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Abbreviations: ASR, Aquatic Surface Respiration; CNS, 
Central Nervous System

Introduction
A close relationship between the environment and living beings 

has always existed. Since the peculiar environmental conditions on 
our planet have enabled the development of life, the environmental 
parameters strongly influence the biological processes and 
simultaneously the biological activity modifies the environment. The 
variation in biotic and abiotic environmental factors induces responses 
in animals at multiple levels from the molecular, cellular, organismic 
and population levels.

When animals are kept in captivity in a non-natural environment, 
it is essential to control and regulate the environmental parameters to 
ensure conditions not only compatible to the animal’s life but which 
ensure the welfare of animals by preventing the state of suffering.

The scientific research takes advantage of animal models whose 
utilization can be strongly reduced by in vitro cell culture systems, but 
currently it cannot be completely eliminated.

In animal housing for the purpose of research, the control and 
standardization of environmental parameters is crucial to ensure not 
only the welfare of animals, but also the quality and reproducibility 
of the scientific outcome. The variation in any biotic and abiotic 
environmental parameter can potentially induce physiological 
responses in the animal that may affect the experimental results. 
Depending on the species considered, the knowledge of the effects 
of such variations may be more or less incomplete, and therefore not 
completely predictable. The report of the experimental results must 
therefore be accompanied by a precise and detailed description of all 
the environmental parameters to which the animal has been subjected 
during housing and the experimental phases in order to be able to 
replicate exactly the same environmental conditions.

Recently, the use of teleost fish in research has increased sharply 
also aided by the acquisition and application of the principle 
of  Relative replacement  suggesting wherever possible the use of 
animal with a simpler central nervous system.

The environmental parameters that need to be taken into account 
in relaying fish are the quality and supply of water, the dissolved 
oxygen, the pH level, the presence of nitrogenous compounds, the 
environmental salinity, the temperature, the light intensity and the dark-
light alternation cycle, the noise in term of intensity and frequency of 
sound waves, the stocking density, the environmental complexity, the 
feeding, and finally the handling and killing procedures (Figure 1), as 
stated also in European Directive 2010/63/EU.

The researcher who uses teleost fish models, as well as aquaculture 
farmers, must know as much as possible the effects induced on the 
animal by variation in environmental parameters. This review 
provides an overview on the current understanding of the effects 
of changes in single environmental parameters on the behaviour, 
physiology and cell biology of teleost fish, in order to provide a useful 
tool for research groups that use models of fish or who approach for 
the first time the use of this model.

Figure 1 Environmental parameters that must be considered to ensure the 
welfare of the fish in research and aquaculture context.
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Abstract

Over the last few years the increasing use of fish as animal models in scientific research 
and the increased fish breeding for human consumption have stressed the need for more 
knowledge on the effect of variations in environmental parameters on fish biology and on 
the welfare of specimens used both in research and aquaculture contexts. Experimental 
evidence shows that environmental variations can affect fish biology at various levels, from 
the molecular to that of the population, sometimes in a different way depending on the 
species considered. In order to achieve reproducible results in experiments involving fish 
it is necessary to set and maintain all environmental parameters constant at the optimal 
value to guarantee the wellness of the animal. The effects of the variation in environmental 
parameters on the behaviour, physiology and cell biology of teleosts are here discussed in 
order to provide useful information for research based on fish models.
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Environmental parameters
Water supply and quality

Water supply and quality are important abiotic parameters that 
must be considered to ensure fish welfare. Fish raised in aquaria or 
in laboratory husbandry facilities have more or less reduced volumes 
of water available in comparison to a natural environment, so that it 
becomes essential to monitor the water parameters to ensure stable, 
controlled conditions for fish welfare. Water quality must be also 
monitored in relation to the possible presence of toxic substances 
such as pollutants, metals, chlorine and ammonia and the water flow 
should be set to levels supporting normal swimming. Any changes 
in water quality and conditions should be gradually applied allowing 
fish to acclimatize and adapt to them. The relevance of acclimatization 
period is also stated in the European Recommendation on farmed 
fish, where the species-specific degree of adaptability to the water 
quality changes is underlined. Moreover, in the aquaculture context 
the complete life cycle of fish must be sustained. Therefore, water 
quality parameters shall be set and monitored in according to different 
life-stages (e.g. larvae, juveniles, adults) and physiological status (e.g. 
metamorphosis, spawning) of fish.

Oxygen

Fish, as all aerobic organisms, require oxygen for breathing. 
The concentration of O2 dissolved in water affects fish activity and 
metabolism1 and alters the swimming behaviour2,3 with related effects 
on many aspects of fish life. Hypoxia can be caused by a variety of 
factors, including excess of nutrients and water bodies stratification 
due to saline or temperature gradients. Oxygen levels required 
depend on fish species, their ecological adaptation to hypoxia3 and 
the metabolic rate of the animal at rest.4-6 The behavioural response to 
acute hypoxia involves a balance between an increase in swimming 
activity, in search of more oxygenated waters, and a decrease in the 
same activity to reduce oxygen demands.7 A behavioural response 
adopted by some fish that frequently experience environmental 
hypoxia is to perform aquatic surface respiration (ASR), that consists 
in swimming close to the surface for ventilating the gills with the more 
oxygenated superficial water. This behaviour, however, exposes them 
to a greater risk of predators. Moreover, hypoxia affects the escape 
response of fish and their schooling behavior.8 In captivity, factors 
such as fish density, handling, water flow and temperature influence 
the levels of O2 available and its demand.9

Nitrogenous compounds

The concentration of nitrogenous compounds, derived as waste 
products from the amino acid catabolism, is another parameter to be 
considered in fish housing. In teleost fish, the most abundant nitrogen 
products of excretion are ammonia (sum of NH3 and NH4+) and urea. 
Ammonia is a highly toxic compound extremely soluble in water. 
Because of its toxicity, ammonia must be quickly and efficiently 
excreted by the organism or converted into a less toxic product.10 

The relative amount of excreted ammonia and urea depends on 
the species and the life cycle. Most adult teleosts are ammonotelic 
since they produce and excrete ammonia as a result of deamination 
whereas juveniles of several fish species are ureotelic as they excrete 
nitrogenous waste in the form of urea.11-15 Fish diet is particularly 
rich in proteins that make a major contribution (41-85%) to the total 
energy production of fishes16 and this determines the intake of high 
amounts of nitrogen containing amino acids. A direct relationship 
between protein intake and ammonia excretion was demonstrated 
in several species. For example, in salmon (Oncorhynchus nerka) 

an increased release of ammonia was measured after food intake.17 

The ammonia is a highly toxic compound and extremely soluble in 
water. In aqueous solution, an equilibrium exists between its un-
ionized (NH3) and ionized form (NH4+). The relative concentration 
of NH3 and NH4+ is not only dependent on the ammonia pKa (9.5), 
and thus on the hydrogen ion concentration, but also on temperature, 
pressure and other ions concentration.18 The toxicity for the aquatic 
organisms is largely due to NH3, while the NH4+ gives only a minor 
contribution to the toxic events reported for ammonia. Because of its 
toxicity, the ammonia generated in the cells by the nitrogen catabolism 
must be quickly and efficiently excreted by the organism or converted 
into a less toxic product.10 Thus, the ammonia generated in the liver 
is released in the environment through gills, body surface and renal 
routes. The epithelium that best fulfils the role for ammonia excretion 
is the gill epithelium, whereas the epidermis and the kidney contribute 
to a lesser extent. At cellular level, the ammonia-transporting Rhesus 
(Rh) proteins, a family related to methyl ammonia and ammonia 
transporters in bacteria, yeast and plants, were shown to mediate the 
excretion of ammonia from the gills (Rhag, Rhbg and Rhcg).15,19-23 In 
the aquaria, the ammonia released into the water accumulates reaching 
doses that may be dangerous for fish health. Indeed, the exposure to 
ammonia may cause several effects such as histopathological changes 
in gill structure24,25 increased cortisol levels and generalized stress 
effects26,27 compromised food intake and growth28 modified amino 
acid metabolism29,30 altered oxygen delivery,31 enzymes induction and 
impairment of ion exchange through the gills.16,32 For these reasons, in 
order to ensure the welfare of fish housed in animal facilities nitrogen 
compounds must be maintained at low concentrations.

pH

Fish can survive in a narrow range of pH as its value strongly 
affects the metabolism and homeostasis of cells and the whole 
organism. The great majority of aquatic organisms live at pH 6.5-
8.5, which corresponds to the same range found in most freshwater 
lakes, streams, and ponds. pH variations out of this range can affect 
the animal health by damaging the outer surface of gills, eyes, and 
skin, and causing an inability to dispose of metabolic wastes. All 
this may eventually lead the animal to death. In aquaria, water pH 
has to be daily monitored and kept stable by controlling parameters 
related to its value. Indeed, the toxicity of some compounds may vary 
depending on the pH of the solution. For example, the percentage of 
ammonia in solution and its toxicity are strongly dependent on the 
water pH.33

Environmental salinity

Fishes can also tolerate different levels of environmental salinity. 
In both freshwater and marine fishes, there are species able to tolerate 
large variations in salt concentration, called euryhaline, and others that 
are not able to, called stenohaline species. In natural environments, 
euryhaline fish usually move among marine waters, estuaries, rivers 
and lagoons. On their way these fish experience gradual changes of 
salinity and their regulatory systems of ions and water (gills, digestive 
system, kidney) undergo structural and functional reorganizations in 
response to altered salinity. In particular, it has been shown that the 
acclimation to salinity requires adjustments of the activity and the 
abundance of ion transporters such as the sodium-potassium ATPase 
pump34-36 and GLUT1.37 The acclimation process has energy costs and 
requires time for modifying protein expression at cellular level.28,38 

Differently from the gradual ones, rapid changes in water salinity can 
have adverse effects even in euryhaline fish resulting in an increased 
sensitivity to other stressors (such as temperature changes and low 
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oxide concentration) and diseases.39 Changes in salinity can also affect 
neurochemical parameters.40

For example, the decreased activity of acetylcholinesterase (AChE) 
is associated to increased activity of NTPDase (ADP hydrolysis) and 
5’-nucleotidase in the brain of silver catfish exposed to elevated salt 
concentrations.40

Water temperature

As regard the importance of the water temperature parameter, we 
have to consider that fish are ectothermic or poikilothermic organisms 
whose body temperature corresponds to water temperature. Each 
fish can live within a given range of temperatures characterized by 
a lower and an upper lethal value.41 This temperature range is species 
specific as a result of the evolution and the adaptation of the animal to 
its environment. Each species has an ideal temperature range within 
which it grows quickly and the standard environmental temperature 
is defined as the temperature that the fish would prefer if they could 
choose.9 Variations in ambient temperature strongly affect fish biology 
and influence growth rate, food consumption, feed conversion, 
physiology, behaviour along with other body functions.42-47 Recently, 
studies performed on juveniles and adults of European sea bass showed 
that acclimation temperature affects both behavioural responses 
and neurochemical parameters48,49 in the CNS (Central Nervous 
System). The metabolic rate of fish is sensibly affected by body/
ambient temperature: at lower values there is a drop in the metabolic 
rate, whereas at higher temperatures there is an increase which 
implies a greater need for food and oxygen.50-52 The main response 
to thermal variation in fish is behavioural: in a natural environment 
fish are free to move to different areas or depths to find their optimal 
temperature. When unable to find the best temperature, fish attempt 
to maintain physiological rates by expressing protein and enzyme 
variants with different thermal characteristics and modifying protein 
environments to minimize the impact of temperature changes.53 In 
laboratory facilities, fish are bred in tanks without the possibility of 
choosing the preferred temperature. For this reason temperature must 
be maintained within the optimal range for each species and kept as 
stable as possible to avoid stress conditions and to ensure the welfare 
of animals and any changes in temperature must be applied gradually.

Light

The light and the day/night cycle regulate the environment and 
influence the life of all organisms. In teleost fish, light is relevant for 
the entire life cycle, from embryonic development to sexual maturation 
into adulthood.54 Land animals and fish are not necessary exposed 
to the same enlightenment as in the water the intensity and spectral 
composition of the light decreases with depth due to the absorption 
by water molecules and suspended particles. The water column 
acts as a chromatic filter rapidly absorbing wavelengths comprised 
between infrared and ultraviolet. As a result, shorter wavelengths of 
visible light (blue/violet) penetrate deeper through water than longer 
wavelengths (red/orange). So, depending on the depth at which the fish 
live, they are exposed to different lighting and the aquatic organisms 
have developed visual adaptation according to their spectrum niche. 
Moreover, in teleost fish the threshold of light intensity and sensitivity 
to light vary during the development. It has been demonstrated that 
there are differences in retinal morphology and cell composition 
among larval, juvenile and adult fish.55-57 For example, most marine fish 
larvae have only pure-cone retina at their early developmental stages, 
but later rods appear and the single-cone retina gradually transforms 
into a duplex retina.55,56 Fish are thought to have adapted their vision 
and retinal spectrum perception to their natural photo-environment58,59 

containing rods and cones in accordance to the available wavelength 
range of their particular niche.60,61 Light influences human and animal 
life and physiological processes are generally synchronized with the 
solar day. For example, in humans basic functions such as sleep/
wake cycle, breathing rate, body temperature,62 digestion,63 heartbeat 
and blood pressure are under circadian control.64 Other organisms, 
including fish, have developed timing mechanisms of adaptation 
to regular changes in sunlight. These mechanisms, called circadian 
clock, consist in regulatory networks made of feedback loops of 
transcription and translation.65 Data obtained in zebrafish have 
demonstrated that, as in other vertebrates, most fish tissues contain 
circadian clocks.66,67 The available data suggest that light can exert 
effects on the whole body of fish. In fact, it has been demonstrated that 
in zebrafish the direct illumination of cells activates the expression of 
a subset of clock genes and that this in turn leads to circadian clock 
entrainment.66,68-72 The presence of opsins, the photopigments usually 
contained in retinal photoreceptors, has been recently demonstrated 
also in the peripheral tissues of  Danio rerio.73 Overall, these data 
indicate that, unlike mammals, fish do not rely only on their eyes to 
perceive light as their whole body may be capable of detecting light.

In fish, ambient light conditions may affect behavioural patterns 
such as schooling, shoaling, foraging, feeding and locomotion.74-77 

Besides, light is crucial in behavioural interactions such as predator–
prey encounters.78,79 As to the importance of the photoperiod in fish 
physiology, fish must be maintained under appropriate photoperiod 
where natural light does not allow a suitable light/dark cycle and 
controlled lighting with an intensity adapted to the reared species 
must be provided to satisfy biological requirements.

Noise

The noise is another parameter that should be considered in fish 
welfare. In aquatic environments noise can be produced by both 
biotic (animal and plant sounds), abiotic (wind, rain, running water, 
waterfall), and antropogenic (engine and sonar of boats, ships and 
submarines and construction sites) sources and fish can be exposed 
to a wide range of noise intensity. Potential effects of sound on fish 
probably depend on characteristics such as level, duration, spectrum 
and also on the hearing capacity of the species of interest, as all fish 
are not equally able to perceive sound. Teleost fish can be separated 
into two non-taxonomic groups based on their sensitivity to sound: 
hearing specialists and hearing generalists.80 The hearing specialists, 
such as the goldfish, have small bony connections (Weberian 
ossicles) or other structures that bridge the swim bladder with the 
inner ear, enabling these species to detect higher frequency sounds. 
Hearing generalists, which are the majority of fish species, lack 
these specialized connections and only perceive frequencies below 
500-1000 Hz.80 In fish, the apparent effects of sound can range from 
undetectable or subtle behavioural changes up to severe physiological 
effects causing deafness and death.81 Intense noise (over 140 dB) in 
fish may induce temporary hearing loss,82-85 damage in the inner ear 
sensory epithelium86,87 and endocrine stress responses.85,88,89

Recent experimental works showed that noise exposure can alter 
some behavioural patterns in fish, such as swimming behaviour, 
swimming speed and group cohesion.90,91 As pointed out by 
Slabbekoorn and co-workers,92 there are many aspects concerning 
the effects of noise on aquatic life, that are still to be extensively 
investigated in order to assess properly the relationships between the 
type and level of noise, the behavioural effects and the consequences 
for the reproductive success of fish. This indicates that, both for 
aquaculture and laboratory research, the experimental studies on noise 
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effects are still at an early stage, in order to provide proper welfare 
guidelines.

Equipment used in aquaculture, such as aerators, pumps, filtration 
systems, cascading streams associated with recirculation systems can 
increase the noise to which the animals are subjected80,93,94 and this 
may well result in a significant reduction in growth and reproduction 
rates, higher metabolic rates, increased mortality and lower egg 
viability.85,95-97 As noises and vibrations are efficiently transmitted in 
water and they can act as stressors for fish, it is mandatory to consider 
them during experimental design to ensure the validity of the data 
obtained. Noise levels in husbandry facilities, including ultrasounds, 
must not adversely affect animal welfare. Also, alarm systems must 
sound outside the sensitive hearing range of the animals, while not 
impairing their audibility by human beings. If necessary, holding 
rooms must be provided with noise insulation.

Stocking density

Density is another factor that must be taken into account in fish 
husbandry. Most of the studies conducted to understand the effect of 
density on fish growth and welfare have been performed on juvenile 
or adults, given also the interest of fish farms in identifying the 
optimum density at which to rear animals. Among the fish analysed 
we can mention rainbow trout (Oncorhynchus mykiss),98 salmon 
(Salmo salar),99 gilthead sea bream (Sparus aurata),100 pike perch 
(Stizostedion lucioperca),101 Tilapia nilotica,102 arctic charr (Salvelinus 
alpinus),103 African catfish (Clarias gariepinus),104 summer flounder 
(Paralichthys dentatus),105 dover sole (Solea solea),106 Californian 
halibut (Paralichthys californicus),107 ningu (Labeo  victorianus),108 

catfish (Mystus cavasius),109 pufferfish (Takifugu obscures),110 and 
tub gurnard(Chelidonichthys lucerna).111 Together, these studies have 
shown species-specific effects of high density that in some species 
reduce the growth performance of fish106,107,112,113 while in other species 
have no effect upon reproduction.105,114-116 The species-specific effect 
is probably dependent on different physiological response to stress, 
increased social interactions and different sensitivity of fish to the 
deterioration of water quality.113,117-122 Indeed, high density can strongly 
affect water parameters resulting in a reduction of oxygen availability 
and a higher concentration of ammonia.108

The high density may act as a stress factor both at systemic and 
cellular level. Inappropriate density can affect different physiological 
parameters in fish altering the lipid metabolism118,123 increasing the 
concentration of plasma cortisol16,124 and glucose118 and decreasing 
the peritoneal leukocyte cytotoxicity.125 Moreover, at high density an 
increase of aggressive or cannibalistic behaviour in ocellate puffer 
larvae was reported.126  Recent studies in  Takifugu obscurus  have 
shown that the high density determines an over-expression of genes 
considered biomarkers of stress such as those coding for HSP 70, HSP 
90B, metallothionein, cytochrome P450 1A and phosphoenolpyruvate 
carboxykinase.110 These results show that the high density is a stress 
factor causing a delay in the growth of the animal.110 It has been 
assumed that coping with stress increases the overall energy demand, 
which is then unavailable for growth.127 On the other hand, decreased 
feed consumption,123 social interaction121 and altered water quality128 

may result in increased metabolic demands and additional expenditure 
of energy at the expense of growth.

The stocking density of fish shall be based on the total needs of 
the fish in respect to environmental conditions, health and welfare. 
Fish must have access to a volume of water that allows normal 
swimming and is consistent with their size, age, health and feeding 
method. Moreover, the introduction or re-introduction of animals to 

established groups shall be carefully monitored to avoid problems of 
incompatibility and disrupted social relationships. Furthermore, an 
adequate stocking density shall permit minimizing the risk of injures 
and stress and to promptly identify and remove moribund or dead fish. 
In a breeding facility, the density of fish shall be also appropriate to 
the ability to maintain a correct water quality and consistent with the 
feeding system.

Environmental complexity

The presence of physical elements in the tank, acting as barriers and 
covers, or sand for some flatfish, may facilitate both the recognition of 
different individual areas and the reduction of aggressive encounters. 
The use of appropriate enrichment techniques should allow to extend 
the range of activities available to the animals and to increase their 
coping activities including physical exercise, foraging, manipulative 
and cognitive activities, as appropriate to each species. Environmental 
enrichment in animal enclosures must be adapted to the species and 
individual needs of the animals concerned. Moreover, complex 
rearing conditions increase the size of different brain structures such 
as cerebellum, telencephalon and optic tectum129,130 making animals 
more skilful to cope with environment. Fish must be provided with 
appropriate environmental enrichments such as hiding places or 
bottom substrate to allow the expression of a wide range of normal 
behaviours. For more information on all issues concerning the 
environment enrichment for fish in captive environments, see the 
recent review article authored by Näslund & Johnsson.131

Feeding

Feeding is another issue to be considered and the amount and 
quality of food should be sufficient to ensure the intake of calories 
and nutrients necessary to meet the metabolic needs of the animal 
without producing excessive waste in the aquatic system. As to 
feeding, fish show a wide variability and are generally grouped as 
herbivorous, carnivorous, detritivorous and omnivorous on the 
basis of their food habits and they can be further subdivided into 
plankton feeders, benthic invertebrate feeders and fish feeders.132-135 

In fish, acquisition of food is a process based on different sensory 
systems that usually involves searching, detection, capture and 
ingestion. Different sensory cues including vision, chemoreception, 
acoustic, lateral line and electroreception may contribute to aspects 
of the feeding behaviour in fish. Among species, differences in role 
and significance of the sensory systems are also present.136 Vision is 
crucial for the initial detection of the prey and the orientation to it. 
Furthermore, the lateral line contributes to determine the optimum 
distance and angular deviation for the initiation of a rapid strike 
toward the prey.137 Besides, both olfaction and gustation, two sensory 
systems that respond to amino acids, can play a dominant role in food 
detection in many fish species.136-138 The type and composition of the 
diet may influence food conversion and growth rate. In particular, 
differences have been reported in fish fed with natural or artificial diets 
that could be attributed to the lower protein and higher carbohydrate 
content of an artificial diet when compared with a natural one.139-143 As 
regard the amount of food, fish overfeeding results in the production 
of large amounts of particulate organic wastes in the form of waste 
feed and faecal matter that can contribute to water deoxygenation 
and to the production of reduced compounds such as ammonium and 
sufides.144 Moreover, studies demonstrate that overfeeding affect the 
feed conversion energy depending on fish species and environmental 
condition.145 On the other hand, the underfeeding can cause an increase 
in the interfish competition and in the number of attack events that can 
cause injuries to the animals.146,147 The time of day when the fish are 
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fed is a parameter that must be considered as it may affect growth, 
food conversion efficiency142,148-151 and even animal behaviour. This 
influence may be hormonally mediated148 and the ghrelin hormone 
plays an important role in the control of food intake. In fish, as in other 
vertebrates, ghrelin is a peptide that shows an orexigenic, or appetite 
stimulating, effect as its administration increases food intake.152 The 
release of ghrelin increases under fasting conditions and decrease 
after feeding153,154 suggesting a role for this hormone in regulating 
food assumption in fish. Ghrelin acts activating other orexin systems 
such as the neuropeptide Y and orexin.155 In fish, ghrelin is also 
involved in the modulation of locomotor activity.135,156,157 In particular, 
it has been proposed that ghrelin is involved in the generation of 
food anticipatory activity as the increase in locomotor activity was 
observed 3-4 h before food supply in scheduled fed animals, including 
goldfish.158

Taken together the above information emphasize the wide 
variability in feeding modalities in fish and the significant influence 
of the diet composition and the timing of food administration on 
fish growth and behaviour. For these reasons, fish must be fed with 
a suitable diet at an appropriate feeding rate and frequency, and that 
particular attention must be given to feeding larval fish during any 
transition from live to artificial diets. Furthermore, all fish have to 
get access to feed to avoid undue competition, especially for fry and 
young fish.

Handling

Fish handling is another parameter that needs to be considered in 
fish welfare. Various studies conducted on different fish species have 
shown that handling may affect different physiological parameters 
related to stress such as glucose and cortisol plasma concentration159,160 

may negatively influence the antioxidant defences161 may affect 
the blood lactate concentration and haematocrit and, finally, fish 
growth.162 On the basis of these scientific information, fish handling 
has to be kept to a minimum. The handling should be carried out only 
when necessary in a farm too. The stakeholder shall behave to make as 
much as possible limited the stress of fish. Equipment and procedure 
used shall be chosen to minimize stress and injury. The sedation or 
anaesthesia may be appropriate. Moreover, everything shall be made 
to handle fish in the water, if fish have to be taken out of the water, 
this shall be done in the shortest time possible and equipment in direct 
contact with body fish shall be moistened. Additionally, in order to 
correctly handling a fish, it shall be entirely supported and not be 
lifted by individual body parts only, such as the gill covers.

Fish killing

The killing of fish is a circumstance of potential pain and suffering 
for animals. Recommendations are given for farming fish bred 
in Europe in order to the killing is on spot and without delay by a 
person properly trained and experienced. The method used shall cause 
immediate death, rapidly render the fish insensitive or cause the death 
when fish is anaesthetized or effectively stunned. Parameters such as 
immediate and irreversible cessation of respiratory movements and 
the loss of eye roll reaction shall be monitored as indicator of death 
occurred. If large groups of fish have to be killed for emergency as 
disease control, the effectiveness of procedure shall be evaluated 
on a sample, and just in this case, carbon dioxide might be used. 
In the Directive 2010/63/EU the modalities by which fish must be 
sacrificed are listed in the Annex IV, where it is specified that fish 
can be euthanized only by using an overdose of anesthetic or by 
electrocution.

Conclusion
The chemical-physical parameters of the natural aquatic 

environment can vary widely depending on the geographic location 
and the type of area considered. Each species of fish have adapted 
during evolution to live in specific environmental conditions and they 
respond to environmental variations moving toward areas with more 
suitable characteristics.

In fish housing practices, that they are for research or aquaculture 
purposes, it is essential to know the effects of environmental parameters 
on the fish in order to provide the animal an optimal environment to 
live, which ensures the well-being of animal avoiding suffering.

The knowledge of the effects of environmental parameters on 
animal’s biology and the availability of suitable equipment to keep 
these parameters constant is a prerequisite to obtain repeatable 
experimental data in scientific research and to ensure a healthy food 
product with high organoleptic quality in aquaculture context.
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