The effects of always increasing cardiovascular risk factors may characterize the environment, the health status undoubtedly are prevailing [11]. Thus, this is an evident proof associated with disease, hypertension and heart disorders due to metabolic factors what observed in other geographical areas, where ischemic heart disease, Protozoa and Metazoa, with a significant major rate compared to Asian, Australian and African continents as well as the Pacific and subtropical regions around a circled area involving American, ventilated, evidence indicates a lower pollutant concentration. It is worth noting that an environment is structurally formed by outdoor and indoor spaces and, therefore, the pollution depends on its characteristics. When the spaces are widely ventilated, evidence indicates a lower pollutant concentration. Geographically, unhealthy climates have been demonstrated to determine a higher rate of infectious heart disease [10]. Tropical and subtropical regions around a circled area involving American, Asian, Australian and African continents as well as the Pacific and Indian oceans show cardiovascular alterations primarily due to Protozoa and Metazoa, with a significant major rate compared to what observed in other geographical areas, where ischemic heart disease, hypertension and heart disorders due to metabolic factors are prevailing [11]. Thus, this is an evident proof associated with the role of the environment.

When individuals’ habit is associated with some specific characteristics of the environment, the health status undoubtedly meets outcomes able to further impair cardiovascular system. The effects of always increasing cardiovascular risk factors may be clearly explained in this way. Cardiovascular disease may be considered as a condition able to change the lifestyle of the individuals and environment characteristics being, in its turn, strongly influenced by these factors. A topic to be taken into account is the relationship between environment and some genetic factors for the cardiovascular disease.

A large number of factors, primarily derived from chemical industries pollute the atmosphere and, so doing, adversely influence individuals’ health including heart and blood vessel welfare. Fine particulate air pollution is a risk factor for cause-specific cardiovascular disease mortality via mechanisms that likely include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic function [8]. Cigarette smoking, one of the powerful air pollutant, exerts harmful effects on the cardiovascular system by those chemical compounds given out to the atmosphere [9].

It is worth noting that an environment is structurally formed by outdoor and indoor spaces and, therefore, the pollution depends on its characteristics. When the spaces are widely ventilated, evidence indicates a lower pollutant concentration. Geographically, unhealthy climates have been demonstrated to determine a higher rate of infectious heart disease [10]. Tropical and subtropical regions around a circled area involving American, Asian, Australian and African continents as well as the Pacific and Indian oceans show cardiovascular alterations primarily due to Protozoa and Metazoa, with a significant major rate compared to what observed in other geographical areas, where ischemic heart disease, hypertension and heart disorders due to metabolic factors are prevailing [11]. Thus, this is an evident proof associated with the role of the environment.

When individuals’ habit is associated with some specific characteristics of the environment, the health status undoubtedly meets outcomes able to further impair cardiovascular system. The effects of always increasing cardiovascular risk factors may be clearly explained in this way. Cardiovascular disease may be considered as a condition able to change the lifestyle of the individuals and environment characteristics being, in its turn, strongly influenced by these factors. A topic to be taken into account is the relationship between environment and some genetic factors for the cardiovascular disease.

A large number of factors, primarily derived from chemical industries pollute the atmosphere and, so doing, adversely influence individuals’ health including heart and blood vessel welfare. Fine particulate air pollution is a risk factor for cause-specific cardiovascular disease mortality via mechanisms that likely include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic function [8]. Cigarette smoking, one of the powerful air pollutant, exerts harmful effects on the cardiovascular system by those chemical compounds given out to the atmosphere [9].

It is worth noting that an environment is structurally formed by outdoor and indoor spaces and, therefore, the pollution depends on its characteristics. When the spaces are widely ventilated, evidence indicates a lower pollutant concentration. Geographically, unhealthy climates have been demonstrated to determine a higher rate of infectious heart disease [10]. Tropical and subtropical regions around a circled area involving American, Asian, Australian and African continents as well as the Pacific and Indian oceans show cardiovascular alterations primarily due to Protozoa and Metazoa, with a significant major rate compared to what observed in other geographical areas, where ischemic heart disease, hypertension and heart disorders due to metabolic factors are prevailing [11]. Thus, this is an evident proof associated with the role of the environment.

When individuals’ habit is associated with some specific characteristics of the environment, the health status undoubtedly meets outcomes able to further impair cardiovascular system. The effects of always increasing cardiovascular risk factors may be clearly explained in this way. Cardiovascular disease may be considered as a condition able to change the lifestyle of the individuals and environment characteristics being, in its turn, strongly influenced by these factors. A topic to be taken into account is the relationship between environment and some genetic factors for the cardiovascular disease.
References


