i{{® MedCrave

Step into the Wonld of Research

Journal of Analytical & Pharmaceutical Research

Review Article

a Open Access @

Kidney-specific drug delivery: review of
opportunities, achievements, and challenges

Abstract

Kidneys are involved in essential complex procedures that maintain the body in equilibrium
and preservethe interior environment necessary for life. Nephritis and nephrosis were ranked
among the leading causes of death in all ages in the last global burden of disease assessment
of the World Health Organization (WHO). Regarding kidney disease therapeutics, the
unfavourable extra-target effects, the narrow therapeutic index, the inactivation of the drug
before reaching its target, or the affected normal distribution due to the pathophysiology of
diseases, all of these conducted to the requirement of new therapeutic aspects. An efficient
kidney-specific drug delivery system will serve as fascinating approach and attractive option
conquering such problems, improving the therapeutic index, and direct to a favourable
pharmacokinetic profile of drugs. Such breakthrough in renal targeting will provide an
efficacious major key for controlling the incidence of those problems, affording a logical
treatment methodology managing all at-risk patients, representing a major intention for
therapy and impart an attractive pharmacological implement to elucidate the mechanisms
of drug action in the kidney.Several attempts to achieve the optimal renal delivery systems
had been investigated; low-molecular-weight-proteins (LMWPs), low-molecular-weight
chitosan (LMWC), Poly(vinylpyrrolidone-co-dimethyl maleic acid) (PVD), anionized
polyvinylpyrrolidone (PVP), galectin-3 carbohydrate recognition domain (G3-C12), and
most recently epsilon poly-I-lysine-derivatives (¢PLL) and the carrier peptide (KKEEE),K.
The majority of kidney-specific delivery systems target the proximal tubular cells. The
specific uptake of the carriers by renal proximal tubular cells is attributed in many cases to
megalin-mediated endocytosis. Moreover, the overall charge of the carrier seems to play
a key role in kidney-specific drug delivery. On the other hand, mesangial cells represent
a particularly suitable target for drug delivery by particulate drug delivery systems such
as nanoparticles or liposomes taking into account the particle diameter. In this review, we
summarize briefly the aforementioned issues.
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Introduction
Drug targeting

Drug-targeting aims at reducing the obstacles caused by extra-
target effects, the narrow therapeutic index and the inactivation
of the drug before reaching its target. Unfortunately, most of the
pharmaceutics used today lack a selective delivery into their target
tissues. The selective delivery or selective activation in the targeted
tissue minimizes toxic side effects.! The improvement of the
pharmacokinetic profile should be accomplished by drug targeting
strategies.>> However, diverse drug-targeting concepts have been
pinpointed in order to fulfill those principles.*

Prodrugs are derivatives of drug molecules that undergo an
enzymatic or chemical transformation in vivo to release the active

parent drug, which can then exert the desired pharmacological
effect.® Therefore, the main idea here is the selective liberation
of the pharmacological active part of the prodrug in the target
tissue depending on tissue-specific metabolic pathways such as
tissue-specific enzyme-depending release,” altered physiological
characteristics such as pH sensitive conjugates,® agents activated by
hypoxia,’ or antibody-directed enzyme prodrug therapy (ADEPT).!
In drug delivery, the achievement of tissue-selective or site-selective
drug delivery systems (DDSs) is of great interest particularly in the
prodrug-based approach.®!!

Drug delivery systems

A variety of carriers such as viral vectors,'? colloidal particles
or macromolecular carriers (such as liposomes,” nanoparticles,'
microspheres,' lipid particles and polymeric micelles'*'®), modified-
plasma proteins, polysaccharides,” biodegradable carriers,”
dendrimers,! antibodies,? and peptide carriers have been developed.

A large diversity of drug delivery systems has been developed to
enhance the therapeutic effect in the target tissue. The exclusive transfer
of a drug to the targeted site of action that has been accomplished
with minimal toxic side effects, and the usage of a pharmacologically
inactive vector are main features of an ideal carrier for drug-targeting
delivery system.” A specifically targeting drug delivery system can
serve not only as a therapeutic vehicle but also as a research tool.
Generally, the drug-targeting approach depends on the drug to be
delivered, the target tissue, and of course the proper delivery system.
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Carriers could be classified into three major types; the particle-
type, the soluble and the cellular carriers. Liposomes, nanoparticles,
microspheres, lipid particles, and polymeric micelles are all included
in the particle-type carriers. Whereas peptides, modified-plasma
proteins, polysaccharides, and biodegradable carriers are classified
under soluble carriers. However, viral vectors belong to the cellular
carriers. Despite the advantages provided by the cellular carriers
depending upon their natural biocompatibility and their possibility to
cause an immunological response is still a hurdle.

Polymers could be classified according to their natural or synthetic
origin, stability (whether biodegradable or not), backbone, and upon
their chemical nature (vinyl and acrylic polymers, polyethylene
glycol (PEG), polysaccharides, polyamino acids, etc).® The natural
polymer carriers include several polysaccharides (dextrans, inulin, or
chitosan), proteins (albumin) or glycoproteins (transferrin), as well as
cationic polymeric carriers such as PLL (poly-1-lysine) backbones.?

In addition to the size of liposomes (ranging from 20 to 10,000 nm),
factors such as charge and lipid composition can extensively dominate
their behavior in vivo. Liposomes are exploited for macrophage-
specific delivery thus involved in passive drug targeting which
permits the sustained release of drug over time. Usually, modifications
of the surface by a targeting device, homing ligand, or by PEGylation
improve their in vivo behaviors.?** Size-expansion strategies limit
their extravasation, thereby minimizes the drug distribution to non-
target sites. PEGylation is involved in the prolonged circulation time
of liposomes by preventing their recognition by phagocytes and
increasing their peripheral distribution.”

Similar principles could be achieved depending on the endogenous
lipid particles such as low- or high-density lipoproteins (LDL/HDL)
which can serve as “natural targeted liposomes”.” New applications
and opportunities for intracellular delivery of various molecules
such as small interfering ribonucleic acid (siRNA), antisense
oligonucleotides (ASOs), recombinant proteins and cloned genes,
have been achieved through advances in liposome design. In addition,
several studies have been performed on the delivery of anti-fungal,
anti-viral and anti-cancer drugs by liposome formulations in humans;
such as amphotericin B, acyclovir and doxorubicin, respectively. On
the other hand, several challenges and obstacles are yet to be faced
and defeated; high production costs, short half-life, low solubility, and
the possibility of encapsulated drug’s leakage and fusion.*

Nanoparticles and microspheres can be assigned either to the
soluble or to the particle type carriers. The main backbone of these
carriers is based on diversity of polymers such as dextran, ficoll,
sepharose, or PLL. Nowadays, poly(D,L-lactic-co-glycolic-acid)
(PLGA) microspheres have been widely studied to gain a wide
acceptance for application as nanoparticles and microspheres following
to their approval for use in humans by the American Food and Drug
Administration (FDA).*! Parenteral application of microspheres and
nanoparticles for the cell selective delivery of drugs is not the only
administration route since they have been studied more recently for
their application in oral and pulmonary delivery of peptides and
peptidomimetics.?’ Antibodies are aimed at targeting tumor-associated
antigens that are over-expressed by tumor cells. Therefore, the birth
of new techniques such as recombinant DNA and protein engineering
has led to the development of optimal tailored-antibodies.”? The stretch
of amino acids or peptides, contained by a biomolecule which is
responsible for specific receptor binding, is called the homing-ligand.
Their covalent attachment to a carrier backbone can result in targeted
DDS.*? Polymeric micelles are small (10-100nm) in size and they
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have a core-shell structure. In contrast to their hydrophobic core, the
shell represents their hydrophilic part. Micelles provide a penetration
property inside the tissue for targeted DDS. Generally, their utility is
still challenging since they disintegrate rapidly in vivo.** Usually, the
application of peptide carriers requires an over-expressed receptor and
sufficient in vivo stability. Additionally, the conjugated drug should
not interfere with the binding region of the peptide. Peptides were
developed in different ways, for example for targeted transport using
carrier peptides for tumor and tissue targeting.***

The systemic side effects of therapeutic agents on healthy and
non-targeted tissues are one of the most serious problems particularly
in oncology and gene therapy. Many of the existing pharmaceutics
have their limitations due to the lack of selective delivery into their
target tissues. Consequently, site/organ-specific drug targeting is an
attractive strategy to reduce unwanted side effects and to enhance
drug efficacy within the targeted tissue.***” Here we focus on kidney
targeting with a collection of reviews and perspectives that highlights
some of the main strategies in this field.

Discussion
Kidney-specific drug delivery

The major functions of the kidney are the maintenance of body
water and sodium balance, the filtration of waste products from the
bloodstream, the secretion of hormones, and multiple homeostatic
controls such as the acid-base regulation of the blood. The current
number of 280 million patients suffering from chronic kidney diseases
(CKD) increases incessantly. The costs for the treatment of kidney
diseases are predicted to exceed 1 trillion US$ over the next decade.
Drugs for treating kidney diseases are often limited by tolerability and
extra-kidney safety concerns, which prevent their use at maximally
effective doses. Targeting drugs to the kidneys may circumvent these
limitations and reduce toxicity of new, established, and pre-existing
drugs. It has therefore evolved as a cherished but elusive goal in
pharmaceutical sciences. For examples, long-term therapy of CKD
is accompanied by serious side effects and numerous promising drug
candidates failed during clinical trials due to safety issues and lack of
efficacy, e.g., bardoxolone methyl and paricalcitol in CKD, avosentan
in diabetic nephropathy,and sirolimus and everolimus in autosomal
dominant polycystic kidney disease (ADPKD).* Covalently linked
drug-polymers can be applied to improve the therapeutic index of
toxic drugs. To prevent the shift in cytotoxicity pattern resulting from
the delivery system, biodegradable delivery systems such as peptide-
based carriers were preferred.** Another approach makes use of some
endogenous enzymes having relatively high concentrations in kidneys
such as amino acid l-decarboxylase and y-glutamy! transpeptidase.*’
Based on this, substrates of these enzymes to chemically modify drugs
had been prepared and used in the hope that drug would be released in
proximal tubular cells via the relevant enzyme.

Consequently, efforts have been made to enable a specific uptake
of drugs in the kidneys.* Attempts to use small protein carriers
such as lysozymes were hampered by their renal toxicity and
cardiovascular side effects.*! Prodrugs that are activated by kidney-
associated enzymes showed low accumulation rates in the kidneys.*
Streptavidin conjugates that target the high levels of endogenous
biotin in the kidneys failed due to unfavourable pharmacokinetics
of this high molecular weight protein.* Liposomal formulations,*
dendrimer conjugates®' as well as copolymer conjugates® also did
not yet exert the properties required. Relatively few papers on drug
delivery or targeting research however appear in the top ranking
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scientific journals, probably because the concepts or technologies
presented are often not recognized as most innovative scientifically
but rather application oriented.*

The majority of kidney-specific delivery systems target the
proximal tubular cells and may contribute in the treatment of renal
diseases such as kidney transplantation, ureteral obstruction, diabetes,
proteinuria, and in some diseases involving changes in renal tubular
function such as Fanconi and Bartter’s syndrome.

Alkylglycoside and sugar-modified low-molecular-weight
peptides: Alkylglycoside and sugar-modified low-molecular-weight
peptides have been shown to have renal targeting potential in vivo. In
1999, Suzuki et al.*” had suggested a novel transport mechanism in the
kidneys that can be used for the specific renal delivery of glycosylated
peptides.*” Their observations reveal the saturation of the renal uptake
in vivo with increasing dose, and there is an effective mechanism
for uptake from blood. Moreover, they had proposed that the renal
uptake may not be dependent on derivatives having a cationic nature.
However, Shirota et al.*® had suggested that the anionic moiety could
reduce the renal targeting efficiency.*® Thus, the targeting efficacy of
the alkylglucoside vector seems to depend on, at least, the size and
charge of the ligand that it delivers.

Low molecular weight proteins (LMWPs)

LMWPs involve active proteins in the circulatory system such
as enzymes (lysozymes), immune proteins (such as light chain
immunoglobulins) and peptide hormones (such as insulin). However,
lysozyme represents the most widely studied LMWP. The most
extensively studied kidney-targeted lysozyme-conjugates are with
naproxen (peptide bond),**! triptolide (ester linkage),”>** captopril
(disulfide bond),**” and anticancer agents."*® Moreover, a number
of other drugs have been linked to lysozyme or various carriers in
several ways.>%

LMWPs can be filtered at the glomerulus and reabsorbed in the
renal tubules. Generally, the kinetics of the macromolecular carrier
over rule the intrinsic kinetics of the drug. Therefore, a drug-
macromolecular carrier conjugate is rapidly cleared from the blood
supply and undergoes drug release and activation in lysosomes.
Normally, distribution of the released drug in the kidney is relatively
slow allowing more concentration of drug in the kidneys relative to
plasma.®!-%* However, due to the diversity and variety of the functional
groups presented on the LMWP, conjugation procedures should be
performed carefully to avoid the very common self-aggregation
and degeneration. Additionally, attempts to use LMWPs such as
lysozymes were hampered by their renal toxicity and cardiovascular
side effects.*!

Low molecular weight chitosan (LMWC)

Chitosan has been widely used in drug delivery systems due to
its excellent biocompatibility and biodegradability. It is derived
from chitin and consists of glucosamine and N-acetyl-glucosamine.
However, different degrees of acetylation and molecular weights
of LMWC had been investigated for their kidney-specific drug
delivery.®>% LTMWC is specifically taken up by renal tubular cells
probably via megalin.’”* However, LMWC was cleared from the
kidneys more rapidly in comparison with lysozyme, therefore, it has
safer pharmacokinetic profile.

Chitosan oligomers can be a potential drug carrier for renal
targeting delivery. It was used as a carrier for zidovudine (AZT),
since the later has a very short half-life and is eliminated very quickly
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in human plasma and kidney after administration.”” However, more
characterization and investigation worth to be performed.

Anionized polyvinylpyrrolidone (PVP) and Poly(vinylpyrrolidone-
co-dimethyl maleic acid) (PVD): PVD had been reported as a carrier
for kidney-specific drug delivery. However, the polymer needs
long time (24h) after i.v. injection in order to accumulate only 80%
specifically in the kidneys. Further study in mice demonstrates that
there is a relationship between the molecular weight and the charge
of PVD derivatives regarding their renal accumulations. Additionally,
carboxylated PVP was taken up by the renal proximal tubular
epithelial cells in vivo after i.v. injection.”""

G3-C12 peptide: The galectin-3 carbohydrate recognition domain
(G3-C12) was shown to specifically accumulate in mouse kidneys
after i.v. injection.”® The peptide-captopril conjugate was evaluated
with a disulfide bond which can be cleaved by reduced glutathione
in the kidney. The peptide—drug conjugate accumulated specifically
in the kidney soon after i.v. injection into mice, and the accumulation
had been attributed largely to the reabsorption of the peptide by the
renal proximal tubule cells.”™

Epsilon Poly-l-lysine-Derivatives (éPLL) and The Carrier Peptide
(KKEEE),K: Recently, Mierand co-workers had starteda development
program for a kidney-specific carrier peptide.” Based on the effect of
lysine which interacts with receptors on the apical side of proximal
tubule cells,”®”” DOTA-¢PLL showed very exclusive accumulation in
the kidneys. Due to the structure of DOTA-¢PLL comprising unnatural
peptide bonds, DOTA as an additional compound, and a long retention
in the kidneys, a peptide consisting only of natural amino acids and
standard peptide linkages was developed. Based on their findings, the
authors stated that a balanced ratio between positively and negatively
charged functional groups is obviously essential to achieve high
kidney specificity. Different peptides were synthesized to identify a
carrier with improved clearance properties and balanced ratio between
positive and negative charged functional groups. The ideal peptide
not containing any unnatural residues was found to be (KKEEE),K.”
The results obtained demonstrate an indication of megalin-mediated
endocytosis of (KKEEE),K into proximal tubule cells. The carrier
peptide (KKEEE),K can circumvent the specific disadvantages of
LMWP and other macromolecular carriers. It shows high kidney
selectivity, even with conjugated drugs (e.g. ciprofloxacin), rapid
kidney accumulation, renal clearance within a few hours, and has a
nontoxic profile. Therefore, (KKEEE),K is a promising carrier for
renal targeting.

Particulate Kkidney-targeted drug delivery systems: Usually,
particulate drug delivery systems such as nanoparticles or liposomes
have been omitted in renal targeting due to their large size and the
limitation of glomerular filtration. They are being investigated for
numerous medical applications and are showing potential as an
emerging class of carriers for drug delivery. Despite proven success
in their accumulation at a selected few organs such as tumor and liver,
reports on their effective delivery to other organs still remain scarce.
Choi et al.”® showed that PEGylated gold nanoparticlesof ~75 + 25-
nm diameters target the mesangium of the kidney demonstrating the
effects of particle diameter on targeting the mesangium.” This finding
establishes design criteria for constructing nanoparticle-based delivery
systems for targeting diseases that involve the mesangium. Moreover,
this finding is of special interest since the majority of kidney-specific
drug delivery systems are targeting the proximal tubular cells rather
than the mesangium. On the other hand, Tuffin et al.” had targeted
the mesangium by preparing liposomes with F = fragments of OX7
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mAb (OX7-IL).” However, rats that were given a single intravenous
injection of low-dose doxorubicin encapsulated in OX7-IL showed
extensive glomerular damage.

Conclusion

Kidney diseases require, usually, long-term administration of
therapeutics; therefore, they are always accompanied with systemic
toxicities and adverse side effects. Consequently, it is necessary to
develop a kidney-targeted drug delivery system in order to overcome
these obstacles .Several attempts have been performed aiming to
target the kidneys, and the majority of kidney-specific delivery
systems targets the proximal tubular cells and may contribute to the
treatment of renal diseases. Such strategies involve LMWPs, PVP,
PVD, LMWC, G3-C12 peptide, ¢PLL derivatives and the carrier
peptide (KKEEE) K. The specific uptake by renal proximal tubular
cells is confirmed in many cases to bemegalin-mediated endocytosis.
Additionally, the overall charge of the carrier seems to play a key
role in kidney-specific drug delivery. On the other hand, particulate
drug delivery systems such as nanoparticles or liposomes seem to be
useful in targeting diseases that involve the mesangium. However, the
particle diameter is crucial for targeting the mesangium. Finally, the
challenge remains in translating the use of those carriers in clinical
trials and applications.
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