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New player of ncRNAs: long non-coding RNAs

Abstract

Long non-coding RNAs (IncRNAs) play important roles in a wide range of biological
processes as regulatory factors at the epigenetic, transcriptional and post- transcriptional
levels. In this review, we summarized the current knowledge of IncRNAs discoveries

including their identification, classifications and functions.
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Introduction

The mechanism underlying the functions of non-protein coding
RNAs (ncRNAs or npcRNAs) that have no or little protein-coding
potential is a fascinating area of research.! Based on transcript length,
ncRNAs are classified as short (<200 nt) and long ncRNAs (IncRNAs;
>200 nt). The recent high-throughput analysis such as cDNA/EST
in silico mining, whole-genome tilling array and RNA-sequencing
(RNA-seq) has revealed that the transcription landscape in eukaryotes
is much more complex than had been expected.>* Transcriptome
analysis estimates transcripts cover 90% of eukaryotic genome.’
These approaches have facilitated the identification of thousands of
novel ncRNAs (or npcRNAs) in many organisms, such as humans,
animals, and plants.®”

LncRNAs are arbitrarily defined as RNA transcripts that contain
>200 nt but lack protein coding-potential which are transcribed
by RNA polymerase II or III, and additionally, by polymerase
IV/V in plants.!!? They are processed by splicing or nonsplicing,
polyadenylation or non-polyadenylation, and can be located in the
nucleus or cytoplasm. The researches have revealed that IncRNAs
may represent alternatively spliced forms of known genes,'* products
of antisense RNAs,'*'7 double stranded RNAs,'® retained introns,'>"
short open reading frame."**?! RNA polymerase IlI-derived RNAs?
and RNA decoys mimicking miRNA targets.?

Discovery of IncRNAs

In 1990s, H19 and Xist (X-inactive specific transcript) IncRNAs
were discovered by using traditional gene mapping approaches.* ¢
In the later years, HOTAIR (HOX antisense intergenic RNA) and
HOTTIP (HOXA transcript at the distal tip) were discovered by
using tilling arrays in the homeobox gene regions (HOX clusters).?”
Using genome-wide approach, 1600 novel mouse IncRNAs have been
identified by Guttman et al.® Since then, thousands of IncRNAs have
been determined using similar genome-wide approaches in human,
mouse and plants.?3?

Novel IncRNAs can be detected and discovered by both
experimental (next generation sequencing, NGS, technologies) and
computational screenings.®** First, the fragments of transcripts are
obtained by using NGS technologies or tilling microarrays. Then, the
transcripts sequences are mapped to the reference genome and identified
transcribed units of the RNAs. The criteria for discriminating between

coding and non-coding sequences of RNAs are based on similarity
to known coding sequences or statistics of codon frequencies for
coding potential*® Typically, BLASTX is most commonly used tool
for known sequence similarity detection.’’” Alternatively, HMMER3
help to determine homologous domains in protein data to eliminate
transcripts with protein-coding potential.*® However, there is much
more alternative tools for evaluating coding potential. The most used
tools are CPC (Cording-Potential Calculator)* and PORTRAIT* use
pair wise comparisons; in contrast, PhyloCSF* and RNAcode* use
multiple alignments. Another popular approach, Coding Potential
Assessment Tool, also uses an alignment-free logistic regression
model.#® Except these computational approaches, experimental
methods such as ribosomal profiling have been utilized to compute
the protein coding capacity of IncRNAs based on the periodicity of
ribosome occupancy along the short translated ORFs.*

About 1600 novel mouse IncRNAs have been identified by
genome-wide approach which used gene expression data and the
presence of chromatin marks for promoter regions.® Combination of
chromatin marks and RNA-seq data sets have been used to generate
the human long intervening non-coding (lincRNA) catalog which
comprise 8000 lincRNAs from 24 different human cell types and
tissues.* More than 13,500 human IncRNAs have been annotated by
GENCODE and also, datasets from the 1000 Genomes Project have
been utilized to reveal the association between IncRNAs and prostate
cancer.*** Cunnington et al. have reported the association between
56 IncRNAs and disease related to traits ranging from diabetes to
multiple sclerosis, Alzheimer’s disease, etc.*” Both computational
and experimental analyses have shown that 125 putative stress
responsive IncRNAs in wheat were tissue-specific and can be induced
by powdery mildew infection and heat stress.48 In addition, Zhang et
al.’’ systematically identified 2224 IncRNAs by performing strand-
specific RNA sequencing of rice anthers, pistils, seeds, and shoots
and combining with the analysis of other available rice RNA-seq
datasets.*

Classification of IncRNAs

IncRNAs are classified based on several properties such as
transcript length, sequence and structure conservation, genomic
location, functions exerted on DNA or RNA, functioning mechanisms,
and targeting mechanisms, association with annotated protein coding
genes or repeats or biochemical pathway or stability or subcellular
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structures.*>* Besides lots of criteria for IncRNA classification, the
most commonly used attributes are their size, localization and function.
Typically, the threshold value is 200 bases for length discrimination
of ncRNAs. Fewer than 200 bases are considered as small ncRNAs
and more than 200 bases are classified as long ncRNAs.>'After length
size discrimination, genomic locations of IncRNAs are also popular
for classifying. According to GENCODE for their genomic locations,
IncRNAs are classified into five groups:

1. Antisense IncRNAs, which are transcribed from the antisense
strand, intersect any exon of a protein-coding locus on the opposite
strand, or published evidence of antisense regulation of a coding
gene. Their transcription was found to be overlap genes related
to condition specific or the stress response. It is considered that
antisense IncRNAs, which involve genome imprinting, regulation
of alternative splicing and translation, exert their function as on-
off switch for these genes.>*

II. Sense IncRNAs are trancribed from sense strand of protein-
coding genes that overlapping transcripts contain a coding gene
within an intron on the same strand.

III. Intronic transcripts reside within introns of a coding gene,
which do not have exon-exon overlapping, is defined as sense
intronic IncRNAs. Differential expression studies demonstrated
that expression levels of intronic IncRNAs and their biological
variation during a physiological time course, or among different
individuals of the same strain are tightly correlated with their
adjacent exons.>

IV. Long intervening non-coding RNAs with a length >200 bp, are
also called long “intergenic” non-coding RNAs, do not overlap
exons of either protein coding and lies within the genomic interval
between two genes. Approximately 20% of lincRNAs are found
to be bound by polycomb repressive complex 2 (PRC2) or other
chromatin-modifying complexes which indicated that they play
role as enhancer-like functions by guiding chromatin-modifying
complexes to specific genomic loci, transmitting information from
higher order chromosomal looping into chromatin modifications
to coordinate long-range gene activation.?*¢

V. Processed transcript which do not have any open reading frame
(ORF) and also, cannot be placed in any type of categories.”’ In
addition to GENCODE classification, extra two categories are also
emerged as bidirectional and enhancer IncRNAs. Bidirectional
IncRNAs, which are tending to be highly conservative, are
expressed within 1 kb of promoters in the opposite direction
from the neighboring protein-coding gene.’®** Several studies
showed that bidirectional IncRNAs are associated with
transcriptional regulatory genes implicated in cell differentiation
and development.®* Enhancer IncRNA (elncRNA or eRNA),
which are generally <2 kb, is transcribed from enhancer regions
of the genome and may contribute to enhancer function.”® eRNAs
have been found to exert their functions in chromatin looping and
long-range gene activation, playing an important role in system
development and the formation of homeostasis.*!®2

Conclusion

LncRNAs play important roles in a numerous biological processes
as regulatory factors. Functional analyses of IncRNAs have indicated
that they are effective cis- and transregulators of gene transcription,
and also act as scaffolds for chromatin-modifying complexes.
Nowadays, IncRNAs are considered as major regulators involved
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in numerous cellular processes, including cell differentiation and
development, chromosome dosage compensation, cell cycle control
and adaptation to environmental changes.®*% Our group has been
investigating the association between salinity stress metabolism and
barley IncRNAs (unpublished data). Identification of novel IncRNAs
is likely to provide new insight into the complicated gene regulatory
network involving IncRNAs, provide novel diagnostic opportunities,
and pinpoint novel therapeutically targets.
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