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Abstract

The present review is an attempt to signify the importance of heat shock proteins
in livestock adaptation during heat stress. The cellular and molecular responses in
livestock are very crucial as it may lead to identification of confirmatory biomarker
for heat stress in livestock. Thermo-tolerant gene expression and elevated heat shock
protein (HSP) levels are observed to be the ultimate response through which the cell
survives the heat stress. The HSPs have chaperonic activity ensuring the folding,
unfolding and refolding of stress-denatured proteins. The components of heat shock
response include heat shock factors (HSFs), heat shock element (HSE) and HSP.
The cellular response to heat stress in mammalian organisms is controlled at the
transcription level and it is mediated by a family of HSF which are regulated by the
corresponding HSF genes. The activated HSFs bind with the HSE in the promoter
region of HSP genes culminating in enhanced transcription of HSP mRNA. The
HSP70, HSP90 and HSP27 are the predominant HSPs having protective role during
heat stress in farm animals. Among these HSPs studied, HSP70 was identified to be
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Introduction

The contribution of livestock sector in the Indian economy is
noteworthy with 40% of the national gross domestic product (GDP)
and 90% of agriculture GDP contributed by this sector.!? The
climate is an important factor influencing agricultural productivity
and the livestock sector being a major component in agriculture is
impacted at an alarming rate. Climate change leads to alterations in
temperature, precipitation, atmospheric greenhouse gas concentration
which ultimately affects all the ecosystems on the earth. Different
environmental stress that arises as a result of climate change affects
their productivity, reproductive efficiency, and health which ultimately
leads to severe economic losses.** Biological markers or biomarkers
are substances that indicate the biological states or indicative of
a change in gene expression or state of protein. Such markers play
a significant role in assessing the stress adaptation mechanism in
livestock. Conventionally biochemical markers have been used for the
identification of animals with high genetic merit for economic traits in
cattle. Molecular markers can be used as reference point in breeding

to identify, manipulation and to cross-breed for the improvement of
genetic potential in livestock species. Thus, the overall improvement
in livestock species is aided by the use of molecular markers to a
great extent. The selection of thermo-resistant animals is an effective
way to improve the productivity of cattle during high environmental
temperature. It is known that zebu breeds are having more heat
tolerance compared to breeds of European origin. Identification
and exploitation of genotypes having thermo-tolerance in cattle are
a major concern in the changing climate scenario which can have a
great impact on livestock productivity.

There are several factors like biomass productivity, age, nutrient
availability, water availability, photoperiod, and environmental
conditions that affects livestock production. The environmental
stress, particularly heat stress (HS) is the major concern in the
livestock sector.*® The productive parameters like milk yield, growth,
reproduction and carcass traits can be negatively impacted by HS.
Indigenous variety have the more adaptive capacity to environment
stresses, however, they have less average productivity in case of
Indian livestock. Therefore, studies for the identification of the genes
having thermo-tolerance in indigenous variety can be utilized to a
large extent for the genetic improvement of the animals for getting
adaptive as well as productive varieties.

To maintain homeostasis, stress is essential in all living organisms.
Acclimation, acclimatization, and adaptation are the mechanisms
through which the animals cope with the stressors. Acclimation
includes the phenotypic responses produced by the animal to a
specific stressor in the environment, whereas acclimatization is the
long-term physiological adjustments as a result of continued exposure
to multiple stressors. Acclimation is of less relevance compared to
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the latter as it is harder to find an environment with a single variable
changing. However, both these mechanisms are phenotypic responses
as it is induced by the environment and the response goes once the
stress is removed. It is usually produced to improve the fitness of
the animal to the environment. Animals develop specific adaptive
mechanisms if the environment stressors are present for a prolonged
period. The mechanisms of adaptation include morphological,
behavioural, biochemical and physiological changes. Biochemical
adaptation to thermal stress involves changes in proteins, membrane
lipids and metabolic rate.” Genetic markers are of prior importance
in the recent revolutionary developments in the field of molecular
technology because of its viability as the biochemical adaptation
can be utilized in livestock breeding programs compared to the
behavioral, morphological or physiological responses to stress which
is of less relevance. Heat shock protein is an important biomarker
produced as cellular and tissue defense mechanism whose expression
is markedly increased during heat shock.® The present review is an
attempt to signify the importance of heat shock proteins in livestock
adaptation during HS.

General cellular responses to heat stress

Cellular exposure to thermal stress induces a number of anomalies
in the functioning of cells which alters the biological molecules,
disturbs cell functions, modulates metabolic reactions, induces
oxidative cell damage and activates both apoptosis and necrosis
pathways, ultimately leading to cell survival, acclimation or cell
death depending on the time and success of these alterations.”!!
Enhancement of cytoprotective networks of HSPs, anti-oxidative,
apoptotic and stabilization of the hypoxia inducible factor- la, the
master regulator of oxygen homeostasis is taken as the hallmark of
acclimation process.'? The response of bovine embryos and mammary
epithelial cells to HS has been well described in dairy cattle.'* Oxidative
stress observed during summer in livestock animals is attributed to
HS." Thermo-tolerant gene expression and elevated HSP levels are
observed to be the ultimate response through which the cell sustains
the impact of HS making it a full proof biomarker for the condition.
The HSP is one of the cellular proteins found most abundantly under
non-stress conditions also. One of the primary ways through which
scientist across the globe are establishing the severity of HS is by
expression of HSP.'*!5 Over expression of HSPs provide protection
against hyperthermia, circulatory shock, and cerebral ischemia during
heat stroke which signifies the central role of HSP in cytoprotection.'®
The HSPs have chaperonic activity ensuring the folding, unfolding
and refolding of stress-denatured proteins.'” Hydrophobic protein
sequences liberated by denaturation gets bounded with the HSPs
which otherwise would interact with other neighbour proteins
resulting in loss of protein function.

Oxidative stress affects the antioxidant defense resulting from
overproduction of free radicals and reactive oxygen species (ROS).!14
Increase in ROS production, especially the superoxide anion (O,-) is
observed during HS.""!8 HS was shown to raise both of Thiobarbituric
acid-reactive species (TBARS) and malondialdehyde (MDA) levels in
broilers, buffalos and dairy cows which are the major products of lipid
peroxidation.'*?® Antioxidant enzymes activities, namely superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)
were observed to increase in HS in livestock.!! Elevated concentration
of SOD and GPX concentration was observed in prepartum cows
with peaks around calving during summer month. Antioxidant
activity studied during winter and summer season in growing
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calves, heifers and lactating Murrah buffaloes showed significantly
higher concentration of GPX in all three experimental groups during
summer.?! Mitochondria are the first cellular compartment to be
damaged during HS through disturbance in ROS." It get swollen,
cristae are broken and low matrix density was observed during HS.
Intrinsic pathway of apoptosis is activated by increased free radical
and cell necrosis, was demonstrated in livestock during HS.’

Heat shock response components

Thermo-tolerance is identified as more of a quantitative trait
which is influenced by genomic regions at the target gene important
for thermoregulation through genomic studies in both beef and
dairy cattle.?? The cellular response to thermal stress in mammalian
organisms is controlled at the transcription level and it is mediated
by a family of heat shock transcription factors (HSF) which are
regulated by inducible expression of HSF genes. Different isoforms
of HSF are present in different livestock species. The isoform HSF1
is initially activated by the hydrophobic domain of the unfolded
protein during HS which undergoes trimerization in nucleus and
hyperphosphorylation. The HSFs after activation bind with the HS
elements (HSEs) present in the promoter region of these genes leading
to enhanced transcription of HSP mRNA. The HSF1 to HSF4 has
been reported till date in large eukaryotes of which HSF1 has been
mainly studied and reported to have a direct correlation with thermo-
tolerance in livestock. The HSF3 has been reported to be present only
in poultry. The HSF1 and HSF3 are activated during HS whereas
HSF?2 is activated to other cellular stress other than thermal stress. The
HSF2 is a short-lived protein that ensures the continued expression
of chaperons acting as inducible regulator when misfolded proteins
have been marked for degradation. The coordinated effort of multiple
HSFs provide chaperonic coverage to the cellular activities and
protects the unfolded proteins. The HSF1 is mainly correlated with
induction of HSP70 gene expression. The HSPs are highly conserved
protein which is activated by numerous physical and physiological
stressors.?® Elevation or prolongation of the HSP response would also
improve thermo-tolerance in bovines.'* The variation in evaporative
heat loss (EVHL) among animals and the central role that HSF1 has in
coordinating thermal tolerance suggest that there is an opportunity to
improve thermo-tolerance via manipulation of the genes controlling
the expression of HSF1 and those regulating EVHL in cattle.

Significance of HSP to livestock adaptation

Thermoneutral zone (TNZ) is when the animal doesn’t have
to expend energy to maintain its normal body temperature for
homeostasis and HS represents the response of the body to stimuli
that disturb homeostasis which is normally in the range of 4 and 25°C
for most of the farm animals, and temperatures exceeding 25°C will
result in HS.?*? Thermoregulation is the process by which livestock
species maintain a balance between the heat production and heat
loss mechanisms in their body to maintain a relatively constant body
temperature.”® Animals undergo HS once this balance in energy gets
disturbed and the temperature humidity index (THI) exceeds 72,
with severe HS occurring when THI exceeds 88. When the farm
animals get exposed to environmental stress there are proteins which
preferentially get expressed under these conditions like slick hair
gene, ATP1B2 and heat shock proteins (HSPs).??"?8 During stressed
conditions in the cell, HSPs interact with denatured proteins and inhibit
the formation of cytotoxic protein aggregates, thereby maintaining
the protein homeostasis of a cell.”” The HSPs are highly conserved
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proteins which get activated by heat and other stressors and act as
molecular chaperons which confer thermotolerance and the ability of
the cell to survive injury and oxidative stress whose induction induces
thermotolerance.?**° The function of HSP70 as a molecular chaperone
and cell protection against HS capable of denaturing proteins has been
studied through extensive research.’!

Several studies have been done to identify genetic polymorphism
in HSP70 genes of cattle. The HSPs provide protection against the
adverse effects of heat and chemical or abnormal stresses.> The
HSPs provide signaling to the immune system to encourage increased
killing of pathogenic bacteria by neutrophils and macrophages and
other innate immune cells against invading bacteria. The HSP70i,
an inducible form of HSP70, having a molecular weight of 70kDa
has been proposed as a forecaster for thermotolerance at the cellular
level in livestock species. Investigations carried out to find out the
association between the heat shock response of mononuclear cells in
blood and SNPs at the 5> UTR of HSP 70.1 yielded in understanding
the importance of these mutation sites as molecular markers.

Mechanism of HSP expression

The cellular response to HS is one of the HS response components
to maintain thermo-balance when an animal’s microenvironment
ventures outside its thermoneutral zone.** Gene networks within
and across cells and tissues respond to HS through intracellular and
extracellular signals with gene expression changes in which activation
of heat shock transcription factor (HSF1) and increased expression
of HSP have been widely studied in most of the organisms including
bovine, cattle and mice.” Upon heat stimulus, the HSF1 monomer
previously bound to HSP during unstressed condition in the cytoplasm,
get dissociated and bind with other HSF monomers for trimerization
before their nuclear translocation. The HS target gene transcription
gets activated with the binding of the homotrimeric HSF on HS
element (HSE) in the nucleus and hyperphosphorylation resulting in
enhanced expression of HSP Mrna.!* The HSF1 which was previously
associated with only the HSP regulation has now been associated with
carbohydrate metabolism, transport, cytoskeleton, and ubiquitination
during HS.** The bio-synthesis and chaperonic functioning of HSPs
is an energy seeking process, which requires a trade off between heat
tolerance and metabolic energy for growth and reproduction.’>*¢ Thus
itrequires a certain threshold level of temperature above which the HSP
expression will be induced on different livestock species dwelling in
different tidal zones which showed different HSP expression.***” Three
related activities are involved usually in the functioning of HSP70 in all
organisms: prevention of aggregation of proteins, facilitating folding
of misfolded to the native state, and solubilization and refolding of
aggregated proteins.” ATP binding and hydrolysis are necessary for
the chaperonic activity of HSPs where co-chaperones of the family
of J-domain proteins, which target HSP70s to their substrates, and
by nucleotide exchange factors, which determine the lifetime of the
HSP70-substrate complex will control the ATPase cycle.? HSP70
homologs along with chaperons of HSP100 family (Hsp104/ClpB)
promotes the solubilization of the protein aggregates and ensuring
refolding into thenative state. A negative correlation between HSP70
expression and HSF1 activity with milk production during summer
and winter was clearly reported in an experiment on buffaloes
subjected to HS, indicating the induced expression of genes to cope
up with the metabolic load resulting in reduced milk production.*® In
Saccharomyces cerevisiae, Caenorhabditiselegans, and Drosophila,
only a single HSF is expressed, whereas al teast four members of HSF
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gene family get expressed in vertebrates and plants and three HSFs
(HSF1, HSF2, and HSF4) has been characterized in humans.**** Goose
HSP70 plays an important role during HS with over expression of
HSP70 and corticosterone level which also showed gender and tissue
specificity in this species.*! The HSP70 gene sequences (HSPAS,
HSPAG6, HSPA1A, HSPAIL, and HSPA2) are highly conserved and
shared a high similarity (up to 91%) in goats with heat shock proteins
of other mammals. Nucleotide sequence of goat HSP70 genes were
observed to be similar with cow and pig followed by horse, camel
and human, indicating a close evolutionary relationship among
HSP70 family genes.” Figurel describes the cellular and molecular
mechanisms of heat stress emerging in the production of HSPs.

Types of HSPs studied in livestock during HS

Based on the molecular weight and biological functions, HSPs
is classified as HSP 110, HSP100, HSP90, HSP70, HSP60, HSP40,
HSP10, and small HSP families, of which thermo-tolerance
development is mainly correlated with HSP70 and HSP90 in livestock
species.!*** HSP70 namely, HSP70-1 and HSP70-2is reported to be
the most abundant and temperature sensitive.** In farm animals,
elevation in HSP70 and HSP90 was observed in sheep, buffalo, cattle,
broilers and goats."#**° The highest level of plasma HSP70 and PBMC
HSP70 mRNA transcript expression was reported in Osamanabadi
goats exposed to heat and nutritional stress as compared to the control
goat which was maintained in the shed and fed ad libitum.> The HSP70
along with HSP27 and HSP90 proteins is observed to be anti-apoptotic
in mammalian cells.”® Cytoprotective function of HSP70 has been
established in many organs such as intestine, kidney and embryo of
cattle.’! The HSP70 is one of the most abundant HSP family playing a
crucial role in environmental stress and thermal adaptation in goat.*>3
Increased expression of many HSPs including HSP32, HSP40, HSP60,
HSP70, HSP90, HSP110 and many others are also observed in goat
during hyperthermic stress.'>>% The HSP25, HSP90AA1, HSPA2
were found to show overexpression in heat-stressed chickens.** The
concentration of HSP70 in serum lymphocytes of Murrah buffalo
was found to be high following dry heat exposure compared with
controlled condition.* Significantly higher expression values of HSP
70 was seen in buffalo during summer season (2.37+0.12) compared
to winter (0.29+0.04).%° The association between inducible HSP70.1
single nucleotide polymorphisms (SNPs) and the HS response of
peripheral blood mononuclear cells, (PBMC) was studied in dairy
cows by genotyping 446 Italian Holstein cows.** The presence of
SNPs in the 5-UTR region of inducible HSP70 showed amelioration
of heat stress response and tolerance to heat stress in bovines. These
mutation sites would be serving as the appropriate molecular genetic
markers for thermal tolerance. The differential rate of HSP mRNA
expression was observed between Bos indicus and Bos taurus
embryos produced in vitro subjected to HS.” The HSP27 expression
was found to be upregulated in beef cattle which was stressed by
high-density housing and given indoor concentrate grazing.’ It has
been reported that serum HSP-70 levels increased in poultry subjected
to HS and also indicated that the decrease in spermatagonic cells in
testis of the stressed group is due to the repression in HSP-70 levels.”
The HSPA1A was up-regulated following HS in Sahiwal heifer.® A
strong relationship was also established between chicken and HSP
70 genotypes during heat resistance and several studies revealed
that there are some polymorphism sites that can be effectively used
to identify the heat tolerant trait in chicken respectively.®'-** Table 1
describes the different HSPs in farm animals.

Citation: Archana PR, Aleena J, Pragna P, et al. Role of heat shock proteins in livestock adaptation to heat stress. | Dairy Vet Anim Res. 2017;5(1):13—19.

DOI: 10.15406/jdvar.2017.05.00127


https://doi.org/10.15406/jdvar.2017.05.00127

Role of heat shock proteins in livestock

adaptation to heat stress

Copyright:
©2017 Archana et al. 6

LIVESTOCK ADAPTATION MECHANISMS

Behavi

oural Neuro-

Response endocrine

Cellular
&Molecular

| ]

Physiological Metabolic Blood
Response Response Biochemical
| —

Cellular damage & protein

denaturation

Heat Shock
Response
Heat shock
protein

HSE  HSFs  HSPs

Misfolding and
Misaggregation

]

Reduced Immunity

Immuno

Prevention of misfolding and

misaggregation

Cellular Adaptation J

(

Homeostasis of cell ]‘
J

Figure | Describes the cellular and molecular mechanisms emerging in production of HSPs.

Table | Different HSPs studied in fa

rm animals

Type of

Species HSP Organ/Blood Reference
Italian Holstein HSP70. | PBMC 3

cows

Cattle HSP70 Intesine, kidney and

embryo

Tarai buffalo HSP 70 Serum lymphocytes ¢
Osamanabadi | qp7g Plasma and PBMC

goats

Beef Cattle HSP27 Skeletal Muscle 58

Sahiwal heifer HSPAITA

Chicken HSP70
Nellore and HSP70
Jersey

Murrah buffalo HSP70

HSP25,
Broiler HSP90AAL,
HSPA2

Testes

Brain

Embryo

Serum lymphocytes

Plasma

60

6l

57

55

HSP gene: expression and characterization

The molecular characterization of HSP70-1 gene in goat revealed
that at nucleotide level, there was 96-99% similarity with that of
sheep, cattle, and buffalo whereas 95-100% similarity at amino acid
level.'” Sequence analysis in the same study reported that there is
1926-bp-long open reading frame of HSP 70-1 gene encoding 641
amino acids in goat, as reported in cattle. The 5” flanking region of
HSP 70 gene in Zebu cattle of Hariana breed was characterized for cis-
acting sites which, when compared with that of Taurus cattle revealed
that promoter variation may not be the source of the difference in
expression level of HSP70. They confirmed this based on non-
significant changes in the HSP70 promoter region between these
breeds suggesting that the promoter variation may not be the source of
the difference in expression level of HSP 70 in zebu and Taurine cattle
types.® However other reports suggests that the polymorphism in the
promoter region as a reason for the variation in HSP70 mRNA, HSF1
mRNA expression level, and apoptosis and hence these mutation sites
can yield as useful genetic molecular markers against HS in cow.®
In addition, there are variations reported in HSPB6 gene in Sahiwal
cattle which might be used for obtaining better thermo-tolerance
capacity.®® The amino acid sequence analysis of HSP70 in buffalo
lymphocytes showed 98% identity with Bos taurus, Bos indicus,
Yak, Capra hircus and 90-95% identity with Camelus dromedaries,
Feliscatus, Canisfamiliaris, Sus scrofa, and Homo sapiens and it
reported 1,926bp long open reading frame of HSP70 gene encoding
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641 amino acids in buffalo.*” The expression levels of HSP70
mRNA in all tissue of goose (except the leg muscle and cerebellum)
were found to be significantly higher in male geese than in female,
indicating the greater thermo-resistance in female geese. Further, it
was reported that the absence of introns in goose HSP70 and in the
same study they did a correlation analysis of SNPs for immune and
biological traits which showed that there was a significant correlation
of T+237C with serum corticosterone level and T+1122C with the
heterophil to lymphocyte ratio.*!

Functions of HSPs

One of the first physiological functions associated with the
stress-induced accumulation of the inducible Hsp70 was acquired
thermotolerance which is defined as the ability of a cell or organism
to become resistant to HS after a prior sublethal heat exposure.®
The HSP70 has been suggested to function as an indicator of
thermotolerance in cells.’”*8 Elevated levels of HSP was reported
during exposure to different environmental stresses including heat,
cold, infection, inflammation, exercise, exposure of the cell to toxins
(ethanol, trace metals, and among many others), starvation, hypoxia
(oxygen deprivation), or water deprivation.* Though a generalized
mechanism of stress-induced production of HSP is present in all cells,
there will be difference in the capacity of individual animals to cope
with the stress, along with the nucleotide changes occurring naturally
in the flanking regions 5'- and 3'-untranslated region (UTR) of HSP
gene resulting variation in inducibility, degree of expression, and/or
stability of Hsp70 mRNA, which again contributes to different stress
tolerance in individual animals.® There were also investigations done
to study the association between SNPs in HSP70 in bovine® and
swine.” Earlier there were also studies which revealed the association
between SNPs in HSP with respiration rate and body temperature.*’!
The increased HSP70 expression was also associated with shorter
productive life of cattle and reproductive parameters including
pregnancy rate, calf weaning weights and fertility in dairy cattle’ "
which in whole indicated the significance of SNPs at promoter
elements of HSP70 that can be used as one of the reference to be
added for selecting dairy cattle in terms of thermo adaptability.®

Studies revealed that HSPs play regulatory roles in various types
of immunity.> It was studied that the augmentation of HSP-derived
peptides in buffalo lymphocytes increased the innate and adaptive
immune effectors.”® In the recent years, there have been several
studies suggesting the role of HSP70 in the induction of antitumor
immunity by inducing production of chemokines from tumor cell and
activation of the chemoattracted dendritic cells via the TLR4 pathway
based on experiments done in mice.”® It was reported that HSP70
(including HSP70i and HSC70) would be the major HSP responsible
for the autocrine induction of chemokines from tumor cells. A class of
proteins termed as acute phase proteins (APP) which changes its serum
concentration by >25% in response to inflammatory cytokines (IL-1,
IL-6, TNFa ) is being used as biomarker for immune/inflammatory
stress in ruminants both in experimental and field conditions although
there is lack of specificity to individual stress.”” Further, Haptoglobin
(Hp), an APP is considered as a potential biomarker during thermal
stress in cattle.”’ The welfare status of calves in production systems
can be reported on more accurately with accurate determination
of effector molecules like APP.”7 Over-expression of HSP70 and
TNF-a and suppression of IFN-g, and genes involving nucleotide-
binding oligomerisation (NOD) domain receptor pathways in bovine
leukocytes is reported during HS in calves.” It has been reported that
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the digestive enzyme activity significantly increases through over-
expression of HSP 70 in broiler that may improve intestinal digestion
and absorption function under acute HS, though no changes in
morphology conditions in intestine were observed and further studies
have revealed that glutamine supplementation enhanced in HSP70
protein or mRNA expression during thermal stress.”

In recent years there have been studies on the role of HSPs in
early embryonic development and reproductive efficiency, both In
vitro and In vivo, which can be used for developments in production
agriculture. In Holstein cows, differences in HSP40 genes have been
reported which can be attributed to the improved early embryonic
development /n vitro, indicating that these proteins may have a greater
role in reproductive efficiency, even in animals that are not adapted to
the tropical environment conditions.” The reproductive performance
difference has been identified in Bos indicus breeds which have been
associated with polymorphism in HSP70.7>7

Conclusion

The cellular response is one of the primary pathway by which
livestock tries to cope up to the heat stress challenges. This is the
pathway that helps the animal to survive the stress condition. The
end product of this pathway is the synthesis and release of HSPs.
The components involved in heat shock response are: HSF, HSE and
HSP. The most commonly studied HSPs in farm animals are HSP70,
HSP90 and HSP27. Of all these HSPs studied, HSP70 was identified
to be the ideal biological marker for heat stress in farm animals.
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