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Abstract

Over the last few years the increasing use of fish as animal models in scientific research
and the increased fish breeding for human consumption have stressed the need for more
knowledge on the effect of variations in environmental parameters on fish biology and on
the welfare of specimens used both in research and aquaculture contexts. Experimental
evidence shows that environmental variations can affect fish biology at various levels, from
the molecular to that of the population, sometimes in a different way depending on the
species considered. In order to achieve reproducible results in experiments involving fish
it is necessary to set and maintain all environmental parameters constant at the optimal
value to guarantee the wellness of the animal. The effects of the variation in environmental
parameters on the behaviour, physiology and cell biology of teleosts are here discussed in

order to provide useful information for research based on fish models.
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Introduction

A close relationship between the environment and living beings
has always existed. Since the peculiar environmental conditions on
our planet have enabled the development of life, the environmental
parameters strongly influence the biological processes and
simultaneously the biological activity modifies the environment. The
variation in biotic and abiotic environmental factors induces responses
in animals at multiple levels from the molecular, cellular, organismic
and population levels.

When animals are kept in captivity in a non-natural environment,
it is essential to control and regulate the environmental parameters to
ensure conditions not only compatible to the animal’s life but which
ensure the welfare of animals by preventing the state of suffering.

The scientific research takes advantage of animal models whose
utilization can be strongly reduced by in vitro cell culture systems, but
currently it cannot be completely eliminated.

In animal housing for the purpose of research, the control and
standardization of environmental parameters is crucial to ensure not
only the welfare of animals, but also the quality and reproducibility
of the scientific outcome. The variation in any biotic and abiotic
environmental parameter can potentially induce physiological
responses in the animal that may affect the experimental results.
Depending on the species considered, the knowledge of the effects
of such variations may be more or less incomplete, and therefore not
completely predictable. The report of the experimental results must
therefore be accompanied by a precise and detailed description of all
the environmental parameters to which the animal has been subjected
during housing and the experimental phases in order to be able to
replicate exactly the same environmental conditions.

Recently, the use of teleost fish in research has increased sharply
also aided by the acquisition and application of the principle
of Relative replacement suggesting wherever possible the use of
animal with a simpler central nervous system.

The environmental parameters that need to be taken into account
in relaying fish are the quality and supply of water, the dissolved
oxygen, the pH level, the presence of nitrogenous compounds, the
environmental salinity, the temperature, the light intensity and the dark-
light alternation cycle, the noise in term of intensity and frequency of
sound waves, the stocking density, the environmental complexity, the
feeding, and finally the handling and killing procedures (Figure 1), as
stated also in European Directive 2010/63/EU.

The researcher who uses teleost fish models, as well as aquaculture
farmers, must know as much as possible the effects induced on the
animal by variation in environmental parameters. This review
provides an overview on the current understanding of the effects
of changes in single environmental parameters on the behaviour,
physiology and cell biology of teleost fish, in order to provide a useful
tool for research groups that use models of fish or who approach for
the first time the use of this model.
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Environmental parameters

Woater supply and quality

Water supply and quality are important abiotic parameters that
must be considered to ensure fish welfare. Fish raised in aquaria or
in laboratory husbandry facilities have more or less reduced volumes
of water available in comparison to a natural environment, so that it
becomes essential to monitor the water parameters to ensure stable,
controlled conditions for fish welfare. Water quality must be also
monitored in relation to the possible presence of toxic substances
such as pollutants, metals, chlorine and ammonia and the water flow
should be set to levels supporting normal swimming. Any changes
in water quality and conditions should be gradually applied allowing
fish to acclimatize and adapt to them. The relevance of acclimatization
period is also stated in the European Recommendation on farmed
fish, where the species-specific degree of adaptability to the water
quality changes is underlined. Moreover, in the aquaculture context
the complete life cycle of fish must be sustained. Therefore, water
quality parameters shall be set and monitored in according to different
life-stages (e.g. larvae, juveniles, adults) and physiological status (e.g.
metamorphosis, spawning) of fish.

Oxygen

Fish, as all aerobic organisms, require oxygen for breathing.
The concentration of O2 dissolved in water affects fish activity and
metabolism' and alters the swimming behaviour®® with related effects
on many aspects of fish life. Hypoxia can be caused by a variety of
factors, including excess of nutrients and water bodies stratification
due to saline or temperature gradients. Oxygen levels required
depend on fish species, their ecological adaptation to hypoxia® and
the metabolic rate of the animal at rest.*° The behavioural response to
acute hypoxia involves a balance between an increase in swimming
activity, in search of more oxygenated waters, and a decrease in the
same activity to reduce oxygen demands.” A behavioural response
adopted by some fish that frequently experience environmental
hypoxia is to perform aquatic surface respiration (ASR), that consists
in swimming close to the surface for ventilating the gills with the more
oxygenated superficial water. This behaviour, however, exposes them
to a greater risk of predators. Moreover, hypoxia affects the escape
response of fish and their schooling behavior.® In captivity, factors
such as fish density, handling, water flow and temperature influence
the levels of O2 available and its demand.’

Nitrogenous compounds

The concentration of nitrogenous compounds, derived as waste
products from the amino acid catabolism, is another parameter to be
considered in fish housing. In teleost fish, the most abundant nitrogen
products of excretion are ammonia (sum of NH3 and NH4+) and urea.
Ammonia is a highly toxic compound extremely soluble in water.
Because of its toxicity, ammonia must be quickly and efficiently
excreted by the organism or converted into a less toxic product.'
The relative amount of excreted ammonia and urea depends on
the species and the life cycle. Most adult teleosts are ammonotelic
since they produce and excrete ammonia as a result of deamination
whereas juveniles of several fish species are ureotelic as they excrete
nitrogenous waste in the form of urea.'"!* Fish diet is particularly
rich in proteins that make a major contribution (41-85%) to the total
energy production of fishes'® and this determines the intake of high
amounts of nitrogen containing amino acids. A direct relationship
between protein intake and ammonia excretion was demonstrated
in several species. For example, in salmon (Oncorhynchus nerka)
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an increased release of ammonia was measured after food intake.!”
The ammonia is a highly toxic compound and extremely soluble in
water. In aqueous solution, an equilibrium exists between its un-
ionized (NH3) and ionized form (NH4+). The relative concentration
of NH3 and NH4+ is not only dependent on the ammonia pKa (9.5),
and thus on the hydrogen ion concentration, but also on temperature,
pressure and other ions concentration.'® The toxicity for the aquatic
organisms is largely due to NH3, while the NH4+ gives only a minor
contribution to the toxic events reported for ammonia. Because of its
toxicity, the ammonia generated in the cells by the nitrogen catabolism
must be quickly and efficiently excreted by the organism or converted
into a less toxic product.'’ Thus, the ammonia generated in the liver
is released in the environment through gills, body surface and renal
routes. The epithelium that best fulfils the role for ammonia excretion
is the gill epithelium, whereas the epidermis and the kidney contribute
to a lesser extent. At cellular level, the ammonia-transporting Rhesus
(Rh) proteins, a family related to methyl ammonia and ammonia
transporters in bacteria, yeast and plants, were shown to mediate the
excretion of ammonia from the gills (Rhag, Rhbg and Rhcg).!"*2 In
the aquaria, the ammonia released into the water accumulates reaching
doses that may be dangerous for fish health. Indeed, the exposure to
ammonia may cause several effects such as histopathological changes
in gill structure®** increased cortisol levels and generalized stress
effects®*?’ compromised food intake and growth® modified amino
acid metabolism*+*° altered oxygen delivery,’! enzymes induction and
impairment of ion exchange through the gills.'®*For these reasons, in
order to ensure the welfare of fish housed in animal facilities nitrogen
compounds must be maintained at low concentrations.

pH

Fish can survive in a narrow range of pH as its value strongly
affects the metabolism and homeostasis of cells and the whole
organism. The great majority of aquatic organisms live at pH 6.5-
8.5, which corresponds to the same range found in most freshwater
lakes, streams, and ponds. pH variations out of this range can affect
the animal health by damaging the outer surface of gills, eyes, and
skin, and causing an inability to dispose of metabolic wastes. All
this may eventually lead the animal to death. In aquaria, water pH
has to be daily monitored and kept stable by controlling parameters
related to its value. Indeed, the toxicity of some compounds may vary
depending on the pH of the solution. For example, the percentage of
ammonia in solution and its toxicity are strongly dependent on the
water pH.%

Environmental salinity

Fishes can also tolerate different levels of environmental salinity.
In both freshwater and marine fishes, there are species able to tolerate
large variations in salt concentration, called euryhaline, and others that
are not able to, called stenohaline species. In natural environments,
euryhaline fish usually move among marine waters, estuaries, rivers
and lagoons. On their way these fish experience gradual changes of
salinity and their regulatory systems of ions and water (gills, digestive
system, kidney) undergo structural and functional reorganizations in
response to altered salinity. In particular, it has been shown that the
acclimation to salinity requires adjustments of the activity and the
abundance of ion transporters such as the sodium-potassium ATPase
pump***¢and GLUT1.>" The acclimation process has energy costs and
requires time for modifying protein expression at cellular level.*3
Differently from the gradual ones, rapid changes in water salinity can
have adverse effects even in euryhaline fish resulting in an increased
sensitivity to other stressors (such as temperature changes and low
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oxide concentration) and diseases.* Changes in salinity can also affect
neurochemical parameters.*’

For example, the decreased activity of acetylcholinesterase (AChE)
is associated to increased activity of NTPDase (ADP hydrolysis) and
5’-nucleotidase in the brain of silver catfish exposed to elevated salt
concentrations.*

Woater temperature

As regard the importance of the water temperature parameter, we
have to consider that fish are ectothermic or poikilothermic organisms
whose body temperature corresponds to water temperature. Each
fish can live within a given range of temperatures characterized by
a lower and an upper lethal value.*! This temperature range is species
specific as a result of the evolution and the adaptation of the animal to
its environment. Each species has an ideal temperature range within
which it grows quickly and the standard environmental temperature
is defined as the temperature that the fish would prefer if they could
choose.? Variations in ambient temperature strongly affect fish biology
and influence growth rate, food consumption, feed conversion,
physiology, behaviour along with other body functions.***’ Recently,
studies performed on juveniles and adults of European sea bass showed
that acclimation temperature affects both behavioural responses
and neurochemical parameters®* in the CNS (Central Nervous
System). The metabolic rate of fish is sensibly affected by body/
ambient temperature: at lower values there is a drop in the metabolic
rate, whereas at higher temperatures there is an increase which
implies a greater need for food and oxygen.”*> The main response
to thermal variation in fish is behavioural: in a natural environment
fish are free to move to different areas or depths to find their optimal
temperature. When unable to find the best temperature, fish attempt
to maintain physiological rates by expressing protein and enzyme
variants with different thermal characteristics and modifying protein
environments to minimize the impact of temperature changes.” In
laboratory facilities, fish are bred in tanks without the possibility of
choosing the preferred temperature. For this reason temperature must
be maintained within the optimal range for each species and kept as
stable as possible to avoid stress conditions and to ensure the welfare
of animals and any changes in temperature must be applied gradually.

Light

The light and the day/night cycle regulate the environment and
influence the life of all organisms. In teleost fish, light is relevant for
the entire life cycle, from embryonic development to sexual maturation
into adulthood.* Land animals and fish are not necessary exposed
to the same enlightenment as in the water the intensity and spectral
composition of the light decreases with depth due to the absorption
by water molecules and suspended particles. The water column
acts as a chromatic filter rapidly absorbing wavelengths comprised
between infrared and ultraviolet. As a result, shorter wavelengths of
visible light (blue/violet) penetrate deeper through water than longer
wavelengths (red/orange). So, depending on the depth at which the fish
live, they are exposed to different lighting and the aquatic organisms
have developed visual adaptation according to their spectrum niche.
Moreover, in teleost fish the threshold of light intensity and sensitivity
to light vary during the development. It has been demonstrated that
there are differences in retinal morphology and cell composition
among larval, juvenile and adult fish.>>"For example, most marine fish
larvae have only pure-cone retina at their early developmental stages,
but later rods appear and the single-cone retina gradually transforms
into a duplex retina.”>*® Fish are thought to have adapted their vision
and retinal spectrum perception to their natural photo-environment®*>
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containing rods and cones in accordance to the available wavelength
range of their particular niche.®*®! Light influences human and animal
life and physiological processes are generally synchronized with the
solar day. For example, in humans basic functions such as sleep/
wake cycle, breathing rate, body temperature,® digestion,® heartbeat
and blood pressure are under circadian control.** Other organisms,
including fish, have developed timing mechanisms of adaptation
to regular changes in sunlight. These mechanisms, called circadian
clock, consist in regulatory networks made of feedback loops of
transcription and translation.®® Data obtained in zebrafish have
demonstrated that, as in other vertebrates, most fish tissues contain
circadian clocks.®®¢’ The available data suggest that light can exert
effects on the whole body of fish. In fact, it has been demonstrated that
in zebrafish the direct illumination of cells activates the expression of
a subset of clock genes and that this in turn leads to circadian clock
entrainment.***”2 The presence of opsins, the photopigments usually
contained in retinal photoreceptors, has been recently demonstrated
also in the peripheral tissues of Danio rerio.” Overall, these data
indicate that, unlike mammals, fish do not rely only on their eyes to
perceive light as their whole body may be capable of detecting light.

In fish, ambient light conditions may affect behavioural patterns
such as schooling, shoaling, foraging, feeding and locomotion.”"
Besides, light is crucial in behavioural interactions such as predator—
prey encounters.”*” As to the importance of the photoperiod in fish
physiology, fish must be maintained under appropriate photoperiod
where natural light does not allow a suitable light/dark cycle and
controlled lighting with an intensity adapted to the reared species
must be provided to satisfy biological requirements.

Noise

The noise is another parameter that should be considered in fish
welfare. In aquatic environments noise can be produced by both
biotic (animal and plant sounds), abiotic (wind, rain, running water,
waterfall), and antropogenic (engine and sonar of boats, ships and
submarines and construction sites) sources and fish can be exposed
to a wide range of noise intensity. Potential effects of sound on fish
probably depend on characteristics such as level, duration, spectrum
and also on the hearing capacity of the species of interest, as all fish
are not equally able to perceive sound. Teleost fish can be separated
into two non-taxonomic groups based on their sensitivity to sound:
hearing specialists and hearing generalists.®’ The hearing specialists,
such as the goldfish, have small bony connections (Weberian
ossicles) or other structures that bridge the swim bladder with the
inner ear, enabling these species to detect higher frequency sounds.
Hearing generalists, which are the majority of fish species, lack
these specialized connections and only perceive frequencies below
500-1000 Hz.* In fish, the apparent effects of sound can range from
undetectable or subtle behavioural changes up to severe physiological
effects causing deafness and death.®' Intense noise (over 140 dB) in
fish may induce temporary hearing loss,** damage in the inner ear
sensory epithelium®#” and endocrine stress responses.’>#88

Recent experimental works showed that noise exposure can alter
some behavioural patterns in fish, such as swimming behaviour,
swimming speed and group cohesion.”! As pointed out by
Slabbekoorn and co-workers,”” there are many aspects concerning
the effects of noise on aquatic life, that are still to be extensively
investigated in order to assess properly the relationships between the
type and level of noise, the behavioural effects and the consequences
for the reproductive success of fish. This indicates that, both for
aquaculture and laboratory research, the experimental studies on noise
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effects are still at an early stage, in order to provide proper welfare
guidelines.

Equipment used in aquaculture, such as aerators, pumps, filtration
systems, cascading streams associated with recirculation systems can
increase the noise to which the animals are subjected®**** and this
may well result in a significant reduction in growth and reproduction
rates, higher metabolic rates, increased mortality and lower egg
viability.¥*7 As noises and vibrations are efficiently transmitted in
water and they can act as stressors for fish, it is mandatory to consider
them during experimental design to ensure the validity of the data
obtained. Noise levels in husbandry facilities, including ultrasounds,
must not adversely affect animal welfare. Also, alarm systems must
sound outside the sensitive hearing range of the animals, while not
impairing their audibility by human beings. If necessary, holding
rooms must be provided with noise insulation.

Stocking density

Density is another factor that must be taken into account in fish
husbandry. Most of the studies conducted to understand the effect of
density on fish growth and welfare have been performed on juvenile
or adults, given also the interest of fish farms in identifying the
optimum density at which to rear animals. Among the fish analysed
we can mention rainbow trout (Oncorhynchus mykiss),”® salmon
(Salmo salar),” gilthead sea bream (Sparus aurata),' pike perch
(Stizostedion lucioperca),' Tilapia nilotica,'** arctic charr (Salvelinus
alpinus),'” African catfish (Clarias gariepinus),'® summer flounder
(Paralichthys dentatus),'"” dover sole (Solea solea),'” Californian
halibut (Paralichthys californicus),"”” ningu (Labeo victorianus),'®®
catfish (Mystus cavasius),'"” pufferfish (Takifugu obscures),""* and
tub gurnard(Chelidonichthys lucerna)."! Together, these studies have
shown species-specific effects of high density that in some species
reduce the growth performance of fish!%19%:112113 whyle in other species
have no effect upon reproduction.!®!'#11¢ The species-specific effect
is probably dependent on different physiological response to stress,
increased social interactions and different sensitivity of fish to the
deterioration of water quality.!'*!"122Indeed, high density can strongly
affect water parameters resulting in a reduction of oxygen availability
and a higher concentration of ammonia.'®®

The high density may act as a stress factor both at systemic and
cellular level. Inappropriate density can affect different physiological
parameters in fish altering the lipid metabolism''®!? increasing the
concentration of plasma cortisol'*'?* and glucose!'® and decreasing
the peritoneal leukocyte cytotoxicity.' Moreover, at high density an
increase of aggressive or cannibalistic behaviour in ocellate puffer
larvae was reported.’”® Recent studies in Takifugu obscurus have
shown that the high density determines an over-expression of genes
considered biomarkers of stress such as those coding for HSP 70, HSP
90B, metallothionein, cytochrome P450 1A and phosphoenolpyruvate
carboxykinase.'!” These results show that the high density is a stress
factor causing a delay in the growth of the animal.'® It has been
assumed that coping with stress increases the overall energy demand,
which is then unavailable for growth.'?”” On the other hand, decreased
feed consumption,'? social interaction'?! and altered water quality!?
may result in increased metabolic demands and additional expenditure
of energy at the expense of growth.

The stocking density of fish shall be based on the total needs of
the fish in respect to environmental conditions, health and welfare.
Fish must have access to a volume of water that allows normal
swimming and is consistent with their size, age, health and feeding
method. Moreover, the introduction or re-introduction of animals to
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established groups shall be carefully monitored to avoid problems of
incompatibility and disrupted social relationships. Furthermore, an
adequate stocking density shall permit minimizing the risk of injures
and stress and to promptly identify and remove moribund or dead fish.
In a breeding facility, the density of fish shall be also appropriate to
the ability to maintain a correct water quality and consistent with the
feeding system.

Environmental complexity

The presence of physical elements in the tank, acting as barriers and
covers, or sand for some flatfish, may facilitate both the recognition of
different individual areas and the reduction of aggressive encounters.
The use of appropriate enrichment techniques should allow to extend
the range of activities available to the animals and to increase their
coping activities including physical exercise, foraging, manipulative
and cognitive activities, as appropriate to each species. Environmental
enrichment in animal enclosures must be adapted to the species and
individual needs of the animals concerned. Moreover, complex
rearing conditions increase the size of different brain structures such
as cerebellum, telencephalon and optic tectum!?*!* making animals
more skilful to cope with environment. Fish must be provided with
appropriate environmental enrichments such as hiding places or
bottom substrate to allow the expression of a wide range of normal
behaviours. For more information on all issues concerning the
environment enrichment for fish in captive environments, see the
recent review article authored by Nislund & Johnsson.'!

Feeding

Feeding is another issue to be considered and the amount and
quality of food should be sufficient to ensure the intake of calories
and nutrients necessary to meet the metabolic needs of the animal
without producing excessive waste in the aquatic system. As to
feeding, fish show a wide variability and are generally grouped as
herbivorous, carnivorous, detritivorous and omnivorous on the
basis of their food habits and they can be further subdivided into
plankton feeders, benthic invertebrate feeders and fish feeders.!3>13
In fish, acquisition of food is a process based on different sensory
systems that usually involves searching, detection, capture and
ingestion. Different sensory cues including vision, chemoreception,
acoustic, lateral line and electroreception may contribute to aspects
of the feeding behaviour in fish. Among species, differences in role
and significance of the sensory systems are also present.'*® Vision is
crucial for the initial detection of the prey and the orientation to it.
Furthermore, the lateral line contributes to determine the optimum
distance and angular deviation for the initiation of a rapid strike
toward the prey.'*” Besides, both olfaction and gustation, two sensory
systems that respond to amino acids, can play a dominant role in food
detection in many fish species.!**'* The type and composition of the
diet may influence food conversion and growth rate. In particular,
differences have been reported in fish fed with natural or artificial diets
that could be attributed to the lower protein and higher carbohydrate
content of an artificial diet when compared with a natural one.!**!43 As
regard the amount of food, fish overfeeding results in the production
of large amounts of particulate organic wastes in the form of waste
feed and faecal matter that can contribute to water deoxygenation
and to the production of reduced compounds such as ammonium and
sufides.'* Moreover, studies demonstrate that overfeeding affect the
feed conversion energy depending on fish species and environmental
condition.!* On the other hand, the underfeeding can cause an increase
in the interfish competition and in the number of attack events that can
cause injuries to the animals.'**!¥’ The time of day when the fish are
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fed is a parameter that must be considered as it may affect growth,
food conversion efficiency'***13! and even animal behaviour. This
influence may be hormonally mediated'* and the ghrelin hormone
plays an important role in the control of food intake. In fish, as in other
vertebrates, ghrelin is a peptide that shows an orexigenic, or appetite
stimulating, effect as its administration increases food intake.'>? The
release of ghrelin increases under fasting conditions and decrease
after feeding'**'* suggesting a role for this hormone in regulating
food assumption in fish. Ghrelin acts activating other orexin systems
such as the neuropeptide Y and orexin.' In fish, ghrelin is also
involved in the modulation of locomotor activity.'**15¢157 In particular,
it has been proposed that ghrelin is involved in the generation of
food anticipatory activity as the increase in locomotor activity was
observed 3-4 h before food supply in scheduled fed animals, including
goldfish.!?

Taken together the above information emphasize the wide
variability in feeding modalities in fish and the significant influence
of the diet composition and the timing of food administration on
fish growth and behaviour. For these reasons, fish must be fed with
a suitable diet at an appropriate feeding rate and frequency, and that
particular attention must be given to feeding larval fish during any
transition from live to artificial diets. Furthermore, all fish have to
get access to feed to avoid undue competition, especially for fry and
young fish.

Handling

Fish handling is another parameter that needs to be considered in
fish welfare. Various studies conducted on different fish species have
shown that handling may affect different physiological parameters
related to stress such as glucose and cortisol plasma concentration'*!60
may negatively influence the antioxidant defences'®' may affect
the blood lactate concentration and haematocrit and, finally, fish
growth.'® On the basis of these scientific information, fish handling
has to be kept to a minimum. The handling should be carried out only
when necessary in a farm too. The stakeholder shall behave to make as
much as possible limited the stress of fish. Equipment and procedure
used shall be chosen to minimize stress and injury. The sedation or
anaesthesia may be appropriate. Moreover, everything shall be made
to handle fish in the water, if fish have to be taken out of the water,
this shall be done in the shortest time possible and equipment in direct
contact with body fish shall be moistened. Additionally, in order to
correctly handling a fish, it shall be entirely supported and not be
lifted by individual body parts only, such as the gill covers.

Fish killing

The killing of fish is a circumstance of potential pain and suffering
for animals. Recommendations are given for farming fish bred
in Europe in order to the killing is on spot and without delay by a
person properly trained and experienced. The method used shall cause
immediate death, rapidly render the fish insensitive or cause the death
when fish is anaesthetized or effectively stunned. Parameters such as
immediate and irreversible cessation of respiratory movements and
the loss of eye roll reaction shall be monitored as indicator of death
occurred. If large groups of fish have to be killed for emergency as
disease control, the effectiveness of procedure shall be evaluated
on a sample, and just in this case, carbon dioxide might be used.
In the Directive 2010/63/EU the modalities by which fish must be
sacrificed are listed in the Annex IV, where it is specified that fish
can be euthanized only by using an overdose of anesthetic or by
electrocution.
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Conclusion

The chemical-physical parameters of the natural aquatic
environment can vary widely depending on the geographic location
and the type of area considered. Each species of fish have adapted
during evolution to live in specific environmental conditions and they
respond to environmental variations moving toward areas with more
suitable characteristics.

In fish housing practices, that they are for research or aquaculture
purposes, itis essential to know the effects of environmental parameters
on the fish in order to provide the animal an optimal environment to
live, which ensures the well-being of animal avoiding suffering.

The knowledge of the effects of environmental parameters on
animal’s biology and the availability of suitable equipment to keep
these parameters constant is a prerequisite to obtain repeatable
experimental data in scientific research and to ensure a healthy food
product with high organoleptic quality in aquaculture context.
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