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Obesogens and nuclear receptors

Abstract

Obesity is so common within the world’s population and prevalence has increased
markedly over. And we know that toxic chemical substance exposure increased that
both of obesity prevalence and formation of health problems related with obesity.
Nuclear receptors that are sensors of exposure to xenobiotics. In addition recent
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studies have proposed a first set of obesogens that target nuclear hormone receptor

signaling pathways with relevance to adipocyte biology and the developmental origins
of health and disease. In this paper assesses the information about a huge puclic
helath problem that is obesity and its relationship also evaluated that nuclear receptor

signaling pathways of obesogens.
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Introduction

Obesity prevalence has increased markedly over the past few
decades. The obesity pandemic has huge implications for public
health. Recently several approaches have been used to understand
the genetic receptors that control the function of obesity."* The
candidate gene approach focuses the search for specific obesity
susceptibility mutations in genes that are chosen based on their
presumed relevance to energy homeostasis. Although several genes
have been examined, most candidate gene studies in humans have
been negative, or alternatively, the gene variant has shown to play
a modest role in influencing obesity susceptibility. Four of the many
genes that have drawn the attention of researchers in this capacity
include the b3-adrenergic receptor (ADRB3), peroxisome proliferator
activated receptor-c (PPAR-c), peroxisome proliferator activated
receptor-c coactivator-1 (PGC-1), and adiponectin (APM1). Although
mutations in these genes may play a modest role in influencing obesity
susceptibility in any given individual, they may play more important
roles through interaction with other gene variants. Furthermore,
some of these gene variants are common in the population, and,
thus, despite their modest effects, may be responsible for substantial
population attributable risk for obesity.*® Research that obesogens
come out past decade toxic chemical substance exposure increased
that both of obesity prevalence and formation of health problems
related with obesity. The environmental obesogen hypothesis purpose
that examine the relationship between toxic chemicals and obesity.
Recent studies have proposed a first set of candidate obesogens (di-
ethylstilbestrol, bisphenol A, phthalates and organotins among others)
that target nuclear hormone receptor signaling pathways (sex steroid,
RXR-PPARy and GR) with relevance to adipocyte biology and the
developmental origins of health and disease (DOHD).”® Exposure
to obesogens initiates or exacerbates obesity through mis-regulation

of critical pathways involved in adipogenesis, lipid metabolism, or
energy balance.®

Nuclear receptors, sensors of exposure to xenobiotics

A privileged mechanism for endocrine disrupters (ED) interference
with metabolic pathways is their direct or indirect activity on nuclear
receptors. Nuclear receptors are transcription factors characterised
by three important properties. First one is share a common modular
organization, with a DNA binding domain and ligand binding domain
second one activated by the binding of specific ligands third one_
the activated receptors bind to specific response elements located
in the vicinity of the promoter of their target genes.”!° Nuclear
receptors bind to DNA as dimers, either homodimers, or more often
heterodimers with the receptor for 9-cis retinoic acid, known as RXR
transactivation via nuclear receptors occurs in at least two steps. One
them in the absence of a ligand, the nuclear receptor dimer binds to a
co-repressor protein that inhibits its transactivation properties. Other
one is in the presence of a ligand, or due to an alternative pathway
of activation such as phosphorylation, the co-repressor is released
and a co-activator is recruited, allowing further contacts to bemade
with the transcription machinery, eventually resulting in transcription
enhancement. It is important to note that the general properties of
the ligands for nuclear receptors, i.e. small size and lipophilicity, are
commonly found in Eds.’

Classification of nuclear receptors

Nuclear receptors can be ordered into three classes according to
their ligand binding properties. Class one are the classic hormone
receptors that recognise only one or a few molecules with high affinity.
This is the case for the thyroid hormone, glucocorticoid, retinoic acid,
oestrogen, vitamin D, as well as progesterone, mineralocorticoid, and
androgen receptors. Class two are orphan receptors, which possess
the structural characteristics of nuclear receptors, including a ligand
binding domain, but for which no ligand has so far been identified.
Class 3 are bind a broad range ofmolecules with, as a corollary,
relatively poor affinity. Rather than responding to hormones secreted
by endocrine glands with tight feedback controls, these receptors,
namely pregnane X receptor (PXR), constitutive androstane
receptor (CAR), farnesoid X receptor (FXR), liver X receptor
(LXR) and peroxisome proliferatoractivated receptors (PPARs), can
bind molecules that belong to metabolic pathways as substrates,
intermediates or end-products.”'!
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PPAR (a, 6,Y) receptors and obesity

The peroxisome proliferator-activated receptors (PPAR a, 9, v)
are members of the nuclear receptor superfamily of ligand-activated
transcription factors that have central roles in the storage and
catabolism of fatty acids.!> PPAR isotypes (o, p/d or FAAR, and v,
respectively) were identified in the early 1990s in Xenopus laevis and
in mice."*!" Since then, PPAR o, /5 and y have also been identified
in humans.'>'® The first PPAR identified that PPAR a.” PPARa is
activated by a broad range of compounds among which several are
qualified as endocrine disrupters. Many synthetic compounds to which
humans are exposed have peroxisome proliferative properties in
rodents. These include plasticizers such as di (2-ethylhexyl) phthalate
(DEHP), surfactants such as perfluorocarboxylic acids, herbicides
such as 2,4,5-trichlorophenoxyacetic acid, chlorinated solvents such
as trichloroethylene, and hypolipidemic drugs such as fenofibrate and
gemfibrozil.” PPARS is much less known about the biology of PPARS
than either of the other two PPAR subtypes.!>? PPARy is crucial for
white adipose tissue development and adipogenesis in general.”!’
Its ability to bind some endocrine disrupters might contribute to fat
accumulation in mature adipocytes upon exposure to the compounds.’
In vitro and in vivo studies show that induced PPARy lead to
differentiation of adipose tissue.'®” Obesogens activate PPAR vy thus
leading to obesity."”

RXR receptors and obesity

In 1987 retinoic acid receptors was discovered that are
knowns vitamine A metabolite and was found in nuclear receptor
superfamily.?’?2 RXR has got three receptor types (a, B, 7).

Molecular basis of the obesogen response

Differantion of the fat cells in obesity occurs in two ways. One
of them hipertrophy that means increase in the volume of fat cell
or the other hyperplasia that means increase number of fat cell.*
Adipogenesis became mesenchymal stem cells differantion.” Adipose
tissue responsible from metabolism regulation like an endocrine
tissue.?*?” Obesity relation with adipose tissue endocrine and secretion
functions (adipokines, adiponectin, tumor necrosis factor-a, IL-1f, IL-
6, monocyte chemotactic protein-1 (MCP-1), macrophage migration
inhibitory factor, nerve growth factor, vascular endothelial growth
factor, plasminogen activator inhibitor 1 and haptoglobin) . Leptin is
a hormone that produced adipocyte and its structure protein. Leptin
regulate energy balance by influencing hypothalamus.?® Generally
each of the individual has a “personal threshold of leptin”. Sense
of energy sufficient goes to brain when leptin exceeds level of the
threshold and fat storage prevented. When PPAR v activate, leptin
expression increased and leptin make decreased PPARYy expression in
adipocytes.'®*3% Especially PPARy has an important role in shaping
adipose tissue and formation of fat cells."® According to Bruce
Blumberg if you activate PPARy in a preadipocyte, it becomes a fat
cell. if it already is a fat cell, it puts more fat in the cell.”

Organotins

Organotins are very common pollutants in environment.*'
Studies Show that prenatal exposure to TBT effect of preadipocytes
and it conversion adipocytes.**** The persistent TBT represents, the
first example of an environmental endocrine disrupter that promotes
adipogenesis through RXR and PPARYy activation. The persistent and
ubiquitous environmental contaminant, tributyltin chloride (TBT),
induces the differentiation of adipocytes in vitro and increases adipose
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mass in vivo. TBT is a dual, nanomolar affinity ligand for both the
retinoid X receptor (RXR) and the peroxisome proliferator-activated
receptor v (PPARy). TBT promotes adipogenesis in the murine
3T3-L1 cell model and perturbs key regulators of adipogenesis and
lipogenic pathways in vivo. Also TBT was thus identifie as the first
“obesogen.>”

Phthalates

DEHP (di-ethyl-hexyl-phthalate) is the most widely used industrial
plasticizer, and human exposure to this pollutant is high through the
daily use of polyvinyl chloride products.’® Results demonstrate that
DEHP exerts species-specific metabolic actions that rely to a large
extent on PPARa signaling and highlight the metabolic importance of
the species-specific activation of PPARa by xenobiotic compounds.
results demonstrate that exposure to the environmental pollutant
DEHP has far-reaching metabolic consequences that rely on hepatic
oxidative metabolism via PPARa activation. Furthermore, a species-
specific relationship between exposure to DEHP and diet-induced
obesity.’” Many of these chemicals may interact with members of
the nuclear receptor superfamily. Peroxisome proliferator-activated
receptors (PPARs) are such candidate members, which interact with
many different endogenous and exogenous lipophilic compounds.
Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread
plasticizer DEHP, has been found in exposed organisms and interacts
with all three PPARs (a, B, v). A thorough analysis of its interactions
with PPAR v identified MEHP as a selective PPAR y modulator, and
thus a possible contributor to the obesity epidemic.” MEHP directly
activates PPARy and promotes adipogenesis MEHP induces a
selective activation of different PPARy target genes. MEHP induces
selective transcriptional regulations during adipocyte differentiation.
Concentrations of mono-benzyl ve mono-ethyl-hexyl phthalate
metabolites showed statistically significant correlations with
abdominal obesity and insulin resistance in men.**

Bisphenol-A

Bisphenol-A (BPA) is a monomer in the structure of composite
resins and polycarbonate plastics. Bisphenol-A is a xenoestrogen and
an endocrine disrupters. BPA used to make polycarbonate polymers
and epoxy resins, along with other materials used to make plastics."!
Epoxy resins are used to make internal surface coatings for food
cans (sea products, vegetables, beer, soft drinks, powder milk), big
storage vessels (wine, water) and various types of food containers.*
Bisphenol-A (BPA) is one of the highest volume chemicals produced
worldwide, with over 6 billion pounds produced each year and over
100 tons released into the atmosphere by yearly production. Humans
are exposed to BPA inadvertently through their food and beverages,
but they are also likely to be exposed via air, drinking and bathing
water, dust, and soil.¥* The continuous exposure of mice to BPA
during the perinatal and postnatal periods caused the development of
obesity and hyperlipidemia.** A recombinant Huh7-PPRE-Luc cell
line use for analyzing the peroxisome proliferator response element
(PPRE). Among five environmental chemicals (troglitazone, benzyl
butyl phthalate (BBP), dipropyl phthalate (DPP), bisphenol A (BPA)
tested, benzyl butyl phthalate and bisphenol induced PPRE-driven
luciferase activation in Huh7-PPRE-Luc cells and caused adipogenic
differentiation of 3T3-L1 cells. BBP and BPA, like the PPARy agonist
troglitazone, induced marked formation of oil droplets, whereas DPP
did not.The results show that a recombinant Huh7-PPRE-Luc cell line
would be useful for screening potential environmental obesogens with
PPAR activity.*
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Perfluorooctanoic acid, PAH’s, organochlorine com-
pounds

PFOA (Perfluorooctanoic Acid),” DES (Diethylstilbestrol),>484°
PAH’s and smoking,**? organochlorine compounds™ are associated
with an increase of BMI and overweight also studies show that have
been implicated in altering adipocyte distribution and function.

Conclusion

Now that most of the world has adopted an increasingly
“obesogenic” lifestyle of excess caloric intake and decreased physical
activity and same genes contribute to obesity and poor health. In the
entire world obesity is well known and USA has the highest ratio of
obesed people while else where in the world the ratio is gradually
increasing. Due to the need to fight obesity many nations have come
up with healthy ideas towards a healthy living. For instance there is
need to reduce caloric intake, increase physical activities and good
balanced diet are important for a healthy lifestyle. Researchers
finding support the ides that environmental estrogens may play role
in regulating the expression of obesity related genes in development
but additional studies are needed. Also research with endocrine
disrupter chemicals only studied in laboratory animals but the genetic
receptors that control the function of fat cells has not been identified
yet. It is importantly that nuclear receptorsare sensors of exposure
to xenobiotics. Because of that reasons the next step for researchers
begin to investigate the action mechanism of obesogens and learn how
it affects peoples.
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