Anaplasmataceae Subversion of the Lysosomal Activity

Abstract
Pathogenic bacteria belonging to the family Anaplasmataceae include species of the genera Ehrlichia, Anaplasma and Neorickettsia. These bacterial obligate intracellular parasites have evolved diverse mechanisms for evasion of host cellular defenses. One of these mechanisms involves adaptations for survival in distinct intracellular compartments that allow their replication in seclusion from lysosomal killing. Here, I review the intracellular niches inhabited by these obligate intracellular parasites such as: arrested early endosomes, lysosomes, and vesicles that do not fuse with the endosomal compartment but intersect with an exocytic pathway.

Keywords: Anaplasmataceae; Intracellular niches; Lysosomal evasion; Cell markers

The Different Members of the Anaplasmataceae Family
Obligate intracellular bacteria with unique host cell specificities, such as members of the family Anaplasmataceae, have developed several mechanisms to ensure immune evasion of host cellular defenses. These mechanisms involve adaptations for survival and replication within nonlysosomal 4. intracellular vacuoles which are nothing more than host cell membrane-bound inclusions called morulae [1]. This is particularly important for these bacteria because they exclusively reside in professional phagocytes that have as their main function the destruction of engulfed bacteria through lysosomal degradation [2,3].

The better known bacteria whose cytoplasmic inclusions do not fuse with lysosomes and which are currently included in this family are Ehrlichia spp, Anaplasma spp. and Neorickettsia spp. [4-6]. Members of the genus Ehrlichia are increasingly being recognized as pathogens of human disease in the United States and other parts of the world. Two emerging infectious diseases, human monocytic ehrlichiosis (HME) caused by Ehrlichia chaffeensis and human granulocytic ehrlichiosis (HGE) caused by Anaplasma phagocytophilum (formerly E. equi and HGE agent), have only been recognized over the last few years [1,7]. Beyond that, the global canine pathogen Ehrlichia canis has been isolated from a human in Venezuela, and several patients with clinical signs similar to HME were found to be infected with E. canis at the same country [8,9].

Intracellular Niches and their Cellular Markers
Caveolae- or lipid raft-mediated endocytosis is a vesicle trafficking system that bypasses phagolysosomal pathways, and is thus utilized by a wide variety of pathogenic microorganisms to invade host cells [10]. The entry and intracellular infection of E. chaffeensis and A. phagocytophilum involve cholesterol-rich lipid rafts or caveolae and glycosylphosphatidylinositol (GPI)-anchored proteins [11]. Moreover E. chaffeensis and A. phagocytophilum inclusions were not colocalized with CD63 or LAMP-1 (lysosome-associated membrane protein-1), lysosomes membrane glycoproteins, wich can be used as markers of lysosomal fusion.

Journal of Bacteriology & Mycology: Open Access
Volume 6 Issue 1 - 2018

Rosiane Nascimento Alves*
Biomedical Sciences Institute, Federal University of Uberlândia, Brazil

*Corresponding author: Rosiane Nascimento Alves,
Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Umuarama, 38400-902, Uberlândia-MG, Brazil, Tel: +55 (34) 3225-8481;
Email: rosiane.alves@ufu.br

Received: August 01, 2017 | Published: January 22, 2018
labelling for acid phosphatase activity in cells not treated with the antibiotic oxytetracycline. Once treated, the cells showed a significant increase in the co-localisation of lysosomal markers and vacuoles that contains the bacteria, suggesting that this drug affect the ability of these bacteria to inhibit lysosomal fusion [6,14]. Therefore inhibition of ehrlichial protein synthesis by oxytetracycline causes a failure to inhibit the maturation of endosomes to lysosomes, with resultant destruction of the parasites. Similarly, Alves et al. [15] demonstrated that intact cytoplasmic inclusions of *E. canis* are rarely labelled with acid phosphatase compared to deteriorated inclusions suggesting that the spreading process of *E. canis* in vitro is dependent on lysosomal evasion. These data indicate that inactive or dead intracellular microorganisms lose their ability to inhibit phagosome-lysosome fusion. Another study showed that lysosomal proteins such as cathepsin D, cathepsin S, and lysosomal acid phosphatase were not detected in *E. chaffeensis* phagosome preparations by proteomics methods [2]. Moreover, the inhibition of lysosomal fusion is specific to parasitophorous vacuoles, as intracellular *N. risticii* or *A. phagocytophilum* or *E. chaffeensis* do not inhibit lysosomal fusion with phagosomes containing latex particles ingested by the same cell [2,6,14].

Despite the above mentioned studies demonstrated that Ehrlichia-containing vacuole (ECV) does not fuse with lysosomes, an essential condition for Ehrlichia to survive inside phagocytes, the mechanism of inhibiting the fusion of the phagosome with lysosomes is not clear. Thus, Cheng et al. [2] detected Rab7, a late endosomal marker, in *E. chaffeensis* phagosomes by proteomic and immunofluorescence analysis. Beyond that these phagosomes were acidified at approximately pH 5.2, suggesting that the *E. chaffeensis* vacuole was a late endosome. Thereby, *E. chaffeensis* vacuoles were capable of fusing with early endosomes and maturing into late endosomes, without lysosome fusion. This phenomenon by which *E. chaffeensis* inhibits phagosome-lysosome fusion is to modify its vacuolar membrane composition, rather than by regulates the expression of host genes involved in trafficking.

Conclusion

Despite being based on different strategies according to the member of the family Anaplasmataceae, the evasion of lysosomal fusion by ehrlichial inclusions is fundamental to the survival and replication of this pathogen. Additional analyses of the ECV molecular composition could decipher the mechanism by which Ehrlichia inhibits phagosome-lysosome fusion in the host cell and may facilitate the development of new therapeutic strategies.

Acknowledgement

None.

Conflict of Interest

The author declares no conflict of interest.

References

Citation: Alves RN (2018) Anaplasmataceae Subversion of the Lysosomal Activity. J Bacteriol Mycol Open Access 6(1): 00170. DOI: 10.15406/jbmoa.2018.06.00170