Atomic force microscopy based infrared (AFM–IR) spectroscopy and nuclear resonance vibrational spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation with the passage of time

Image introduction

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Atomic Force Microscopy Based Infrared (AFM–IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 & 2). It should be noted that malignant human cancer cells and tissues were exposed under white synchrotron radiation for 30 days. Furthermore, there is a shift of the spectrum in all of spectra after irradiating of synchrotron radiation that it is because of the malignant human cancer cells and tissues shrink post white synchrotron irradiation with the passage of time. In addition, all of the figures are related to the same human cancer cells and tissues. Moreover, in all of the figures y-axis shows intensity and also x-axis shows energy (keV) (Figures 1 & 2).

Figure 1

Atomic force microscopy based infrared (AFM–IR) Spectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

Figure 2

Nuclear resonance vibrational spectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time.

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 & 2). It should be noted that malignant human cancer cells and tissues were exposed under white synchrotron radiation for 30 days.
Furthermore, there is a shift of the spectrum in all of the spectra after irradiating of synchrotron radiation that it is because of the malignant human cancer cells and tissues shrink post white synchrotron irradiation with the passage of time. In addition, all of the figures are related to the same human cancer cells and tissues. Moreover, in all of the figures y–axis shows intensity and also x–axis shows energy (keV) (Figures 1 & 2).

Acknowledgements

None.

Conflict of interest

The authors declare that there is no conflict of interest.

References

14. Alireza Heidari. Measurement the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and absorbable calcium (Ca2+), iron (II) (Fe2+), magnesium (Mg2+), phosphat (PO43–) and zinc (Zn2+) in apricot using high–performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biomol Ther. 2016;7:292.
15. Heidari A. Spectroscopy and quantum mechanics of the helium dimer (He2), neon dimer (Ne2), argon dimer (Ar2), krypton dimer (Kr2), xenon dimer (Xe2), radon dimer(Rn2) and unununium dimer (Uuo2) molecular cations. Chem Sci J. 2016;7:e112.

DOI: 10.15406/jabb.2018.05.00129
Atomic force microscopy based infrared (AFM–IR) spectroscopy and nuclear resonance vibrational spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation with the passage of time.


Atomic force microscopy based infrared (AFM–IR) spectroscopy and nuclear resonance vibrational spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation with the passage of time.


DOI: 10.15406/jabb.2018.05.00129


113. Alireza Heidari. Vibrational Deciherht (dHz), Centiherzt (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zettahertz (ZHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *International Journal of Biomedicine*. 2017;7(4):335–340.


118. Alireza Heidari. Vibrational Deciherht (dHz), Centiherzt (cHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zetahertz (ZH) and Yotahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Madridge J Anal Sci Instrum*. 2017;2(1):41–46.


121. Alireza Heidari. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. *Austin Pharmacol Pharm*. 2018;3(1):1011.


132. Alireza Heidari. Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X–Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and
Atomic force microscopy based infrared (AFM–IR) spectroscopy and nuclear resonance vibrational spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation with the passage of time.


