i{{® MedCrave

Step into the Wonld of Research

Journal of Aquaculture & Marine Biology

Research Article

8 Open Access ‘@

Bayesian estimation of the number of individuals in a

sample with a known weight

Abstract

We introduce a Bayesian probability model for making inferences about the unknown
number of individuals in a sample, based on known sample weight and on information
provided by subsamples with known weights and corresponding counts. Inherent in the
Bayesian approach, the model allows for an incorporation of prior information that is often
available about the sample size and other uncertain parameter values. As a result, the model
provides an estimate of the number of individuals in the sample in the form of a posterior
probability distribution that includes both the prior information and the interpretation of the
observed data. Such a result cannot be obtained using the frequentist approach. The model
presented here can be applied to a wide range of similar problems. Here our main focus
is stock assessment, where the task is the conversion of the catch weight into the number
of individuals in the catch. The model is easy to use due to availability of general purpose
MCMC simulation software, and it can be used either in a standalone fashion or embedded
into more complex probability models.
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Introduction

Counting the number of individuals in a large sample can be very
laborious or impractical. Instead of exact counting of all individuals,
the size of a large sample can be estimated by weighing it and then
using information about the mean weight of individuals obtained
from smaller samples. Estimation approaches based on this general
idea have a number of natural applications in aquatic sciences. For
instance, the number of fish in a commercial catch is often estimated
in this way in order to obtain data that would be suitable for typical
stock assessment methods.!? Further, the approach is apparently
commonly used in the estimation of the number of fish raised in fish
hatcheries for subsequent stocking.’ Besides estimating the number of
fish, the approach has been applied in e.g., estimating the number of
eggs in fish gonads.* However, estimates obtained this way will always
involve an element of uncertainty unless all individuals in the sampled
population are of exactly equal weight, and unless measurement
error is negligible. For a systematic analysis, this uncertainty
should be taken into account in all further considerations utilizing
these estimates. In fisheries science such uncertainty has been often
neglected, or frequentist methods have been applied. Unfortunately
frequentist methods cannot provide measurements of uncertainty
about parameters, even though the results of the frequentist analysis
are often phrased in a way which invites such a misinterpretation.

The Bayesian approach to statistical inference provides a flexible
framework for working with multiple levels of uncertainty, and is
therefore becoming increasingly popular in fisheries science. In the
Bayesian approach, uncertainty is described by assigning probability
distributions to quantities whose values are uncertain. Thus, in
particular, uncertain values of the sample size are presented in terms
of corresponding probability distributions. This paper presents the
development of a Bayesian probability model which can be used
to derive probabilistic estimates of the size of a sample of a known
weight. The model structure is introduced by considering samples of
fish, but the same logic applies to any kind of comparable items like
invertebrates, plants, stones etc.

Sampling

A sample containing N fish can be obtained from a fish population
either by simple random sampling or by some form of selective
sampling. In a typical case N is large, but the theory presented here
holds in principle for any positive integer value. On the other hand, the
population from which the sample is drawn is assumed to be infinitely
large. For example, fish living in a particular rearing pond are seen as
a sample from the potentially infinitely large population of similar fish
that could be produced in the given pond and under conditions similar
to present ones.

The sample of size N is then divided without selection into &
+1 subsamples, of which one is typically large compared to the
others. Here we denote the number of fish in the large sub sample
by n* and the number of fish in the smaller Sub samples by nj, j =
1,...,k, assuming then that

k
n*+Y n =N
r
f=1

The weight (s *) of the large subsample and the weights (sj) of the
smaller subsamples are assumed to have been measured accurately
enough to be treated as known, as well as the number of fish from
corresponding counts of the smaller subsamples. As a consequence,
only n* remains unknown and needs to be estimated. If sampling
from the fish population is made without any form of size selection,
samples of sizes n*, nl, ....,nk can be obtained as independent samples
directly from the population, and in any order.

Probability model

We begin by making the assumption that the weights (wi; i=1,...
,N) of individual fish are exchangeable for all values of N. This
assumption means in particular that the joint predictive distribution
of the weights, describing beliefs about the weights of the fish in the
sample, is always the same regardless which particular N fish would
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have been sampled, and how they would be ordered within the sample.
According to the celebrated representation theorem of de Finetti, the
assumption of exchangeability allows us to write the joint predictive
distribution (density) in the form.

pw w..,w)=1, lEIfE“‘._l' do(f) (1)

i=1

Where f is an unknown density function, and Q(f) denotes a
probability measure over all distribution functions. This can be
interpreted as if we had N independent fish weights taken from an
unknown weight distribution function f, which again is assigned a
prior probability distribution Q. The operational interpretation of Q (f)
is then ”what we believe the empirical weight distribution would look
like for a large sample”.® Our second assumption is a convention
which we make to simplify the analysis: we restrict the set of possible
weight distribution functions to parametric distribution families F, for
which it holds that if the individual weights wi follow independently
a fixed distribution f belonging to distribution family F, then also
arbitrary finite sums )’ wi follow a distribution which belongs to the
same distribution family. Gamma and Normal families are known to
satisfy this condition, and from now on we assume that F is either of
these two families. Within the chosen family (Gamma or Normal),
prior uncertainty about the weight distribution can be expressed by
assigning a prior distribution to two parameters of the distribution
family. Here we use mean p and standard deviation ¢ , but other
parameterizations can be used as well. Then the joint predictive
distribution of the individual weights can be written as

p (\ﬁ .HL_u....H'_\-} - ]# Jﬂ [lll f[w,|,u.c7]:| pluc)dedu (2)

i=1

where f'(wi | 4, 0) is the Gamma or Normal density, and p (u,0) is
a joint prior distribution of its parameters. Because individual weights
are conditionally independent given p and, the conditional expected
value and conditional standard deviation of the sample weight are 2 (|,
njjjEsnpop=and2 SD(|,)jjjsnnpc c=.Thisimplies that the
joint predictive distribution for the sample weights, given the sample
sizes nl,....,nk can be written in the form

. N
psisisom,n) =1, J,,I;[nf[sﬂw, m]}

=l
% f(s+|ne g, o) plp, o nadn+dady  (3)

This model can be also specified by the following sequence of
definitions:

: *n ~Dnpu, i=1,...k
’i‘|,£.',G',HJ {nJ;fﬁﬂ'),J .

i

5| ,H,-::r:.n' ~ Din -+ ,ﬁ.\rrn_'a}, (4)

ne~ D),
u = Dy,),

o~ D),

where D(mean; standard deviation) in each case denotes a suitable
prior probability distribution. The Normal distribution can be used
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for sample weights if all nj:s are large,as the distribution of the sum
of independent random variables approaches the Normal distribution
when nj increases, regardless of the shape of the distribution of
individual weights. It should be noted, however, that the Normal
distribution allows also for negative weights, which is not realistic.
Prior distributions for p, 2 ¢ and n * can have any shapes, as long as
it is recognized that they can have only positive values. If the sample
weights (sl,...sk, s*) are not observed without non-negligible error,
the model can be extended to account for measurement error by
treating the true sample weights as unknown and by adding an extra
layer to the model specification:

m s v ~D(s v ) j=1L..,k
iood i 54

me| s ve ~ Dse ve), (5)

where observed weight measurements (ml...mk , m* ) and
corresponding standard deviations (v1...vk, v¥) are assumed to be
known. The form of the measurement error distribution can be in
principle chosen in any way that would seem appropriate in the given
context. Information about the shape of the distribution and about its
standard deviation could come from expert judgement and/or from
an independent study of the measurement error. Despite the simple
model structure, the posterior distribution is analytically intractable
and approximation methods are needed for a numerical evaluation
of the probabilities of interest. Our approach is to use Markov
chain Monte Carlo (MCMC) simulation.® to draw a large number of
samples from the posterior distribution, and use corresponding sample
averages as summaries of the posterior distribution. This task can be
accomplished easily by using a general purpose MCMC software, like
WinBUGS.’

Example: Number of fish in a rearing pond

Suppose that all N fish were captured from the rearing pond
and moved to a tank. We begin by making the assumption that
the weights wi of the fish in the rearing pond are a conditionally
independent sample from a Gamma distribution characterized by
unknown mean and coefficient of variation & pu = . The sample of size
N was then divided into four subsamples, of which one has unknown
size n*, and the others are of known sizes n1=108,n2 =101, n3 =115.
It is also assumed that the manufacturer of the scale has specified
that the observed weights vary symmetrically around the true weight
with standard deviation of 10g. Here we use a Normal distribution to
describe the variation of the measurements (mj, m*) around the true
value. Prior distributions for model parameters N, p and were obtained
by interviewing an expert who is familiar with local aquacultural
practices. He was told that the rearing pond had bottom area of
50m2, it was located in Northern Finland and contained two-year-old
salmon smolts. We formalised his prior beliefs by the following prior
distributions:

t ~ Gamma( 6840, 3520)
N =2000 - u (6)

p o~ Gamma(46.2,7.51)

& ~ Gamma(24.13,10).

In addition to the above specification, parameter u was constrained
to lie in the interval [0,20 000] and parameter 8 in the interval,>® that
is, within these intervals the prior probability density is proportional to
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the distributions specified above, and is zero elsewhere. Parameter u
was used as an auxiliary variable in order to obtain a left-skewed prior
density for N. The rest of the model was specified by the equations

m |s ~ N(s 10}
S F 4
m, |s ~N(s 10)
5 | g, on ~ Gamma(n: u, -ﬁ?r)}u},

5, | ,e.-,z:r'nj ~ (:'anmm[n} ,.u',,IJMJ i),

. 3

n =N-Xn,
J=l

Jj=1...13

The observed weights of the samples were m*=451 360g, ml
=4200g, m2 =4300g and m3 =4500g. Posterior distributions for p , &
and N were calculated by using WinBUGS. The posterior distribution
for N describes the uncertainty about the number of fish in the rearing
pond (Figure 1a). The 95% probability interval (PI) of the number
of fish in the tank is [11130, 12030], and the most probable number
(maximum a posteriori (MAP) estimate) is about 11570. If the group
of fish in the tank is meant to be a mandatory release group of at
least 12000 smolts, it might be of interest to calculate the probability
that there are 12000 fish or more in the tank. This can be calculated
during the MCMC simulation or from the resulting posterior density.
In this case the probability is 0.03, carrying the message that it is
unlikely that the targeted release number would have been reached.
Nearly identical results were obtained by assuming that the individual
weights are Normally distributed (PI=[11 090,12 020], MAP=11 550,
P (N > 12 000, data) = 0.03) (Figure 1). The posterior distribution
for the mean weight () p is also very informative compared to its
prior distribution (Figure 1b). However, the posterior distribution
of the coefficient of variation ( ) é has not been updated from its
prior distribution as strongly as the other parameters (Figure 1c).
This reflects the fact that only three subsamples were to be used for
calibration, with the consequence that there is not much information
about the variance of the weight of individual fish in this data set. It
also emphasizes the importance of prior information in situations in
which the data are sparse.

Discussion
Why Bayesian?

The model presented in this paper endeavors to answer a simple
question: “Given my past experience and samples obtained, what
should I think about the number of individuals in the large sample?”.
Basing on the idea to use the concept of probability as a measure
of personal degree of belief, the Bayesian approach is capable of
answering such a question. All we need to do is to formalise in terms
of probability what our past experience says about the distribution
of the weight and about the number of individuals. The update of
beliefs is obtained by applying the rules of probability calculus, and
a quantitative answer to the original question is obtained in the form
of the posterior distribution for the number of individuals in the large
sample, providing an updated degree of belief in each possible value
of the number of individuals. The frequentist approach, however,
cannot provide a quantitative answer to the question. It is well known
by statisticians, but not equally well appreciated by many applied
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scientists, that the frequentist approach deals only with the conditional
distribution of observations given that the parameter values were
known. The question for which the frequentist approach does provide
a formal answer could then be stated as: “Given my past experience
and a conjectured number of individuals in the large sample, what
kind of samples could I expect to see if I repeatedly sampled the
population for a very large number of times”. This question is quite
different from the direct question concerning the unknown correct
number of individuals in the sample. However, these two questions
are obviously related, as it makes sense to believe more in numbers
that would lead to data like those observed more frequently than in
numbers that would make the observed data look more rare under
the assumed sampling distribution. Thus, the result of the frequentist
analysis can be intuitively connected to the question of actual interest,
but the idea of direct probabilistic inference about the unknown
number of individuals is lost.
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Figure | Posterior distributions, obtained by using a Gamma model (solid
line) and a Normal model (short dashed line), and prior distributions (dashed
line) of the number (N) of fish in the tank (a), of the mean ( § ) weight (b), and
of the coefficient of variation ( 3 ) of the weight (c), based on the knowledge
about the total weight of fish in the rearing pond and on information from
three subsamples.
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Why not to compare to frequentist results?

The numerical values of the frequentist confidence intervals and
point estimates may sometimes be close to those of corresponding
Bayesian posterior probability intervals and MAP estimates. This
does not mean, however, that the choice of the approach would then
not matter® despite the similar values they are answers to different
questions. Existence of such claims indicates that the results of one
approach or the other have been misinterpreted. More commonly, the
results of a frequentist analysis are interprested as if they were the
results of a Bayesian analysis.’ For the above reasons we argue that
direct comparison between the results of Bayesian and frequentist
analysis is pointless. However, many scientific journals seem to insist
on such a comparison when results of Bayesian models are presented,
thus increasing the risk that the conceptual differences between the
two approaches become completely confused.

Why bother to specify informative priors?

It might seem that the prior distributions of model parameters
did not have much influence on the resulting inference about the
unknown size of the large sample, because prior distributions of
the mean weight and the population size happened to be relatively
flat compared to resulting posterior distribution. However, the prior
for the coefficient of variation has been important for the resulting
posterior. The marginal likelihoods of the mean weight and the
population size both obviously depend on the information about the
variation of the weight and the observed data did not contain much
information about that. Being wise afterwards, one could claim that
it would have been sufficient to elicit expert information only about
the variation of the weight and only specify vague priors for the other
parameters. In this case the conclusions about the population size
would have been practically the same, but the key thing to note is that
it really only applies to this particular data and initial information. In
order to provide honest updating of knowledge, the prior distributions
and the model structure should be specified to reflect the state of
information before obtaining data. At that stage it is unknown what
kind of data points will be observed, and thus it is unknown how much
the posterior distribution will in the end depend on the prior opinion.

Vague or reference priors have often been suggested to make the
Bayesian analysis objective and to let data to speak for themselves, or
to represent initial lack of information. At least in the context of the
problem dealt in this paper, such ideas would lead to quite obscure
situations. In any conceivable real application of the model presented
here, the researcher using the model will know what items she or he
is considering. Thus, depending on the details (species and age of
animals, for example) given about the items and on her or his past
experience about the items, there will be some information about the
mean weight and the variation of the weight, as well as about the shape
of the weight distribution. The fact that statistical inference about the
number of individuals is required already tells that it is thought to be
so large that it is not worthwhile to try count the items exactly. Would
the inference about the number of individuals become independent of
the researcher’s beliefs (objective) if she or he used vague reference
priors as if pretending to know nothing about the number individuals,
their mean weight and the variation of the weight? Obviously not. The
inference would then be dominated by the likelihood function, which
is just a statement of her or his conditional prior beliefs about data
given the parameter values and viewed as a function of parameters.'
The role of this subjective assumption about the shape of the weight
distribution becomes more and more important as the number of
samples taken from the population increases because the likelihoods
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imposed by each data point are multiplied with each other. Thus, there
is no way around subjectivity in this context, nor in the statistical
analysis as a whole.

Further development

The Bayesian model presented here can be used as a building
block in more complex Bayesian models. For example, a model which
describes the survival, harvest and reproduction of reared fish would
need this type of model structure for the estimation of the number of
stocked fish, the number of fish caught and the number of eggs from
gonad samples. It could also be plugged into a stochastic VPA! 2 to
account for uncertainty about catches. When subsamples consist of
only a single fish each, the inferences will generally be sensitive to
the assumed shape of the weight distribution. If in doubt, one could
consider extending the present model and apply non parametrically
defined weight distributions.’* However, when each subsample
contains larger amounts of fish, the assumed shape no longer plays a
major role. This is because, when the number of fish in a subsample
increases, and regardless of the shape of the weight distribution, the
distribution of the sum of the weights resembles more and more a
Normal distribution. On the other hand, for right-skewed weight
distributions and small sample sizes the Gamma distribution can
be regarded as safer choice. In our example the number of fish in
each subsample was large enough to make the results robust to the
choice between Gamma and Normal distributions. If all individuals
were assumed to be of equal weight, and only measurement error
was assumed to be present, then the problem could be seen as an
estimation of a ratio parameter and methods proposed by Raftery &
Schweder'* could be used. Subsamples of different sizes can be used
at the same time in the analysis. For example, individual weights and
weights of subsamples consisting of hundreds of fish can be utilized
jointly. Finally, prior distributions of model parameters can be given
a hierarchical structure in order to transfer information between
exchange-able units, like fish farms, rearing ponds, or spawners.
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Parameterization of the gamma distribution

The Gamma distribution is parameterized in this paper in terms of
the mean and the standard deviation. The probability density function
of'a Gamma distributed variable x is

a-l1

b x - fx

rla) €

plxla, p=
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