dendritic cells and human 
monocytes is enhanced in the presence of IFN-γ produced by dengue 
virus stimulation of immune T cells. This led to the hypothesis that 
IFN-γ might play a major role in the pathogenesis of DHF/DSS 
through enhanced expression of Fc receptors on human monocytes. 
This phenomenon leads to high incidence of infectious DENV in the 
presence of anti-dengue virus antibodies.31 ADE can be avoided if a 
tetravalent vaccine elicits strongly neutralizing antibodies against all 
four serotypes of DENV.32

Role of immunoglobulin G (IgG) in DENV infection 
and cross protective immunity

IgG class of antibodies are believed to be primary antibodies 
produced against DENV. The function of IgG antibodies in different 
viral diseases is dependent on their subclass types. In acute phase of 
viral infection, IgG3 levels increases much more rapidly than that of 
IgG1.33 In case of DENV infection the phenomenon of cross protective 
immunity is also observed. Homotypic IgG antibodies are produced 
against a particular serotype of DENV which forms a memory pool. 
Moreover, some heterotypic IgG antibodies are also produced that 
will provide immunity against other serotypes as well.28

Endothelial cells, plasminogen cross reactivity

Dengue patient sera (Abs) are cross reactive react with endothelial 
cells. The percentage of endothelial cells reactive with DHF/DSS 
patient’s sera is higher than with the sera of dengue fever patient. 
Endothelial cell binding activity with neutralizing Abs is found to be 
inhibited by pre-treatment with dengue virus nonstructural protein 1 
(NS1). The cross-reactivity of patient sera with endothelial cells may 
be due to antibodies produced against NS1 after DENV infection. 
Endothelial cell apoptosis induced by caspase dependent pathway in 
the presence of dengue patient sera is inhibited by NS1 pretreatment. 
Endothelial cell dysfunction is manifested in the case of generation 
of autoantibodies against them, resulting in pathogenesis of dengue 
virus infection.34

DENV infection can lead to fibrinolysis as a result of antibodies 
produced against plasminogen. The cross reactive antibodies produced 
during DENV infection stimulate the conversion of plasminogen to 

Table Continued...
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plasmin thus leading to hyper fibrinolysis.35 The similarity of Dengue 
E glycoprotein with plasminogen induces cross-reactivity where 
antibodies produced against DENV E protein target plasminogen and 
cause fibrinolysis.36

Vaccine strategies against DENV
There is an increasing demand for a global DENV vaccine which 

can provide protection against all four serotypes of dengue virus. 
For a successful vaccine against DENV it is vital that it must have 
properties of cross protection inducing long lasting immunity and 
should be cost effective so that it can be available to populations in 
low income regions of the world. Till now there is no FDA approved 
DENV vaccine or drug in the market, global presence of DENV and a 
lack of vaccine is a major threat to the mankind.

History of DNA vaccination

After discovering that DNA can be injected into the host in the form 
of a vaccine and activates both humoral and cellular arms of immune 
response, there have been tremendous efforts to precisely understand 
DNA Vaccination.37 Cytotoxic T Lymphocytes and antibody responses 
were produced by the influenza DNA vaccine inoculated in mouse, 
which confirmed that DNA vaccine can successfully activate both 
cellular and humoral immune responses.38

DNA vaccines against DENV

Dengue virus has 3 structural proteins, capsid (C), membrane 
associated protein (prM) and envelope protein (E). The largest 
and immunogenic DENV structural protein is E which has several 
neutralizing epitopes, that’s why it is an important protein to be used in 
the construction of Dengue Vaccine. Among the nonstructural proteins 
of dengue virus, nonstructural protein 1 (NS1) is the most antigenic 
and can be used for vaccine development owing to its expression on 
the surface of infected cells.39,40,41 Previous approaches used for the 
development of Dengue Vaccine s include live-attenuated vaccines, 
inactivated vaccines, infection clone derived vaccines and nucleic 
acid vaccines, but none of them proved to be useful in combating 
dengue virus infection.42,43

A candidate DNA vaccine expressing DENV-1 PrM and enveloped 
proteins was developed and used to immunize monkeys.44 Virus 
neutralizing antibodies were produced in the recipient monkeys 
as a result of candidate vaccine and provide partial protection after 
challenging the monkeys with dengue virus infection. Both Intradermal 
and intramuscular route of DNA vaccine administration were 
employed; it was observed that intradermal immunization produces 
less immunogenic response than intramuscular immunization in 
rhesus monkeys. In another trial Konishi et al.44 PrM and E genes of 
Guinea C strain of DENV-2 produced neutralizing antibodies and 
anamnestic response in immunized mice.45

Route of administration of DNA vaccines

Route of administration of a vaccine into the body has a vital role 
in its immunogenicity. Recent studies of DNA vaccines showed the 
use of Intramuscular and Intradermal inoculation by needle or a more 
convenient Biojector® device without involving a needle achieve a 
limited success in comparison with electroporation.46 The question 
remains though whether electroporation strategy of vaccine delivery 
is conducive for large public health immunization campaigns. Many 
resource-poor areas would likely have problems with any vaccine 
that depends on an expensive technically advanced delivery system.47 

(Figure 2).

Figure 2 How DNA vaccine are produced and injected.

Different approaches used in DNA vaccines production 
against DENV

The antibody response is naturally produced against DENV 
structural (C, E and PrM) and non-structural proteins (NS1, NS3, 
NS4B and NS5). Mainly E protein has several epitopes which are 
targeted by anti-dengue antibodies. Recent studies show that PrM gene 
is also encoded in some DNA vaccines since it is required for proper 
processing and attachment of E protein.48,49 Plasmid encoding E, prM 
and two NS proteins in DNA vaccines were tested in various animals’ 
models with no significant interference from competing monovalent 
components.46 When smaller animals mainly mice were studied for the 
neutralizing antibody responses, DNA plasmid constructs containing 
80% of the E gene (E80) and 100% of the E gene including the prM 
gene (ME100) showed best results in mice.50

Another research conducted enhanced gene delivery and 
immunogenicity by formulating DNA vaccine in combination 
with viral vector. Vaccine had both Adenovirus vector along with 
multivalent construct as CAdVax-Den12 and CAdVax-Den34 each 
expressing prM and E proteins. In one of the study a tetravalent 
vaccine in association with adenovirus vector (CAdVax-DenTV) was 
tested against DENV1-4 serotypes in rhesus macaques which resulted 
in production of elevated levels of anti-DENV neutralizing antibodies. 
One of the drawbacks of this vaccine was the low immune stimulation 
against DENV2 otherwise the level of neutralizing antibodies was 
consistent against all other serotypes. In some individuals vaccine was 
found to be less effective when they were exposed to adenovirus based 
vaccines and adenoviruses in the past. Previously it was found that 
HIV vaccine strategy utilizing adenovirus vector had applied higher 
doses of vaccines but phase II trials results were inconsistent.51,52

Venezuelan equine encephalitis (VEE) virus has also been used to 
develop a Dengue Vaccine. DENV1 prM and E were expressed in a 
VEE vector which was able to form virus replicon. Potent neutralizing 
antibody titer was seen with three doses in immunized macaques 
however this vaccine failed to provide full protection against live 
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DENV1. Heterologous priming with two-dose naked DNA, followed 
by boosting with the VEE replicon dengue particles at the third dose 
was demonstrated to induce a complete protection in immunized 
macaques.53 These results demonstrate that a DNA vaccine along 
with enhancing agent can provide lasting immunity in the vaccinated 
individual. In a recent study live-attenuated Schwarz vaccine strain of 
measles viruses has been engineered to encode the domain III and/or 
M ecto-domain of DENV.54 Mice were immunized by a combinational 
vaccine (DENV-measles) and an enhanced immune response was 
seen with neutralizing antibodies.55 This approach has the advantage 
of developing a single-dose combination vaccine against measles 
virus and DENV infection.

PcDNA3 based DNA vaccines using PrM and E gene prM and E 
expressed together produced extracellular sub-viral particles (EPS) in 
mammalian cells and were highly immunogenic.56,57 In one of such 
vaccine strategy a pcDNA3-based DNA vaccine containing PrM/E 
genes of JEV, DENV1 and DENV2 was successful in producing 
strong neutralizing antibodies response in mice models.44,58 This study 
was able to conclude that a DNA vaccine can induce high levels of 
DENV neutralization in mice models.59 When co-expressed, DENV 
prM and E can produce a very strong immune response in animal 
models, highlighting the importance of DNA vaccine in immunization 
strategy.60 One of the studies was aimed at designing tetravalent 
vaccine encoding domain III of E, this vaccine was able to generate 
antibody response against all four serotypes in mice models.61 

Currently Konishi et al.58 are trying a novel approach in DENV 
vaccine development by combining a tetravalent DNA vaccine with 
a protein based vaccine such as DENV2 EPS or an inactivated JE 
vaccine to increase the vaccine effectiveness.

Konishi et al.58 used the ability to induce anamnestic responses to 
peripheral challenge to evaluate the tetravalent vaccine in a mouse 
model, as an indicator of the presence of vaccination-induced 
memory B cells. The production of immune responses to a peripheral 
amplification of virus is expected in humans who become infected 
with dengue virus. Studies have shown that an individual exposed 
to DENV infection gets a lifelong immunity against that specific 
serotype at both humoral and T cells dependent immunity limiting the 
chances of future exposure to that DENV serotype.

DNA vaccines based on the envelop protein of DENV2 
along with t-PA

Vaccine studies conducted on two constructs which were encoding 
all three domains (pE1D2) of E protein and domain III (pE2D2) along 
with plasminogen activator signal peptide (t-PA). Both plasmids were 
expressed in Baby hamster kidney (BHK) cells. Both epitopes were 
detected by fluorescent labelled antibodies. This study proved that 
outer domain of E protein can be secreted in mammalian cells cultures 
without the involvement of prM protein which acts as a chaperon for 
proper folding of E protein. When Balb/c mice were inoculated both 
pE1D2 and pE2D2 DNA vaccines and later challenged with DENV2, 
all pE1D2-vaccinated mice survived challenge, while 45% of animals 
immunized with the pE2D2 died after infection. Furthermore, only 
10% of pE1D2-immunized mice presented some clinical signs of 
infection after challenge, whereas most of animals inoculated with 
the pE2D2 showed effects of the disease with high morbidity degrees. 
Antibody analysis revealed that mice which were administrated with 
pE1D2 had several folds high antibody titers than compared with the 
group injected with pE2D2, these findings suggest that pE1D2 had a 
better potential as a vaccine candidate.62

Most approaches involving DNA based flavivirus vaccines were 
designed with both structural proteins i-e PrM and E genes, due to the 

known fact that precise folding of E, prM is an important contributor 
in dengue virus life cycle.52 However, these proteins contain highly 
hydrophobic regions that may interfere with their expression and/
or secretion.63 In fact, some studies with DNA vaccines encoding 
prM/E sequences showed the induction of low titers of neutralizing 
antibodies and partial protection, even after several DNA doses. For 
addressing concerns about limited or low neutralizing antibodies 
for prM/E based DNA vaccines alternative methods were applied.46 

These strategies included lysosomal based targeted delivery, immune 
stimulatory and/or cytokine sequences, prime/booster immunization 
regimen, which improved the immunogenicity.64 Studies also revealed 
that anti-prM antibodies were contributing in enhancement of 
infection by generating partially neutralizing monoclonal antibodies; 
these antibodies are also very cross reactive which is one of the factors 
in the progression of DF to DHF and DSS.65 These findings highlight 
the fact that anti DENV DNA vaccine should specifically target the 
E protein which is more immunogenic and has no significant role in 
antibody based enhancement of infection.

Chimeric DNA vaccines

Among several other techniques for formulation of DNA vaccine, 
one of the techniques is designing of chimeric constructs expressing 
antigenic epitopes of all four DENV serotypes. Rhesus macaques 
were inoculated with three constructs (sA, sB, and sC). Constructs sA 
and sC had both PrM and E genes whereas sB was encoding the ecto-
domain of E. It was seen that these DNA chimeric vaccines were able 
to produce neutralizing antibodies against all four serotypes however 
When challenged with live dengue-1 or dengue-2 virus, partial 
protection against dengue-1 was observed. Thus a variable immune 
response was observed, nevertheless further optimization might fix 
this problem and a uniform immune response would be possible.66

DNA shuffling and screening technologies have previously been 
used in evolving interferon-α, IL-12, co-stimulatory molecules and 
viruses.67,68 When this strategy was applied for formulating tetravalent 
DENV vaccine, it showed promising results by the production of 
strong neutralizing antibody response against all four serotypes. 
One of the study conducted on mice with intra-cerebral inoculation 
of DENV2 showed protection owing to chimeric DNA vaccine. 
Similar results of chimeric DNA vaccines were observed in rhesus 
macaques.69 Chimeric DNA vaccine with booster dose regimen has 
been tested against several deadly pathogens including DENV. A 
collaborated effort involving researchers from National medical 
research Centre (NMRC), Walter Reed Army Institute of Research 
(WRAIR) and NHP showed protection in mice model vaccinated with 
chimeric DENV DNA vaccine.70

Discussion
The pathogenesis of any infectious disease is the most essential 

query; however the progress of dengue virus infection is not well 
understood. It is shown that the macrophages, dendritic cells and other 
cells of reticuloendothelial source essentially support dengue virus 
infections.71 It is also noticed that dendritic cells i.e. Langerhans cells, 
dermal and interstitial dendritic cells are extra permissive for the entry 
of dengue virus as compared to the macrophages and monocytes by 
employing DC-SIGN (Dendritic Cell-Specific Intercellular adhesion 
molecule-3-Grabbing Non-integrin) also known as CD209 as a 
receptor for dengue viruses.72 Furthermore vascular endothelial cells 
and hepatocytes are the sites of DENV infection in DHF patients.73 

The infection of B cells and fibroblasts at in vitro level are known but 
at in-vivo it is still a question mark.74 Based on these observations, it 
might be possible that multiple cell types which include macrophages, 
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dendritic cells and hepatocytes are the cells that are responsible for 
enhancing dengue virus infection.75

The ideal condition for the prevention of dengue virus infection 
would be that the invading virus will be ingested, digested and 
eliminated by macrophages. In the case of DENV, however the 
macrophages also serve as the host cells for proficient replication 
of DENV which in turn complicates the immune functions. A 
successful confrontation to dengue virus infection needs a balance 
to be maintained between the induction of proficient anti-viral 
effector mechanisms and the prevention of harmful tissue damage.5 

Cytokines that are produced by the macrophages also play important 
role in innate and adaptive immune systems. These cytokines involve 

include tumor necrosis factor (TNF), IL-1, IL-6, IL-10, IL-12, IL-15, 
IL-18, interferon-alpha (IFN-α), IFN-β, transforming growth factor-
beta (TGF-β) and chemokines like IL-8, macrophage inflammatory 
protein (MIP)-1a, MCP-1 etc. Recent advances in understanding the 
regulation of macrophages’ function in infection by STAT-activating 
cytokines, their receptors or signaling mechanism signify the value 
of the Stat-pathway in the control of infection and immunopathology. 
Through genomics and accessibility of newer technologies it has 
been now possible to define the molecular pathways of macrophages 
activation and depression. In the near future the target genes can be 
identified which recognize the molecular mediators inhibiting the 
subversion of macrophages by viruses (and intracellular pathogens) 
and control tissue damage.5

Table 2 Dengue vaccine candidates in preclinical development 

Vaccine developer Details Development stage

Inovio Pharmaceuticals, U.S
Tetravalent chimeric EDIII with inbuilt cleavage sites 
expressed from plasmid vector.(Ramanathan et al., 2009)

Tetravalent Candidate Vaccine Evaluated in non-
Human Primates.

Kobe University, Japan prM/E expressed from plasmid vector.(Imoto and Konishi, 
2007) Tetravalent Candidate Vaccine Evaluated in Mice.

Centers for Disease Control & Prevention 
(CDC), U.S

prM/E expressed from plasmid vector.(Mota et al., 2005, 
Purdy and Chang, 2005)

Tetravalent Candidate Vaccine Evaluated in non-
Human Primates.

National Medical Research Council (NMRC), 
Singapore

Tetravalent “shuffled” prM/E expressed from plasmid vector.
(Raviprakash et al., 2006)

Tetravalent Candidate Vaccine Evaluated in non-
Human Primates.

Human dendritic cells are responsible for the active replication 
of dengue virus. After infection with dengue virus, dendritic cells 
secrete cytokines that possibly lead to cell maturation. These DC’s 
also stimulate the activation of T lymphocytes and start an adaptive 
immune response. While dengue virus infection might step up the 
apoptotic progression in cytokine-withdrawn DC but both cell 
maturation and cytokine production can holdup or block the enduring 
process of apoptosis. The dengue virus-stimulated dendritic cells 
express maturation markers such as HLA-DR, B7-1, CD11b, B7-2 
and CD83. Additionally they also stimulate secretion of TNF-α and 
IFN-α. Though dendritic cells undergo spontaneous apoptosis without 
the presence of feeding cytokines, this procedure appears to be 
delayed after dengue virus infection.76

Interaction of host antibodies with the dengue virus is another 
important interaction of dengue virus with the host. The majority of 
dengue-specific antibodies in human sera is inadequately neutralizing 
and unites to multiple serotypes of dengue virus. Furthermore, these 
neutralizing antibodies appear to bind novel epitopes which include 
intricate, quaternary epitopes that are only conserved on the intact 
virion. Previous studies have established the fact that human and 
mouse antibodies identify different epitopes on the dengue virion. 
The leading assumption that projected to clarify the increased risk of 
brutal disease in secondary cases is antibody dependent enhancement 
(ADE), which postulates that inadequately neutralizing antibodies 
from the first exposure bind to the second serotype and augment 
infection of FcγR bearing myeloid cells which includes macrophages 
and monocytes. By understanding how human antibodies counteract 
or augment dengue virus infection, it will facilitate in better 
assessment of the existing vaccines and also in the development of 
next generation novel vaccines.77

Comparison with other DENV vaccine approaches DNA vaccine 
is best suited for the development of chimeric tetravalent vaccine.78-80 

DNA vaccine has shown no when combined with other candidates57 

(Table 2). In one of the combined immunization approaches DNA 
vaccines against tick-borne encephalitis viruses showed negligible 
interference thus DNA vaccines can be used in combination for 

achieving maximum results.54 DNA vaccines are stable, easy to 
produce and transported with less cost, and easy to facilitate endemic 
dengue populations. Putnak et al.56showed that many flavivirus 
DNA vaccines including vaccines against dengue also have been 
developed.56

Further studies showed the more advantage of DNA vaccine 
durability, that when gene is induced intramuscularly, it persists 
to continue gene expression for weeks to months.77 In combined 
immunization, this advantage should overcome the dose quantity.81 

Although DNA vaccine are easy to manufacture and maintain however 
weak immunogenicity should be addressed. This can be achieved by 
addition of adjuvants or increasing the expression of immunogenic 
proteins.45 With the development of efficient promotors and constructs 
and delivery mechanisms DNA vaccine will be an important tool in 
modern world of medicine.
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