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Introduction
Counting the number of individuals in a large sample can be very 

laborious or impractical. Instead of exact counting of all individuals, 
the size of a large sample can be estimated by weighing it and then 
using information about the mean weight of individuals obtained 
from smaller samples. Estimation approaches based on this general 
idea have a number of natural applications in aquatic sciences. For 
instance, the number of fish in a commercial catch is often estimated 
in this way in order to obtain data that would be suitable for typical 
stock assessment methods.1,2 Further, the approach is apparently 
commonly used in the estimation of the number of fish raised in fish 
hatcheries for subsequent stocking.3 Besides estimating the number of 
fish, the approach has been applied in e.g., estimating the number of 
eggs in fish gonads.4 However, estimates obtained this way will always 
involve an element of uncertainty unless all individuals in the sampled 
population are of exactly equal weight, and unless measurement 
error is negligible. For a systematic analysis, this uncertainty 
should be taken into account in all further considerations utilizing 
these estimates. In fisheries science such uncertainty has been often 
neglected, or frequentist methods have been applied. Unfortunately 
frequentist methods cannot provide measurements of uncertainty 
about parameters, even though the results of the frequentist analysis 
are often phrased in a way which invites such a misinterpretation.

The Bayesian approach to statistical inference provides a flexible 
framework for working with multiple levels of uncertainty, and is 
therefore becoming increasingly popular in fisheries science. In the 
Bayesian approach, uncertainty is described by assigning probability 
distributions to quantities whose values are uncertain. Thus, in 
particular, uncertain values of the sample size are presented in terms 
of corresponding probability distributions. This paper presents the 
development of a Bayesian probability model which can be used 
to derive probabilistic estimates of the size of a sample of a known 
weight. The model structure is introduced by considering samples of 
fish, but the same logic applies to any kind of comparable items like 
invertebrates, plants, stones etc.

Sampling
A sample containing N fish can be obtained from a fish population 

either by simple random sampling or by some form of selective 
sampling. In a typical case N is large, but the theory presented here 
holds in principle for any positive integer value. On the other hand, the 
population from which the sample is drawn is assumed to be infinitely 
large. For example, fish living in a particular rearing pond are seen as 
a sample from the potentially infinitely large population of similar fish 
that could be produced in the given pond and under conditions similar 
to present ones.

The sample of size  N  is then divided without selection into  k 
+1  subsamples, of which one is typically large compared to the 
others. Here we denote the number of fish in the large sub sample 
by n* and the number of fish in the smaller Sub samples by nj, j = 
1,…,k, assuming then that

The weight (s*) of the large subsample and the weights (sj) of the 
smaller subsamples are assumed to have been measured accurately 
enough to be treated as known, as well as the number of fish from 
corresponding counts of the smaller subsamples. As a consequence, 
only  n*  remains unknown and needs to be estimated. If sampling 
from the fish population is made without any form of size selection, 
samples of sizes n*, n1,….,nk can be obtained as independent samples 
directly from the population, and in any order.

Probability model
We begin by making the assumption that the weights (wi; i=1,…

,N) of individual fish are exchangeable for all values of  N. This 
assumption means in particular that the joint predictive distribution 
of the weights, describing beliefs about the weights of the fish in the 
sample, is always the same regardless which particular N fish would 
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Abstract

We introduce a Bayesian probability model for making inferences about the unknown 
number of individuals in a sample, based on known sample weight and on information 
provided by subsamples with known weights and corresponding counts. Inherent in the 
Bayesian approach, the model allows for an incorporation of prior information that is often 
available about the sample size and other uncertain parameter values. As a result, the model 
provides an estimate of the number of individuals in the sample in the form of a posterior 
probability distribution that includes both the prior information and the interpretation of the 
observed data. Such a result cannot be obtained using the frequentist approach. The model 
presented here can be applied to a wide range of similar problems. Here our main focus 
is stock assessment, where the task is the conversion of the catch weight into the number 
of individuals in the catch. The model is easy to use due to availability of general purpose 
MCMC simulation software, and it can be used either in a standalone fashion or embedded 
into more complex probability models.
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have been sampled, and how they would be ordered within the sample. 
According to the celebrated representation theorem of de Finetti, the 
assumption of exchangeability allows us to write the joint predictive 
distribution (density) in the form.

Where  f  is an unknown density function, and  Q(f) denotes a 
probability measure over all distribution functions. This can be 
interpreted as if we had N independent fish weights taken from an 
unknown weight distribution function f, which again is assigned a 
prior probability distribution Q. The operational interpretation of Q (f) 
is then ”what we believe the empirical weight distribution would look 
like for a large sample”.5 Our second assumption is a convention 
which we make to simplify the analysis: we restrict the set of possible 
weight distribution functions to parametric distribution families F, for 
which it holds that if the individual weights wi follow independently 
a fixed distribution  f  belonging to distribution family  F, then also 
arbitrary finite sums ∑ wi follow a distribution which belongs to the 
same distribution family. Gamma and Normal families are known to 
satisfy this condition, and from now on we assume that F is either of 
these two families. Within the chosen family (Gamma or Normal), 
prior uncertainty about the weight distribution can be expressed by 
assigning a prior distribution to two parameters of the distribution 
family. Here we use mean µ and standard deviation σ , but other 
parameterizations can be used as well. Then the joint predictive 
distribution of the individual weights can be written as

where f (wi | µ, σ) is the Gamma or Normal density, and p (µ,σ) is 
a joint prior distribution of its parameters. Because individual weights 
are conditionally independent given µ and, the conditional expected 
value and conditional standard deviation of the sample weight are 2 (| , 
)n jj j Es n µσ µ = and 2 SD( | , ) j j j sn n µσ σ = . This implies that the 
joint predictive distribution for the sample weights, given the sample 
sizes n1,….,nk can be written in the form

This model can be also specified by the following sequence of 
definitions:

where D(mean; standard deviation) in each case denotes a suitable 
prior probability distribution. The Normal distribution can be used 

for sample weights if all nj:s are large,as the distribution of the sum 
of independent random variables approaches the Normal distribution 
when nj increases, regardless of the shape of the distribution of 
individual weights. It should be noted, however, that the Normal 
distribution allows also for negative weights, which is not realistic. 
Prior distributions for µ, 2 σ and n * can have any shapes, as long as 
it is recognized that they can have only positive values. If the sample 
weights (s1,…sk, s*) are not observed without non-negligible error, 
the model can be extended to account for measurement error by 
treating the true sample weights as unknown and by adding an extra 
layer to the model specification:

where observed weight measurements (m1…mk , m* ) and 
corresponding standard deviations (v1…vk, v*) are assumed to be 
known. The form of the measurement error distribution can be in 
principle chosen in any way that would seem appropriate in the given 
context. Information about the shape of the distribution and about its 
standard deviation could come from expert judgement and/or from 
an independent study of the measurement error. Despite the simple 
model structure, the posterior distribution is analytically intractable 
and approximation methods are needed for a numerical evaluation 
of the probabilities of interest. Our approach is to use Markov 
chain Monte Carlo (MCMC) simulation.6  to draw a large number of 
samples from the posterior distribution, and use corresponding sample 
averages as summaries of the posterior distribution. This task can be 
accomplished easily by using a general purpose MCMC software, like 
WinBUGS.7

Example: Number of fish in a rearing pond
Suppose that all  N  fish were captured from the rearing pond 

and moved to a tank. We begin by making the assumption that 
the weights  wi  of the fish in the rearing pond are a conditionally 
independent sample from a Gamma distribution characterized by 
unknown mean and coefficient of variation δ µ = . The sample of size 
N was then divided into four subsamples, of which one has unknown 
size n*, and the others are of known sizes n1=108,n2  =101, n3 =115. 
It is also assumed that the manufacturer of the scale has specified 
that the observed weights vary symmetrically around the true weight 
with standard deviation of 10g. Here we use a Normal distribution to 
describe the variation of the measurements (mj, m*) around the true 
value. Prior distributions for model parameters N, µ and were obtained 
by interviewing an expert who is familiar with local aquacultural 
practices. He was told that the rearing pond had bottom area of 
50m2, it was located in Northern Finland and contained two-year-old 
salmon smolts. We formalised his prior beliefs by the following prior 
distributions:

In addition to the above specification, parameter u was constrained 
to lie in the interval [0,20 000] and parameter δ in the interval,5,60 that 
is, within these intervals the prior probability density is proportional to 
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the distributions specified above, and is zero elsewhere. Parameter u 
was used as an auxiliary variable in order to obtain a left-skewed prior 
density for N. The rest of the model was specified by the equations

The observed weights of the samples were m*=451 360g, m1 
=4200g, m2 =4300g and m3 =4500g. Posterior distributions for µ , δ 
and N were calculated by using WinBUGS. The posterior distribution 
for N describes the uncertainty about the number of fish in the rearing 
pond (Figure 1a). The 95% probability interval (PI) of the number 
of fish in the tank is [11130, 12030], and the most probable number 
(maximum a posteriori (MAP) estimate) is about 11570. If the group 
of fish in the tank is meant to be a mandatory release group of at 
least 12000 smolts, it might be of interest to calculate the probability 
that there are 12000 fish or more in the tank. This can be calculated 
during the MCMC simulation or from the resulting posterior density. 
In this case the probability is 0.03, carrying the message that it is 
unlikely that the targeted release number would have been reached. 
Nearly identical results were obtained by assuming that the individual 
weights are Normally distributed (PI=[11 090,12 020], MAP=11 550, 
P (N ≥ 12 000, data) = 0.03) (Figure 1). The posterior distribution 
for the mean weight ( ) µ is also very informative compared to its 
prior distribution (Figure 1b). However, the posterior distribution 
of the coefficient of variation ( ) δ has not been updated from its 
prior distribution as strongly as the other parameters (Figure 1c). 
This reflects the fact that only three subsamples were to be used for 
calibration, with the consequence that there is not much information 
about the variance of the weight of individual fish in this data set. It 
also emphasizes the importance of prior information in situations in 
which the data are sparse.

Discussion
Why Bayesian?

The model presented in this paper endeavors to answer a simple 
question: “Given my past experience and samples obtained, what 
should I think about the number of individuals in the large sample?”. 
Basing on the idea to use the concept of probability as a measure 
of personal degree of belief, the Bayesian approach is capable of 
answering such a question. All we need to do is to formalise in terms 
of probability what our past experience says about the distribution 
of the weight and about the number of individuals. The update of 
beliefs is obtained by applying the rules of probability calculus, and 
a quantitative answer to the original question is obtained in the form 
of the posterior distribution for the number of individuals in the large 
sample, providing an updated degree of belief in each possible value 
of the number of individuals. The frequentist approach, however, 
cannot provide a quantitative answer to the question. It is well known 
by statisticians, but not equally well appreciated by many applied 

scientists, that the frequentist approach deals only with the conditional 
distribution of observations given that the parameter values were 
known. The question for which the frequentist approach does provide 
a formal answer could then be stated as: “Given my past experience 
and a conjectured number of individuals in the large sample, what 
kind of samples could I expect to see if I repeatedly sampled the 
population for a very large number of times”. This question is quite 
different from the direct question concerning the unknown correct 
number of individuals in the sample. However, these two questions 
are obviously related, as it makes sense to believe more in numbers 
that would lead to data like those observed more frequently than in 
numbers that would make the observed data look more rare under 
the assumed sampling distribution. Thus, the result of the frequentist 
analysis can be intuitively connected to the question of actual interest, 
but the idea of direct probabilistic inference about the unknown 
number of individuals is lost.

Figure 1 Posterior distributions, obtained by using a Gamma model (solid 
line) and a Normal model (short dashed line), and prior distributions (dashed 
line) of the number (N) of fish in the tank (a), of the mean ( δ ) weight (b), and 
of the coefficient of variation ( δ ) of the weight (c), based on the knowledge 
about the total weight of fish in the rearing pond and on information from 
three subsamples.
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Why not to compare to frequentist results?

The numerical values of the frequentist confidence intervals and 
point estimates may sometimes be close to those of corresponding 
Bayesian posterior probability intervals and MAP estimates. This 
does not mean, however, that the choice of the approach would then 
not matter8 despite the similar values they are answers to different 
questions. Existence of such claims indicates that the results of one 
approach or the other have been misinterpreted. More commonly, the 
results of a frequentist analysis are interprested as if they were the 
results of a Bayesian analysis.9 For the above reasons we argue that 
direct comparison between the results of Bayesian and frequentist 
analysis is pointless. However, many scientific journals seem to insist 
on such a comparison when results of Bayesian models are presented, 
thus increasing the risk that the conceptual differences between the 
two approaches become completely confused.

Why bother to specify informative priors?

It might seem that the prior distributions of model parameters 
did not have much influence on the resulting inference about the 
unknown size of the large sample, because prior distributions of 
the mean weight and the population size happened to be relatively 
flat compared to resulting posterior distribution. However, the prior 
for the coefficient of variation has been important for the resulting 
posterior. The marginal likelihoods of the mean weight and the 
population size both obviously depend on the information about the 
variation of the weight and the observed data did not contain much 
information about that. Being wise afterwards, one could claim that 
it would have been sufficient to elicit expert information only about 
the variation of the weight and only specify vague priors for the other 
parameters. In this case the conclusions about the population size 
would have been practically the same, but the key thing to note is that 
it really only applies to this particular data and initial information. In 
order to provide honest updating of knowledge, the prior distributions 
and the model structure should be specified to reflect the state of 
information before obtaining data. At that stage it is unknown what 
kind of data points will be observed, and thus it is unknown how much 
the posterior distribution will in the end depend on the prior opinion.

Vague or reference priors have often been suggested to make the 
Bayesian analysis objective and to let data to speak for themselves, or 
to represent initial lack of information. At least in the context of the 
problem dealt in this paper, such ideas would lead to quite obscure 
situations. In any conceivable real application of the model presented 
here, the researcher using the model will know what items she or he 
is considering. Thus, depending on the details (species and age of 
animals, for example) given about the items and on her or his past 
experience about the items, there will be some information about the 
mean weight and the variation of the weight, as well as about the shape 
of the weight distribution. The fact that statistical inference about the 
number of individuals is required already tells that it is thought to be 
so large that it is not worthwhile to try count the items exactly. Would 
the inference about the number of individuals become independent of 
the researcher’s beliefs (objective) if she or he used vague reference 
priors as if pretending to know nothing about the number individuals, 
their mean weight and the variation of the weight? Obviously not. The 
inference would then be dominated by the likelihood function, which 
is just a statement of her or his conditional prior beliefs about data 
given the parameter values and viewed as a function of parameters.10 
The role of this subjective assumption about the shape of the weight 
distribution becomes more and more important as the number of 
samples taken from the population increases because the likelihoods 

imposed by each data point are multiplied with each other. Thus, there 
is no way around subjectivity in this context, nor in the statistical 
analysis as a whole.

Further development

The Bayesian model presented here can be used as a building 
block in more complex Bayesian models. For example, a model which 
describes the survival, harvest and reproduction of reared fish would 
need this type of model structure for the estimation of the number of 
stocked fish, the number of fish caught and the number of eggs from 
gonad samples. It could also be plugged into a stochastic VPA11, 12 to 
account for uncertainty about catches. When subsamples consist of 
only a single fish each, the inferences will generally be sensitive to 
the assumed shape of the weight distribution. If in doubt, one could 
consider extending the present model and apply non parametrically 
defined weight distributions.13 However, when each subsample 
contains larger amounts of fish, the assumed shape no longer plays a 
major role. This is because, when the number of fish in a subsample 
increases, and regardless of the shape of the weight distribution, the 
distribution of the sum of the weights resembles more and more a 
Normal distribution. On the other hand, for right-skewed weight 
distributions and small sample sizes the Gamma distribution can 
be regarded as safer choice. In our example the number of fish in 
each subsample was large enough to make the results robust to the 
choice between Gamma and Normal distributions. If all individuals 
were assumed to be of equal weight, and only measurement error 
was assumed to be present, then the problem could be seen as an 
estimation of a ratio parameter and methods proposed by Raftery & 
Schweder14 could be used. Subsamples of different sizes can be used 
at the same time in the analysis. For example, individual weights and 
weights of subsamples consisting of hundreds of fish can be utilized 
jointly. Finally, prior distributions of model parameters can be given 
a hierarchical structure in order to transfer information between 
exchange-able units, like fish farms, rearing ponds, or spawners.
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Parameterization of the gamma distribution
The Gamma distribution is parameterized in this paper in terms of 

the mean and the standard deviation. The probability density function 
of a Gamma distributed variable x is

https://doi.org/10.15406/jamb.2016.04.00095


Bayesian estimation of the number of individuals in a sample with a known weight 158
Copyright:

©2016 Samu et al.

Citation: Samu M, Romakkaniemi A, Arjas E. Bayesian estimation of the number of individuals in a sample with a known weight. J Aquac Mar Biol. 
2016;4(5):154‒158. DOI: 10.15406/jamb.2016.04.00095

References
1.	 Gulland JA (1955) Estimation of Growth and Mortality in Commercial 

Fish Pop-ulations. Fishery Investigations, Ministry of Agriculture and 
Fisheries 18(9): 46.

2.	 Stefansson G (1997) Notes on the Dynamics of Fish populations in 
Fish Stock Assessment Methods -VPA and Management Strategies. 
In: (Eds.), Nygard K & Lassen H, Copenhagen: Nordic Council of 
Ministers, TemaNord, pp. 557.

3.	 Ewing  R, Waters T, Lewis M, Sheahan J (1994) Evaluation on Inventory 
Procedures for Hatchery Fish I. Estimating Weights of Fish in Raceways 
and Transport Trucks. Progressive Fish Culturist 56(3): 153-159.

4.	 Bagenal T, Braum E (1978) Eggs and early Life History. In: Bagenal T 
(Ed.), Methods for Assessment of Fish Production in Fresh Waters, (3rd 
edn), Blackwell Scientific Publications, Oxford, UK, pp. 165-201.

5.	 Bernardo JM, Smith AFM (1994) Bayesian theory, Chichester, Wiley, 
England.

6.	 Gilks W, Richardson S, Spiegelhalter D(1995) Introducing Markov 
chain Monte Carlo in Markov Chain Monte Carlo in Practice. Gilks W, 
Richardson S, Spiegelhalter D (Eds.), Chapman and Hall, London, Uk.

7.	 Spiegelhalter D, Thomas A, Best N, LunnD (2003) WinBUGS version 
1.4 User Manual, Cambridge: MRC Biostatistics Unit 1-60.

8.	 Howson C, Urbach P (1991) Bayesian reasoning in science. Nature 350: 
371-374.

9.	 Lee P (1994) Bayesian statistics: An Introduction, (1st edn) Arnold, 
London, Uk.

https://doi.org/10.15406/jamb.2016.04.00095

	Title
	Abstract
	Keywords
	Introduction
	Sampling
	Probability model 
	Example: Number of fish in a rearing pond 
	Discussion
	Why Bayesian? 
	Why not to compare to frequentist results? 
	Why bother to specify informative priors? 
	Further development 

	Acknowledgements
	Parameterization of the gamma distribution 
	References
	Figure 1

