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Abstract

Diel vertical migration (DVM) is one of the major biological rhythms observed among
zooplankton. In tropical environments (TrE), zooplankton is believed to exhibit prominent
DVM. Chaetognath, a major vertical migrator among zooplankton in the global ocean,
was studied from the Bay of Bengal, an important zone in TrE of Indian Ocean. Here a
novel method (abundance-weighted tolerance index) was introduced which was successful
in predicting the species, capable of performing DVM. The vertical profiles of physico-
chemical variables exhibited a wide variation in upper 1000 m and only two species of
the total twenty-five species exhibited significant DVM which opposed the general
concept of DVM in TrE. The pronounced variations in physico-chemical variables acted
as invisible barriers for zooplankton to perform DVM. The observed restricted DVM will
have significant impact on the marine ecological processes including biological pump in
the system.
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Introduction

Diel vertical migration (DVM) is a well-documented behavior
among diverse taxa of zooplankton from tropical environments
(TrE)'? to higher latitude environments,*> and the adaptive
significance of this behavior has been explained by a wide array of
competing hypothesis.® The major driving factors of this behavior
can be attributed to predator avoidance,’ prevention from light related
mortality,® the bioenergetic advantage,” and demographic benefits.!
The regulating factors of DVM often differ based on the availability
of food, density of predator, the size of an organism,' and among
different life stages.'> We expect that, in TrE, which ever be the driving
factor, the organism has to be tolerant to a wide range of the physico-
chemical variables to successfully perform DVM as the TrE in the
low-latitude regions are characterized by high variation in the vertical
profile of physico-chemical variables compared to the middle and
higher latitude environments.'*'*

Although several methods are being employed to identify the
DVM process, like the vertical profile of density values'*'¢to acoustic
technique,*!” it is not easy to predict whether any zooplankton group
will perform DVM or not. Species-wise abundance-weighted optimum
values (AO) and tolerances (AT) for different physico-chemical
variables are being used mainly for palacoecological researches.'
We have modified these equations for the vertical profile of these
variables in the marine system. Along with these modified equations,
we introduce “abundance-weighted tolerance index (ATI)” to predict
the DVM process in TrE. For this purpose, we studied chaetognath,
one of the major zooplankton group and active vertical migrator in
the global ocean. The abundance-weighted approach is novel in the
understanding of the species specific DVM of zooplankton. Our aim
was to understand the impact of the wide variation in the vertical
profile of the major physico-chemical variables on DVM and to
predict the possibility of different species to perform DVM in this
environment.

Material and methods

Sampling strategy

Sampling was carried out in the Bay of Bengal during November

2005 to January 2006 as part of the Marine Research on Living
Resources program. Stations were distributed along five zonal
transects from 11 °N to 19 °N (Figure 1). Diurnal observations were
performed at one coastal station and one oceanic station along each
transect at 6-hour intervals for 24 hours.
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Figure | Sampling locations in the Bay of Bengal. The filled squares denote
diurnal stations and the circles denote regular stations.

An SBE Seabird 911 plus CTD was used to obtain the temperature
and salinity profiles of the water column at each station. For
estimation of dissolved oxygen, water samples were collected using
a Rosette sampler from standard depths to 1000 m (surface, 10, 20,
30, 50, 75, 100, 150, 200, 300, 500, 750 and 1000m) and analyzed
using Winkler’s method."” Zooplankton was sampled using a multiple
plankton net with a mouth area of 0.25m? and a mesh size of 200
um (Hydrobios, Germany) from five discrete depth zones, including
the mixed layer depth (MLD), the thermocline, the base of the
thermocline (BT) to 300 m, 300 - 500 m and 500 - 1000 m. As each
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net is opened and closed independently, contamination is apt to be
negligible.”® The mixed layer depth was determined as the depth
where the density difference from the surface was 0.2 kg m?. The
base of thermocline was calculated as the depth where the temperature
reached 15 °C. Chaetognaths were sorted from the whole sample or
from an aliquot (50%) using a Folsom splitter and counted under a
stereomicroscope. The detail species level analysis was carried out
following Nair.*! Though the genus Sagitta is sometimes divided into
few new genera,”>? the systematics is based on marginal differences
between genera and hence we followed the classical taxonomy?*
where the genus Sagitta sensulato is used.

Abundance weighted values

We modified the species specific abundance-weighted optimum
(AO) and abundance-weighted tolerance (AT) equations of Fritz et
al.,' for making it suitable for the vertical profile of the physico-
chemical variables. We introduce here the abundance-weighted
tolerance index (ATI),

L)
ATIU = AT fq/[;(z AT@./m]
=1

Where y, is the abundance of taxon k in sample i
X, is the mean value of j"physico-chemical variable of sample i

Aij is the abundance-weighted optimum of species k for the
j"physico-chemical parameter

ATkj is the abundance-weighted tolerance of species k for the
j"physico-chemical parameter

ATij is the abundance-weighted tolerance index of species k for
the j"physico-chemical parameter.

Statistical Analysis

To check whether a significant variation exists in the abundances
of chaetognaths among different sampling depth layers, one-
way analysis of variance (ANOVA) was performed. Before the
analysis, the D’Agostino and Pearson omnibus normality test was
carried out to check their normality in distribution, and based on
the result, parametric or non-parametric ANOVA was performed. A
paired t-test was carried out between the day and night abundances
(log, transformed values) of different chaetognath species at various
sampling depths at the diurnal stations, to check the DVM behavior,
using Graph Pad Prism (version 5.01). Similar to ANOVA, before the
t-test also normality test was done and based on that parametric or
non-parametric paired t-test was carried out.

Results
Physico-chemical variables

During the study, sea surface temperature varied between 25.9 and
27.7 °C with an average of 26.8+0.4 °C (Figure 2). In the vertical
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profile, though just below the surface the temperature was slightly
higher (mostly in the northern transects), below that temperature
gradually decreased towards depth (Figure 2). The vertical profile
of the temperature, based on the mean values of all the sampling
stations, showed wide variations in the upper 1000 m (Figure 3). The
temperature variation was 20 °C in the 1000 m water column with a
difference of 15 °C in the upper 300 m (Figure 3).
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Figure 2 Distribution of temperature (°C) in the upper 1000 m of the Bay
of Bengal.

The sea surface salinity ranged between 31.6 and 34.1 with an
average of 33.1+0.5. Though surface salinity gradually decreased
towards the north, the variation between the northernmost (19°N) and
southernmost transect (11°N) was only ~1 (Figure 4). The vertical
profile of salinity showed a marked gradient in the upper 100 m in the
northern part and in the upper 75 m in the southern part. The vertical
profile based on the mean values of all the sampling stations also
showed the existence of gradual increase of salinity in the upper 100
m with marked gradient and the variation in the deeper water was
quite less (Figure 3).
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Figure 3 Vertical profile of the physico-chemical variables in the upper 1000
m.

During the study, the surface DO varied from 4.4 to 5.3 ml I"" with
an average of 4.7+0.2 ml 1! (Figure 5). The vertical profile exhibited a
marked gradient in the upper 75 m in the southern part and upper 120
m in the northern part. A thick layer of oxygen minimum zone (<0.5
ml 1) prevailed below subsurface layer, and it gradually increased
towards the north (Figure 5). The mean values of all the sampling
stations also clearly exhibit a sharp decrease of DO with depth and the
presence of a thick layer of oxygen minimum zone between 100-670

m ().
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Figure 4 Distribution of salinity in the upper 1000 m of the Bay of Bengal.
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Figure 5 Distribution of dissolved oxygen (ml I'') in the upper 1000 m of the
Bay of Bengal.

The MLD varied widely between different sampling locations and
ranged between 11-69m (Figure 6a). The average MLD during this
season was 41+17m. The MLD showed an increasing trend towards
north. In general, the MLD in the coastal region was lower than that
observed in the oceanic region. The bottom of thermocline layer also
varied widely from 75-225 m with an average of 171+£32 m (Figure
6b).

Chaetognatha abundance

The abundance in the upper most layer (MLD) was relatively high
[range, 2133 to 78181 in (1000m)>] compared to all other layers
and the variation in the abundance among the depth layers were
statistically significant (P<0.05). In the thermocline layer, chaetognath
abundance was relatively high in the northern part (Figure 7). In the
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layer below, the abundance gradually increased towards the south, and
the maximum was observed in an oceanic station along 11°N transect
(Figure 7). In the deeper layer, in 300 - 500 m depth also, chaetognath
abundance in the southern BoB was relatively high than the northern
part. The abundance gradually decreased towards the greater depth
with an average of 150£190 in (1000m)?® in 500-1000 m depth (Figure
7).
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Figure 6 The (a) mixed layer depth and (b) depth at the bottom of thermocline
during the study.
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Figure 7 Abundance of chaetognaths [ind(1000 m)~] along different depths
in the Bay of Bengal (a) mixed layer depth, (b) thermocline, (c) bottom of
thermocline — 300m, (d) 300 — 500m and (e) 500 — 1000m.

Chaetognatha composition

During the study period, a total of 25 species belonging to four
genera were observed in the study area of which 12 species were
distributed throughout the water column in varying density (Table
1). The number of species varied along different depth layers and it
was relatively higher in the upper two layers (23 and 21 in MLD and
thermocline, respectively) than the layers below (17 each in BT-300m,
300-500m and 500-1000m). Similar to other seasons, Sagitta was the
dominant genus in most of the layers and their percentage contribution
varied between 36.1% (500-1000m) to 92.4% (BT-300m). The number
of species belonging to genus Sagitta ranged between 11 (500-1000m)
to 19 (MLD). Pterosagittadraco was present throughout the water
column though their abundance gradually decreased towards deeper
waters. Krohnittapacifica and K. subtilis were observed throughout
the water column whereas the three deeper water species belonging to
genus Eukrohnia were mostly observed below 300 m. The dominant
species were Sagitta enflata (mixed layer depth and thermocline), S.
decipiens (BT-300 m and 300-500 m) and Eukrohniafowleri (> 500
m).
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Table | The abundance of chaetognath species [ind (1000 m)?] at different
depth strata

Species MLD Thermocline BT-300m 300-500m 500-1000m
Pterosagittadraco 666 153 6 5 <lI
Krohnittapacifica 1314 202 26 8 2
K. subtilis 1473 250 29 5 4
Eukrohniabathypelagica 0 0 0 9
E. fowleri 24 0 <| 9 67
E. hamata 0 0 <l 13
Sagitta bedfordii 258 19 8 0 0
S. bedoti 10 18 0 0 0
S. bipunctata 1039 130 2 | 0
S. decipiens 1471 831 444 94 27
S. enflata 5209 1089 48 13 6
S. ferox 1986 331 32 2 5
S. hexaptera 1437 245 8 4 |

S macrocephala 112 | 5 | <l
S. maxima 24 0 0 2 4
S. minima 321 70 | 0 0
S. neglecta 4617 713 64 10 5
S. oceania 98 7 0 0 0
S. pacifica 998 662 45 il 3
S planktonis 8 4 5 0 0
S. pulchra | 5 0 0 0
S. regularis 2761 412 8l 8 3
S. robusta 1502 212 16 <l |
S. tasmanica 12 13 0 0 0
S. zetesios 9 | 0 | <l
Unidentified 246 125 | 3 3

Abundance weighted values

Figure 8 depicts the species specific AO and AT values, explaining
the optimum preference and optimum tolerance for different physico-
chemical variables. Though temperature ranged between (6.7-26.7°C),
the AO for temperature was >20°C for most of the chaetognaths (20
species). The bathypelagic species of the genus Eukrohnia preferred
relatively higher salinity (AO for salinity>34.5). Although a thick
layer of oxygen minimum zone (>50% of the 1000 m water column)
existed in the study region, most of the chaetognaths (15 species)
showed higher optimum values for dissolved oxygen (> 3.75 mll").
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Figure 8 The species specific abundance-weighted optimum and tolerance
values for the physico-chemical variables.
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The ATI values in Table 2 show the variation in species-specific
response for different physico-chemical variables. The ATI values
for temperature varied from 0.08 (E.bathypelagica) to 1.94 (S.
Planctonis). In the case of salinity, it ranged from 0.01 (£. hamata)
to 1.61 (Krohnitta subtilis). The ATI values for dissolved oxygen
were negligible in S. pulchra,and S. tasmanica (<0.01) whereas the
maximum value was observed in S. regularis (1.78). The ATI values
for all three variables were high (>1.4) only in the case of S. neglecta,
and S. regularis.

Among the 25 species recorded during the study, S. neglecta, and S.
regularis were the only two species, that exhibited significant DVM
between the sampled depth layers (P<0.05), clearly indicating the
restricted DVM in this region (Table 2). Though, eleven species were
observed in the total water column during this season, no other species
showed significant DVM. Several species, which showed higher index
values of only one or two variables, did not show significant DVM.

Table 2 The species specific abundance-weighted tolerance indices for the
physico-chemical variables

Species Temperature Salinity Dissolved Oxygen
Pterosagittadraco 0.76 1.18 .14
Krohnittapacifica 0.83 1.43 1.08
K. subtilis 0.83 1.61 1.04
Eukrohniabathypelagica 0.08 0.01 0.08
E. fowleri 1.84 0.76 1.6

E. hamata 0.11 0.0l 0.06
Sagitta bedfordii 0.83 1.28 0.87
S. bedoti 1.05 0.98 1.68
S. bipunctata 0.67 0.77 0.92
S. decipiens 1.69 .11 1.6
S. enflata 0.76 1.42 I.16
S. ferox 0.65 1.2 1.01
S. hexaptera 0.73 0.97 1.05
S. macrocephala 0.95 0.47 0.54
S. maxima 1.8 0.59 1.21
S. minima 0.57 1.54 |

S. neglecta * 1.5 1.55 1.75
S. oceania 0.44 0.52 0.66
S. pacifica 1.17 1.43 1.6
S. planctonis 1.94 1.09 1.56
S. pulchra 0.93 0.91 <0.01
S. regularis * 1.9 1.47 1.78
S. robusta 0.66 1.29 0.93
S. tasmanica 1.09 0.8l <0.01
S. zetesios 1.18 0.46 0.68

*indicates significant variation (P < 0.05) in the paired t-test.

Discussion

Our approach to understand the DVM process using the abundance-
weighted tolerance index value displays a simple, but a reasonably
accurate method to identify the possibility of any particular organism
to perform DVM in TrE. In TrE, as found in our study, the wide ranges
in the physico-chemical variables in upper 1000 m demand a high
tolerance for the organisms to have an active migration tendency.
Though the major driving force for the DVM may differ from species
to species, as found in several earlier studies,’’*?in TrE, the major
challenging factor for organisms is to be tolerant to this wide range
of the physico-chemical variables. This, in turn, results in restricted
vertical migration of the organism present in the system. Our recent
observation on insignificant DVM of the total chaetognath community
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in the oxygen-depleted water in the northeastern Arabian Sea, another
important zone in TrE,* further corroborate this view. Among the 25
species observed, eleven species were present throughout the water
column in varying density, but only two of them performed significant
DVM, which clearly opposes the general concept of DVM as a
common phenomenon among zooplankton in this environment.>**

The results of the study point out that the species possessing
relatively higher ATI values for the major physico-chemical
variables in the system compared to their fellow species will have a
higher chance to perform DVM. As observed, DVM performing S.
neglecta and S. regularis, were the only two species which showed
relatively higher ATI values for all three variables. S. enflata and S.
decipiens, which were dominant in the epi and meso-pelagic layers,
did not exhibit significant diel variation. The low ATI values for
temperature in S. enflata and for salinity in S. decipiens, might be the
possible reason for this. None of the meso and bathy-pelagic species
of the genus Eukrohnia showed significant DVM. Their sensitivity
to most of the variables (Table 2) might have restricted their vertical
migration. Similarly, epipelagic species such as S. bedoti, S. bedfordii,
and S. minima had low ATI values for most of the variables and were
incapable of significant DVM.

Among the techniques employed to identify the DVM process,
the acoustic method using the acoustic Doppler current profiler has
become successful to demonstrate the signals of DVM in marine
environment.*!'” But using this acoustic signal, it is not possible to
identify the species-wise trend of DVM or to predict the species
capable of performing DVM. Although the traditional use of the
vertical profile of density values can illustrate the difference of
abundance with time, it cannot predict the species capable of DVM.
Interestingly, the abundance-weighted approach considers both
the number of organisms and the range of the variables where they
are present and thus gives a better nsight to the tolerance limit and
migration tendency of the organism and thus can be an efficient
tool in identifying the species capable of performing DVM among
zooplankton in any tropical basin.

The vertical migration of zooplankton has a pivotal role in the
efficient functioning of the biological pump, as it helps in transport
of organic carbon***"and nitrogen flux* produced in the surface into
the deep ocean. Hence, the restricted DVM observed in our study
will affect the active downward transport of organic and inorganic
carbon and nitrogen in TrE, and this will lead to weak efficiency of
the biological pump in this region. Climatic changes over decadal
to multi-decadal scale have been reported in different parts of
the marine system. The warming of sea surface temperature®-*
will result in the increase of the temperature gradient between the
surface and mid-depth water. Similarly, the expansion of oxygen
minimum zone in the mid-depth water of TrE*'*? will also facilitate
the formation of sharper gradients in the dissolved oxygen values
between the depth layers. As found in our study, that, for successful
DVM, the organisms have to be capable enough to withstand the
wide range of the physico-chemical variables and the increasing
trend in the ranges of these variables in response to the climate
changes will thus make it more difficult for organisms to perform
DVM in tropical oceans. Though, zooplankton has been mostly
reported to migrate from near-surface region to 400 - 600 m depth
or more in the open ocean region,*** in TrE, due to sharp vertical
gradient in physico-chemical variable and the increasing tendency
of the gradients due to climate changes will thus either reduce the
tendency of DVM or restrict the vertical migration within shallow
depth range.
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