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Introduction
The mechanism underlying the functions of non-protein coding 

RNAs (ncRNAs or npcRNAs) that have no or little protein-coding 
potential is a fascinating area of research.1 Based on transcript length, 
ncRNAs are classified as short (<200 nt) and long ncRNAs (lncRNAs; 
>200 nt). The recent high-throughput analysis such as cDNA/EST 
in silico mining, whole-genome tilling array and RNA-sequencing 
(RNA-seq) has revealed that the transcription landscape in eukaryotes 
is much more complex than had been expected.2–4 Transcriptome 
analysis estimates transcripts cover 90% of eukaryotic genome.5 
These approaches have facilitated the identification of thousands of 
novel ncRNAs (or npcRNAs) in many organisms, such as humans, 
animals, and plants.6–9

LncRNAs are arbitrarily defined as RNA transcripts that contain 
>200 nt but lack protein coding-potential which are transcribed 
by RNA polymerase II or III, and additionally, by polymerase 
IV/V in plants.10–12 They are processed by splicing or nonsplicing, 
polyadenylation or non-polyadenylation, and can be located in the 
nucleus or cytoplasm. The researches have revealed that lncRNAs 
may represent alternatively spliced forms of known genes,13 products 
of antisense RNAs,14–17 double stranded RNAs,18 retained introns,13,19 
short open reading frame.1,20,21 RNA polymerase III-derived RNAs22 
and RNA decoys mimicking miRNA targets.23

Discovery of lncRNAs

In 1990s, H19 and Xist (X-inactive specific transcript) lncRNAs 
were discovered by using traditional gene mapping approaches.24–16 
In the later years, HOTAIR (HOX antisense intergenic RNA) and 
HOTTIP (HOXA transcript at the distal tip) were discovered by 
using tilling arrays in the homeobox gene regions (HOX clusters).27,28 
Using genome-wide approach, 1600 novel mouse lncRNAs have been 
identified by Guttman et al.8 Since then, thousands of lncRNAs have 
been determined using similar genome-wide approaches in human, 
mouse and plants.29–32

Novel lncRNAs can be detected and discovered by both 
experimental (next generation sequencing, NGS, technologies) and 
computational screenings.33-35 First, the fragments of transcripts are 
obtained by using NGS technologies or tilling microarrays. Then, the 
transcripts sequences are mapped to the reference genome and identified 
transcribed units of the RNAs. The criteria for discriminating between 

coding and non-coding sequences of RNAs are based on similarity 
to known coding sequences or statistics of codon frequencies for 
coding potential.36 Typically, BLASTX is most commonly used tool 
for known sequence similarity detection.37 Alternatively, HMMER3 
help to determine homologous domains in protein data to eliminate 
transcripts with protein-coding potential.38 However, there is much 
more alternative tools for evaluating coding potential. The most used 
tools are CPC (Cording-Potential Calculator)39 and PORTRAIT40 use 
pair wise comparisons; in contrast, PhyloCSF41 and RNAcode42 use 
multiple alignments. Another popular approach, Coding Potential 
Assessment Tool, also uses an alignment-free logistic regression 
model.43 Except these computational approaches, experimental 
methods such as ribosomal profiling have been utilized to compute 
the protein coding capacity of lncRNAs based on the periodicity of 
ribosome occupancy along the short translated ORFs.44

About 1600 novel mouse lncRNAs have been identified by 
genome-wide approach which used gene expression data and the 
presence of chromatin marks for promoter regions.8 Combination of 
chromatin marks and RNA-seq data sets have been used to generate 
the human long intervening non-coding (lincRNA) catalog which 
comprise 8000 lincRNAs from 24 different human cell types and 
tissues.45 More than 13,500 human lncRNAs have been annotated by 
GENCODE and also, datasets from the 1000 Genomes Project have 
been utilized to reveal the association between lncRNAs and prostate 
cancer.30,46 Cunnington et al. have reported the association between 
56 lncRNAs and disease related to traits ranging from diabetes to 
multiple sclerosis, Alzheimer’s disease, etc.47 Both computational 
and experimental analyses have shown that 125 putative stress 
responsive lncRNAs in wheat were tissue-specific and can be induced 
by powdery mildew infection and heat stress.48 In addition, Zhang et 
al.15 systematically identified 2224 lncRNAs by performing strand-
specific RNA sequencing of rice anthers, pistils, seeds, and shoots 
and combining with the analysis of other available rice RNA-seq 
datasets.32

Classification of lncRNAs

lncRNAs are classified based on several properties such as 
transcript length, sequence and structure conservation, genomic 
location, functions exerted on DNA or RNA, functioning mechanisms, 
and targeting mechanisms, association with annotated protein coding 
genes or repeats or biochemical pathway or stability or subcellular 
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structures.49,50 Besides lots of criteria for lncRNA classification, the 
most commonly used attributes are their size, localization and function. 
Typically, the threshold value is 200 bases for length discrimination 
of ncRNAs. Fewer than 200 bases are considered as small ncRNAs 
and more than 200 bases are classified as long ncRNAs.51After length 
size discrimination, genomic locations of lncRNAs are also popular 
for classifying. According to GENCODE for their genomic locations, 
lncRNAs are classified into five groups:

I.	 Antisense lncRNAs, which are transcribed from the antisense 
strand, intersect any exon of a protein-coding locus on the opposite 
strand, or published evidence of antisense regulation of a coding 
gene. Their transcription was found to be overlap genes related 
to condition specific or the stress response. It is considered that 
antisense lncRNAs, which involve genome imprinting, regulation 
of alternative splicing and translation, exert their function as on-
off switch for these genes.52–54

II.	 Sense lncRNAs are trancribed from sense strand of protein-
coding genes that overlapping transcripts contain a coding gene 
within an intron on the same strand.

III.	 Intronic transcripts reside within introns of a coding gene, 
which do not have exon-exon overlapping, is defined as sense 
intronic lncRNAs. Differential expression studies demonstrated 
that expression levels of intronic lncRNAs and their biological 
variation during a physiological time course, or among different 
individuals of the same strain are tightly correlated with their 
adjacent exons.55

IV.	 Long intervening non-coding RNAs with a length >200 bp, are 
also called long “intergenic” non-coding RNAs, do not overlap 
exons of either protein coding and lies within the genomic interval 
between two genes. Approximately 20% of lincRNAs are found 
to be bound by polycomb repressive complex 2 (PRC2) or other 
chromatin-modifying complexes which indicated that they play 
role as enhancer-like functions by guiding chromatin-modifying 
complexes to specific genomic loci, transmitting information from 
higher order chromosomal looping into chromatin modifications 
to coordinate long-range gene activation.28,56

V.	 Processed transcript which do not have any open reading frame 
(ORF) and also, cannot be placed in any type of categories.57 In 
addition to GENCODE classification, extra two categories are also 
emerged as bidirectional and enhancer lncRNAs. Bidirectional 
lncRNAs, which are tending to be highly conservative, are 
expressed within 1 kb of promoters in the opposite direction 
from the neighboring protein-coding gene.58,59 Several studies 
showed that bidirectional lncRNAs are associated with 
transcriptional regulatory genes implicated in cell differentiation 
and development.60 Enhancer lncRNA (elncRNA or eRNA), 
which are generally <2 kb, is transcribed from enhancer regions 
of the genome and may contribute to enhancer function.59 eRNAs 
have been found to exert their functions in chromatin looping and 
long-range gene activation, playing an important role in system 
development and the formation of homeostasis.61,62

Conclusion
LncRNAs play important roles in a numerous biological processes 

as regulatory factors. Functional analyses of lncRNAs have indicated 
that they are effective cis- and transregulators of gene transcription, 
and also act as scaffolds for chromatin-modifying complexes. 
Nowadays, lncRNAs are considered as major regulators involved 

in numerous cellular processes, including cell differentiation and 
development, chromosome dosage compensation, cell cycle control 
and adaptation to environmental changes.63–65 Our group has been 
investigating the association between salinity stress metabolism and 
barley lncRNAs (unpublished data). Identification of novel lncRNAs 
is likely to provide new insight into the complicated gene regulatory 
network involving lncRNAs, provide novel diagnostic opportunities, 
and pinpoint novel therapeutically targets.
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