Introduction

Probiotics are live microorganisms that an appropriate amount of them may lead to a host of health situation. The probiotics are mainly members of the genera Lactobacillus and Bifidobacterium and Saccharomyces. There is much evidence about the role of probiotics in the prevention of disease. In vitro and in vivo studies have shown antibacterial effects of probiotic bacteria. Antimicrobial effect of probiotics due to produce organic acids, antimicrobial peptides such as bacteriocin and H$_2$O$_2$. Probiotics are used for treating intestinal diseases, including infectious diarrhea, antibiotic-associated diarrhea, atopic disease, necrotizing enterocolitis, ulcerative colitis, and irritable bowel syndrome, and extra intestinal diseases, such as allergy. Recent studies have demonstrated the particular genes and substances of probiotics can regulate the immune system in humans and animals. Hence probiotics have the ability to cure diseases that are related to immune response, like a viral infection. Thus, it is important to study the interaction between probiotics and immune system to understand the way that they can help to cure diseases [1].

Studies have revealed that microbiota has a significant role to form host physiology and immunomodulatory response. It has specified that the alteration in the number of viable cells of L. plantarum can cause various diseases like, obesity, diabetes and even liver cirrhosis. Recently, the role of probiotics in order to treatment of H. pylori which can cause gastrointestinal disease is determined as complement or alternate to antibiotics. An example for human microbiota is Lactobacillus bacteria. They are a genus of Gram-positive bacteria [2]. In this regard, L. plantarum ZDY 2013 has gained from traditional Chinese fermented soybeans as probiotic has an antimicrobial features in vitro. The results have demonstrated the use of L. plantarum ZDY 2013 can prevent from gastric inflammation by H. pylori [3].

Probiotics Promote Immunomodulation Against Viral Infections

One of the advantages of probiotics is protection against viral diseases. For instance, internasal inoculation of mice with active or inactive probiotics (L. reuteri or L. plantarum) has decreased the need of granulocyte, production of several cytokines and decreased viral activity. Also, mice with probiotic could resist to viral agents, pneumonia virus, and dangerous pathogens. Finally, it proves that the use of L. plantarum HEAL9 and L. paracasei 8700 for a period (three months) could decrease probability to have the cold infections in healthy individuals [4,5].

The role of L. plantarum ZDY 2013 and L. fermentum UCO-979C in order to eradicate bacterial infection such as H. pylori by the immunomodulatory response:

The reports have shown an increase of pro-inflammatory cytokine expression in the gastric mucosa has occurred in the patients who are suffering from H. pylori. In this regard, the individual immune response has an important effect on the development of serious diseases after H. pylori infection. In addition the regulation of H. pylori-induced inflammation can stop the chronic gastric inflammation and cancer. Many reports have indicated the impact of probiotics on the immunomodulatory system to cure individuals with H. pylori infection efficiently. For instance, the study has shown pretreatment with L. plantarum ZDY 2013 can prevent from gastric mucosal inflammation. In fact, stimulation and release Th1/Th17 cell response in the gastric mucosa is one of the significant factors to H. pylori pathogenesis. In this study the great amount of inflammatory cytokine RNA for IFN-γ, IL1β and IL17 has been obtained after 6 weeks, though in the LP+HP group (LP+HP=normal chow diet with 400μl of viable cells of L. plantarum ZDY 2013), the increase in the level...
of mRNA which is related to IL1β and IFN-γ has been stopped. It can be inferred from this research that L. plantarum ZDY 2013 pretreatment could prevent Th1 cell response by H. pylori infection [6].

Another study has revealed L. fermentum UCO-979C can decrease the production of inflammatory chemokine IL-8 by H. pylori infection in the human gastric epithelial cells. It shows the beneficial effect of probiotics on the immunomodulatory system. Additionally, L. fermentum UCO-979C which has obtained from the human gut can inhibit the function of H. pylori by regulating the immune system [7].

Conclusion

Recent evidence reveals the impact of probiotics on the regulation of host homeostasis, involving immune health in humans. Also, the use of probiotics can protect the host against infection, reduce harmful bacteria, and stimulate immune response. However, more researches should be done to show the accurate probiotic mechanism to apply them better for clinical purpose [8-11]. As we can see in the recent studies, microbiota like L. plantarum ZDY 2013 and L. fermentum UCO-979C have a great impact on the constraint of production of pro-inflammatory cytokines by H. pylori infection. In conclusion, these microbiotas can regulate the immune system and they have improved the interventional procedure in the patients who have the H. pylori infection.

Acknowledgment

None.

Conflict of Interest

None.

References