Effects of Salt and Bittern on Inosinic acid- and Inosine-Degrading Enzyme Activity in Pacific Cod Muscle

Abstract

Pacific cod is often preserved with salt, which maintains the flavor of the fish. The effects of salt on IMPase, an enzyme that degrades inosinic acid (a flavor component), and on HxRase, an enzyme that produces hypoxanthine (a non-flavor component) require investigation to improve our understanding of the influence of salt on the flavor of Pacific cod. Enzymes, including IMPase and HxRase, are strongly influenced by salts. Bitters are compounds that include high salt concentrations and are sold as food additives, but the effects of bitters on flavor are unknown. Because of their salt content, bitters are expected to help maintain the flavor and quality of fish. In this study, we investigate the effects of NaCl and MgCl₂, major salt and bitter compounds, on IMPase and HxRase in Pacific cod. In addition, we compare the effects of bitters derived from seawater or from ion exchange, and of CaCl₂ and MgSO₄ (compounds in salts and bitters), and consider the suitability of these compounds for fish preservation. The activity of IMPase and HxRase decreased with increasing concentrations of NaCl and MgCl₂, and NaCl had a stronger effect on IMPase while HxRase was more strongly inhibited by MgCl₂. We observed mixed noncompetitive inhibition of IMPase by NaCl and 1.7% MgCl₂ and of HxRase by 0.42–1.7% MgCl₂ and 1.7% NaCl. In contrast, 0.42–0.83% NaCl promoted HxRase activity. IMPase and HxRase activity in Pacific cod was both promoted and non-competitively inhibited by NaCl and MgCl₂ depending on the salt concentrations. Furthermore, the characteristics of inhibition of IMPase and HxRase by NaCl and MgCl₂ differed. CaCl₂ inhibited the activity of both enzymes, but MgSO₄ promoted IMPase activity significantly. We conclude that the use of salts or bitters derived from ionic exchange is advantageous for preserving Pacific cod.

Keywords
Pacific cod; IMPase; HxRase; Salts; Bitterns

Abbreviations

ATP: Adenosine Triphosphate; IMP: Inosinic Acid; NaCl: Sodium Chloride; MgCl₂: Magnesium Chloride; ANOVA: Analysis of Variance

Introduction

Pacific cod (Gadus macrocephalus) inhabits the entire North Pacific region and supports the third largest fishery after walleye pollock (Theragra chalcogramma) and Atlantic cod (Gadus morhua). Although walleye pollock is often processed into various food products, Pacific and Atlantic cod are often preserved using salt for transport and consumption worldwide. Salt suppresses bacterial growth and maintains the primary flavor compounds of walleye pollock and silver whiting (Sillago japonica) [1]; thus, salt is considered an optimal material for processing fish.

Inosinic acid (IMP) is the major flavor component of Pacific cod and accumulates in fish muscle as a breakdown product of adenosine triphosphate (ATP). ATP is broken down enzymatically via the following pathway:

ATP → adenosine diphosphate → adenosine monophosphate → IMP →inosine→ hypoxanthine [2].

IMP accumulates in fish muscle, because the degradation of ATP occurs earlier than the breakdown of IMP [2]. However, IMP is degraded by IMPase to the non-flavor compounds inosine (HxR) and hypoxanthine (Hx). Therefore, in order to preserve flavor compounds in fish, the most suitable conditions for suppressing IMPase activity must be determined. Several types of IMPases are known [3] these enzymes function differently in different fish species, and their activity, thus, should be investigated individually for each species. Here, we investigate the ideal conditions for suppression of IMPase activity to preserve flavor compounds in Pacific cod.

Hypoxanthine is a bitter flavor component in cod flesh preserved on ice [4,5]. Because Hx is produced by degradation of HxR by HxRase, HxRase activity must be suppressed to decrease the production of Hx. IMPase activity is relatively high in cod, and this fish tends to accumulate HxR, similar to European sea bass [6] and Atlantic bonito [7]. Therefore, suppression of IMPase and HxRase activity can inhibit the production of bitter compounds in Pacific cod.

Sodium chloride (NaCl) is frequently used in fish preservation, and bittern, which contains liquid magnesium chloride (MgCl₂),...
has been marketed as a food additive in recent years and has potential for use in fish preservation.

Salts and bitterns are classified according to the manufacturing method used to produce them; some compounds can be produced by various methods. The first category consists of solar salts or seawater bitterns and includes MgSO_4, MgCl_2, and NaCl. The second category consists of compounds produced using ion-exchange membrane methods and includes NaCl, CaCl_2, and MgCl_2 [8-11]. Because enzymes are readily affected by salts [12], enzyme activity can be influenced by adjusting the salt compounds used in a given process. Therefore, the effects of various salts (i.e. NaCl, MgCl_2, CaCl_2, and MgSO_4) on IMPase and salt compounds used in a given process. Therefore, the effects of MgCl_2, commonly used in fish preservation, and of bittern, which is HxRase activities in Pacific cod should be evaluated.

In this study, we investigated the effects of salts that are commonly used in fish preservation, and of bittern, which is produced by salt manufacture, on the preservation of flavor compounds and suppression of production of bitter compounds in Pacific cod. To do this, we examined the effects of NaCl and MgCl_2 on IMPase and HxRase activity. In addition, we compared the effects of the salts and bittern to determine the ideal compounds for preservation of Pacific cod.

Materials and Methods

Sample preparation

Pacific cod were obtained from the wild in Hokkaido, Japan, between December 2013 and March 2014, and samples of these fish were collected and analyzed. IMPase and HxRase were extracted as enzyme solution by homogenizing combined muscle samples from the three fish in water (1:3 v/v). The homogenate was dialyzed against water for 2 days, after which the dialyzate was filtered (No. 1; Advantec Co., Ltd., Tokyo, Japan) and diluted twice at 10 °C.

Comparison of reaction rate of IMPase and HxRase activity

Enzyme activity should be measured when the reaction rate is constant. We measured IMPase and HxRase activity at 0–50 h and confirmed the reaction rates to determine the appropriate time of measurement. We prepared three standard mixtures consisting of the following (total volume, 4 mL): 2 mL of 50 mM maleic acid / Tris/NaOH (pH 6.9) (for IMPase measurement) or 2 mL of 50 mM KH_2PO_4/NaOH (pH 6.9) (for HxRase measurement) [13] as buffers; and 0.3 mL of 25 mM IMP or HxR with 0.25–1 mL of 10% NaCl or MgCl_2 solution was added. Incubation and measurements were performed as described in comparison of reaction rate of IMPase and HxRase activity.

Effects of NaCl and MgCl_2 on IMPase and HxRase activity

We added NaCl and MgCl_2 to the reaction mixtures in stages and compared the activity of IMPase and HxRase to confirm the effects of NaCl (the major component of salt) and MgCl_2 (the major component of bittern) on these enzymes. The three standard reaction mixtures (4 mL) were prepared as described in comparison of reaction rate of IMPase and HxRase activity, and 0.25–1 mL of 10% NaCl or MgCl_2 solution was used. Incubation and measurements were performed as described in comparison of reaction rate of IMPase and HxRase activity.

Inhibition of IMPase and HxRase activity by NaCl and MgCl_2

We investigated the inhibition of IMPase and HxRase using the Michaelis constant (K_m) and maximum reaction rate (V_max). The three standard reaction mixtures (4 mL) were as described in comparison of reaction rate of IMPase and HxRase activity, except that 0.1–0.5 mL of 25 mM IMP or HxR and 0.25–1 mL of 10% NaCl or MgCl_2 solution was used. Incubation and measurements were performed as described in comparison of reaction rate of IMPase and HxRase activity.

Effects of bitterns and various salts on IMPase and HxRase

The three standard mixtures were used with the following modifications: 1 mL of bittern or 10% NaCl, MgCl_2, CaCl_2, or MgSO_4 solution was added. Incubation and measurements were performed as described in comparison of reaction rate of IMPase and HxRase activity.

Statistical analysis

Data on levels of free inorganic phosphate or Hx were subjected to one-way analysis of variance (ANOVA) using the least significant difference method. The significance threshold was P < 0.05. All analyses were performed in Microsoft Excel (Microsoft Corp, Redmond, WA).

Results

Enzyme reaction rate and activity

IMPase and HxRase activity in Pacific cod are presented according to the relationship between the concentration of inorganic phosphate produced by IMP degradation or the concentration of Hx produced by HxR degradation and reaction time for 50 h (Figure 1). In general, reaction rates decrease and product concentrations reach a steady state over the course of an enzymatic reaction [15]. However, IMPase activity was

with the objective of measuring enzyme activity when reaction rates were constant, we used the IMPase and HxRase activity at 24 h for subsequent analyses.

Effect of NaCl and MgCl₂ on IMPase and HxRase activity

The effects of NaCl and MgCl₂ are shown in Table 1. The results are presented as activity observed under exposure to the salts relative to activity in the absence of salt addition (considered as 100% activity). IMPase and HxRase activity decreased significantly ($P<0.05$) as the concentration of NaCl and MgCl₂ increased. Changes in MgCl₂ concentration had a stronger effect on enzyme activity than did changes in NaCl concentration. IMPase was inhibited more strongly by NaCl, and HxRase was inhibited more strongly by MgCl₂ in the examined concentration range, demonstrating the distinct properties of each enzyme.

Inhibitory effects of NaCl and MgCl₂ on IMPase and HxRase activity

We generated Lineweaver-Burk plots that showed the reciprocal substrate concentrations and reaction rates to investigate the inhibition of IMPase and HxRase by different final salt concentrations (Figures 2 and 3). The reaction rates increased when the concentrations of substrate increased ($P<0.05$), as seen in the K_s and V_{max} values (Table 2).

The K_s and V_{max} values for IMPase activity in Pacific cod (Table 2 and Figure 2) indicated contrasting effects of different concentrations of various salts. Mixed noncompetitive inhibition of IMPase by NaCl and 1.7% MgCl₂ was observed (Figure 2); product generation was inhibited as NaCl joined the IMPase and IMPase-substrate complex. As shown in Figure 4, noncompetitive enzyme inhibition was observed.

The Michaelis-Menten equation is shown as follows:

$$v = \frac{V_{max} [S]}{K_m + [S]}, \quad A = 1 + \frac{[I]}{K_t}, \quad B = 1 + \frac{[I]}{K_t}$$

And a Lineweaver-Burk plot was created using the following equation:

$$\frac{1}{v} = \frac{AK_m}{V_{max}[S]} + \frac{B}{V_{max}}, \quad A = 1 + \frac{[I]}{K_t}, \quad B = 1 + \frac{[I]}{K_t}$$

The slope on the Lineweaver-Burk plot upon addition of 0.42% NaCl was smaller than that after no salt addition, whereas the intercept upon addition of 0.42% NaCl was higher than that after no salt addition. Because the lines crossed at $x > 0$ and $y > 0$, the conditions were as follows:

$$\frac{K_m}{V_{max}} > \frac{AK_m}{V_{max}}, \quad \frac{1}{V_{max}} < \frac{B}{V_{max}}, \quad \frac{1}{A-1} > 0, \quad \frac{B}{A-1} > \frac{1}{1-\alpha}$$

From the above conditions, we determined that NaCl joined only ES (IMP-IMPase) when 0.42% NaCl was added. When 0.83% and 1.7% NaCl were added (Figure 2), the following conditions were observed:

$$\frac{K_m}{V_{max}} < \frac{AK_m}{V_{max}}, \quad \frac{1}{V_{max}} < \frac{B}{V_{max}}, \quad \frac{1}{A-1} < 0, \quad \frac{B}{A-1} < 0$$

Thus, NaCl joined both E (IMP) and ES (IMP-IMPase), with the E (IMPase) combination being stronger.

Figure 1: Activity of IMPase (A) and HxRase (B) in Pacific cod muscle as a function of reaction time until 48 h. Enzyme activity was determined by concentrations of inorganic phosphate (PO₄) and hypoxanthine (Hx). Bars denote standard deviation of the mean (\pm SD).

- IMPase activity in Pacific cod (A)
 - Linear approximation: $y = 1.4x - 16$, $R^2 = 0.86$ (until 50h)
 - Equation on the left shows the linear approximation and correlation coefficients for the entire reaction time (0–48h); equations on the right are for the reaction from zero to 24 h.
- HxRase activity in Pacific cod (B)
 - Linear approximation: $y = 0.018x - 0.12$, $R^2 = 0.89$ (until 50h)
 - Linear approximation: $y = 0.0095x - 0.022$, $R^2 = 0.99$ (until 24h)

Figure 2: Interaction of NaCl and MgCl₂ on IMPase and HxRase activity. The effects of NaCl and MgCl₂ are shown in Table 1. The results are presented as activity observed under exposure to the salts relative to activity in the absence of salt addition (considered as 100% activity). IMPase and HxRase activity decreased significantly ($P<0.05$) as the concentration of NaCl and MgCl₂ increased. Changes in MgCl₂ concentration had a stronger effect on enzyme activity than did changes in NaCl concentration. IMPase was inhibited more strongly by NaCl, and HxRase was inhibited more strongly by MgCl₂ in the examined concentration range, demonstrating the distinct properties of each enzyme.

Figure 3: Effects of NaCl and MgCl₂ on IMPase and HxRase activity. The effects of NaCl and MgCl₂ are shown in Table 1. The results are presented as activity observed under exposure to the salts relative to activity in the absence of salt addition (considered as 100% activity). IMPase and HxRase activity decreased significantly ($P<0.05$) as the concentration of NaCl and MgCl₂ increased. Changes in MgCl₂ concentration had a stronger effect on enzyme activity than did changes in NaCl concentration. IMPase was inhibited more strongly by NaCl, and HxRase was inhibited more strongly by MgCl₂ in the examined concentration range, demonstrating the distinct properties of each enzyme.

Figure 4: Noncompetitive enzyme inhibition was observed. The Michaelis-Menten equation is shown as follows:

$$v = \frac{V_{max} [S]}{K_m + [S]}, \quad A = 1 + \frac{[I]}{K_t}, \quad B = 1 + \frac{[I]}{K_t}$$

And a Lineweaver-Burk plot was created using the following equation:

$$\frac{1}{v} = \frac{AK_m}{V_{max}[S]} + \frac{B}{V_{max}}, \quad A = 1 + \frac{[I]}{K_t}, \quad B = 1 + \frac{[I]}{K_t}$$

The slope on the Lineweaver-Burk plot upon addition of 0.42% NaCl was smaller than that after no salt addition, whereas the intercept upon addition of 0.42% NaCl was higher than that after no salt addition. Because the lines crossed at $x > 0$ and $y > 0$, the conditions were as follows:

$$\frac{K_m}{V_{max}} > \frac{AK_m}{V_{max}}, \quad \frac{1}{V_{max}} < \frac{B}{V_{max}}, \quad \frac{1}{A-1} > 0, \quad \frac{B}{A-1} > \frac{1}{1-\alpha}$$

From the above conditions, we determined that NaCl joined only ES (IMP-IMPase) when 0.42% NaCl was added. When 0.83% and 1.7% NaCl were added (Figure 2), the following conditions were observed:

$$\frac{K_m}{V_{max}} < \frac{AK_m}{V_{max}}, \quad \frac{1}{V_{max}} < \frac{B}{V_{max}}, \quad \frac{1}{A-1} < 0, \quad \frac{B}{A-1} < 0$$

Thus, NaCl joined both E (IMP) and ES (IMP-IMPase), with the E (IMPase) combination being stronger.

Table 1: Effects of different concentrations of NaCl and MgCl$_2$ on IMPase and HxRase activity in Pacific cod relative to activity in the absence of salt (100%).

<table>
<thead>
<tr>
<th>Salt</th>
<th>Salt Concentration (%)</th>
<th>IMPase activity</th>
<th>HxRase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive-free</td>
<td></td>
<td>0.42</td>
<td>100</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.42</td>
<td>0.83</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>1.7</td>
<td>0.42</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>0.42</td>
<td>0.83</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>1.7</td>
<td>0.42</td>
</tr>
</tbody>
</table>

The measured enzyme activities at 100% were as follows: IMPase, 10 mg PO$_4$ (L 24 h)$^{-1}$; HxRase, 0.33 mmol Hx (L 24 h)$^{-1}$ at pH 6.9. Values are shown as relative activity in the absence of salt addition (considered as 100% activity) and means (SD) of three independent determinations.

Table 2: Changes in K_m and V_{max} values for IMPase and HxRase activity for each concentration of NaCl and MgCl$_2$.

<table>
<thead>
<tr>
<th>Salt</th>
<th>K_m (mM)</th>
<th>V_{max} (mmol/h/L)</th>
<th>K_m (mM)</th>
<th>V_{max} (mmol/h/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive-free</td>
<td>0.47</td>
<td>13</td>
<td>0.62</td>
<td>0.47</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.27</td>
<td>11</td>
<td>0.58</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>11</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>0.28</td>
<td>164</td>
<td>0.85</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>51</td>
<td>0.97</td>
<td>0.43</td>
</tr>
</tbody>
</table>

K_m and V_{max} values were calculated from Figures 2 and 3. In contrast, although mixed noncompetitive inhibition of IMPase was observed with the addition of 1.7% MgCl$_2$, IMPase activity was promoted markedly by lower concentrations of MgCl$_2$. MgCl$_2$ joined ES (IMP-IMPase) in a manner more similar to that observed after the addition of 0.83% and 1.7% NaCl. The higher IMPase V_{max} values observed after addition of 0.42-0.83% MgCl$_2$ than after no salt addition (Table 2) showed that the rate of enzyme–substrate reaction was rapid. The inhibitory effect of NaCl was higher than that of MgCl$_2$ on IMPase because the K_m and V_{max} values were lower after addition of 1.7% NaCl than after addition of 1.7% MgCl$_2$. The K_m and V_{max} values for HxRase activity in Pacific cod (Table 2, Figure 3) revealed contrasting effects of the various salts (Figure 3). Mixed noncompetitive inhibition of HxRase was observed by 0.42-1.7% MgCl$_2$ and 1.7% NaCl, whereas 0.42-0.83% NaCl promoted HxRase activity. Further, NaCl joined only E (HxRase) when 1.7% NaCl was added. This condition was as follows (Figure 3):

$$\frac{K_m}{V_{max}} < \frac{AK_m}{V_{max}} \quad \frac{1}{V_{max}} > \frac{B}{V_{max}} \quad A - 1 > 0 \quad \frac{B - A}{1 - A} > 0$$

On the other hand, as observed in the mixed noncompetitive inhibition, product generation was inhibited as MgCl$_2$ joined HxRase and the HxRase-substrate complex. Characteristics of inhibition after the addition of MgCl$_2$ depended on the concentration added. Because conditions were the same after addition of 0.42% MgCl$_2$ or 1.7% NaCl, MgCl$_2$ joined only E (HxRase) when 1.7% NaCl was added. This condition was as follows (Figure 3):

$$\frac{K_m}{V_{max}} < \frac{AK_m}{V_{max}} \quad \frac{1}{V_{max}} < \frac{B}{V_{max}} \quad A - 1 < 0 \quad \frac{B - A}{1 - A} > 0$$

From the above, MgCl$_2$ was found to join both E (HxRase) and ES (HxR-HxRase), with the E combination being stronger. After the addition of 1.7% MgCl$_2$, the condition was as follows (Figure 3):

$$\frac{K_m}{V_{max}} < \frac{AK_m}{V_{max}} \quad \frac{1}{V_{max}} < \frac{B}{V_{max}} \quad A - 1 < 0 \quad \frac{B - A}{1 - A} > 0$$

Thus, after 1.7% MgCl$_2$ was added, a strong ES (HxR–HxRase) combination was noted.

Effects of bitterns and other salts on IMPase and HxRase activity

The effects of bitterns (derived from seawater or ion-exchange membrane) and various salts (NaCl, MgCl$_2$, CaCl$_2$, and MgSO$_4$) on IMPase and HxRase in Pacific cod are shown in Table 3. The results are presented as activity under salt exposure relative to activity in the absence of salts (considered as 100% activity). Both IMPase and HxRase activity were changed significantly by the addition of bitterns or various salts ($P < 0.05$). The activity of both enzymes was inhibited by bitterns, and a stronger effect was observed for both enzymes obtained from ion exchange. Both enzymes were inhibited by all salts, with the exception of promotion of IMPase activity by MgSO$_4$. IMPase and HxRase activity with addition of CaCl$_2$ were shown as reference values, because Ca$^{2+}$ reacts with PO$_4^{3–}$ in buffer and precipitates as Ca$_3$(PO$_4$)$_2$.

Discussion

Effects of NaCl and MgCl$_2$ on IMPase and HxRase activity

The influence of NaCl and MgCl$_2$ on IMPase and HxRase activity in Pacific cod was confirmed by the inhibition of enzyme activity when the concentration of these salts increased. However, the effects of the salts differed for the two enzymes, with stronger inhibition of IMPase by NaCl than by MgCl$_2$, and the reverse effects on HxRase.

IMPase activity in yellowtail (*Seriola quinqueradiata*)
Effects of Salt and Bittern on Inosinic acid- and Inosine-Degrading Enzyme Activity in Pacific Cod Muscle

Figure 2: Lineweaver–Burk plots of IMPase activity in Pacific cod muscle in the presence of NaCl (A) and MgCl₂ (B). Bars denote standard deviation of the mean (n = 3). (IMP) shows the concentration of inosinic acid (IMP) (mM).

• 0.42% NaCl or MgCl₂; ■ 0.83% NaCl or MgCl₂; ♦ 1.7% NaCl or MgCl₂; ▲: No salt

Figure 3: Lineweaver–Burk plots of HxRase activity in Pacific cod muscle in the presence of NaCl (A) and MgCl₂ (B). Bars denote standard deviation of the mean (n = 3). (HxR) shows the concentration of inosine (HxR) (mM).

• 0.42% NaCl or MgCl₂; ■ 0.83% NaCl or MgCl₂; ♦ 1.7% NaCl and MgCl₂; ▲: No salts

Figure 4: Model of the inhibition on enzyme.

E: enzyme; S: substrate; I: inhibitor; P: product; in this study, E shows IMPase or HxRase, S shows IMP or Hx, I shows NaCl, and P shows PO₄ or Hx.

treated with approximately 0.1% Mg²⁺ was approximately 95% that of HxRase activity in the absence of salts, suggesting that HxRase activity will be promoted at Mg²⁺ concentrations of <0.1%. Therefore, HxRase activity is inhibited more easily in sand dab than in Pacific cod. On the other hand, HxRase activity in common squid was promoted by 0.012% Mg²⁺ [20], indicating that the effects of Mg²⁺ on the activity of that enzyme differ in different fish. Therefore, the properties of HxRase are likely to...
Effects of bitterns and salts on IMPase and HxRase activity in Pacific cod relative to activity in the absence of salt (100%).

<table>
<thead>
<tr>
<th>Additive-free</th>
<th>IMPase Activity</th>
<th>HxRase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100*</td>
<td>100*</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Effects of bitterns and salts on IMPase and HxRase activity in Pacific cod relative to activity in the absence of salt (100%).

Measured enzyme activities at 100% were as follows: IMPase, 10 mg PO₄(1.24 h)⁻¹; HxRase, 0.33 mM of Hx (1.24 h)⁻¹ at pH 6.9. Values are shown as relative activity in the absence of salt addition (considered as 100% activity) and means (SD) of three independent determinations.

Inhibitory effects of NaCl and MgCl₂ on IMPase and HxRase activities

The IMPase and HxRase activities in Pacific cod were both inhibited by NaCl and MgCl₂, depending on the salt concentrations. Furthermore, the inhibition style of NaCl and MgCl₂ on IMPase and HxRase were different. In this study, all the enzymes of Pacific cod were investigated. Since IMPase and HxRase are not refined enzymes, future studies should investigate the effect of salts on refined IMPase and HxRase. It has been reported that IMPase and HxRase activity in walleye pollock and silver whiting were more markedly than IMPase activity by NaCl and MgCl₂.

Conclusion

In this study, we investigated the effect of various salts and bitterns on IMPase and HxRase in Pacific cod muscle, and we assessed the suitability of these processesable salts and bitterns. IMPase and HxRase activities decreased with increasing concentrations of NaCl and MgCl₂, and NaCl exerted stronger effect on IMPase while HxRase was more strongly inhibited by MgCl₂. In addition, the style of inhibition by NaCl and MgCl₂ depends on the salt concentration. Activity of both enzymes was more strongly inhibited by bitterns obtained via ion exchange than from seawater. In addition, IMPase and HxRase activity was inhibited by CaCl₂ but IMPase promoted by MgSO₄. Therefore, it is preferable to use salt or bittern produced by ion exchange, because these compounds contain CaCl₂. In addition, IMPase and HxRase activity was inhibited, flavor compounds were preserved, and the production of bitter components was inhibited when the concentration of salts exceeded 1.7%.

References

