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Abbreviations: ADRB3, B3-adrenergic receptor; DOHD, de-
velopmental origins of health and disease; ED, endocrine disrupters; 
PXR, pregnane X receptor; CAR, constitutive androstane receptor; 
LXR, liver X receptor; FXR, farnesoid X receptor; PPARs, peroxi-
some proliferator activated receptors; MCP-1, monocyte chemotactic 
protein-1; RXR, retinoid x receptor; MEHP, mono-ethyl-hexyl-pht-
halate; BPA, bisphenol-A; PPRE, peroxisome proliferator response 
element; BBP, benzyl butyl phthalate; DPP, dipropyl phthalate; DES, 
diethyl stilbestrol; PFOA, perfluoro octanoic acid

Introduction
Obesity prevalence has increased markedly over the past few 

decades. The obesity pandemic has huge implications for public 
health. Recently several approaches have been used to understand 
the genetic receptors that control the function of obesity.1–4 The 
candidate gene approach focuses the search for specific obesity 
susceptibility mutations in genes that are chosen based on their 
presumed relevance to energy homeostasis. Although several genes 
have been examined, most candidate gene studies in humans have 
been negative, or alternatively, the gene variant has shown to play 
a modest role in influencing obesity susceptibility. Four of the many 
genes that have drawn the attention of researchers in this capacity 
include the b3-adrenergic receptor (ADRB3), peroxisome proliferator 
activated receptor-c (PPAR-c), peroxisome proliferator activated 
receptor-c coactivator-1 (PGC-1), and adiponectin (APM1). Although 
mutations in these genes may play a modest role in influencing obesity 
susceptibility in any given individual, they may play more important 
roles through interaction with other gene variants. Furthermore, 
some of these gene variants are common in the population, and, 
thus, despite their modest effects, may be responsible for substantial 
population attributable risk for obesity.5,6 Research that obesogens 
come out past decade toxic chemical substance exposure increased 
that both of obesity prevalence and formation of health problems 
related with obesity. The environmental obesogen hypothesis purpose 
that examine the relationship between toxic chemicals and obesity. 
Recent studies have proposed a first set of candidate obesogens (di-
ethylstilbestrol, bisphenol A, phthalates and organotins among others) 
that target nuclear hormone receptor signaling pathways (sex steroid, 
RXR-PPARγ and GR) with relevance to adipocyte biology and the 
developmental origins of health and disease (DOHD).7,8 Exposure 
to obesogens initiates or exacerbates obesity through mis-regulation 

of critical pathways involved in adipogenesis, lipid metabolism, or 
energy balance.8

Nuclear receptors, sensors of exposure to xenobiotics

A privileged mechanism for endocrine disrupters (ED) interference 
with metabolic pathways is their direct or indirect activity on nuclear 
receptors. Nuclear receptors are transcription factors characterised 
by three important properties. First one is share a common modular 
organization, with a DNA binding domain and ligand binding domain 
second one activated by the binding of specific ligands third one 
the activated receptors bind to specific response elements located 
in the vicinity of the promoter of their target genes.9,10 Nuclear 
receptors bind to DNA as dimers, either homodimers, or more often 
heterodimers with the receptor for 9-cis retinoic acid, known as RXR 
transactivation via nuclear receptors occurs in at least two steps. One 
them in the absence of a ligand, the nuclear receptor dimer binds to a 
co-repressor protein that inhibits its transactivation properties. Other 
one is in the presence of a ligand, or due to an alternative pathway 
of activation such as phosphorylation, the co-repressor is released 
and a co-activator is recruited, allowing further contacts to bemade 
with the transcription machinery, eventually resulting in transcription 
enhancement. It is important to note that the general properties of 
the ligands for nuclear receptors, i.e. small size and lipophilicity, are 
commonly found in Eds.9 

Classification of nuclear receptors

Nuclear receptors can be ordered into three classes according to 
their ligand binding properties. Class one are the classic hormone 
receptors that recognise only one or a few molecules with high affinity. 
This is the case for the thyroid hormone, glucocorticoid, retinoic acid, 
oestrogen, vitamin D, as well as progesterone, mineralocorticoid, and 
androgen receptors. Class two are orphan receptors, which possess 
the structural characteristics of nuclear receptors, including a ligand 
binding domain, but for which no ligand has so far been identified. 
Class 3 are bind a broad range ofmolecules with, as a corollary, 
relatively poor affinity. Rather than responding to hormones secreted 
by endocrine glands with tight feedback controls, these receptors, 
namely pregnane X receptor (PXR), constitutive androstane 
receptor (CAR), farnesoid X receptor (FXR), liver X receptor 
(LXR) and peroxisome proliferatoractivated receptors (PPARs), can 
bind molecules that belong to metabolic pathways as substrates, 
intermediates or end-products.9,11 
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Abstract

Obesity is so common within the world’s population and prevalence has increased 
markedly over. And we know that toxic chemical substance exposure increased that 
both of obesity prevalence and formation of health problems related with obesity. 
Nuclear receptors that are sensors of exposure to xenobiotics. In addition recent 
studies have proposed a first set of obesogens that target nuclear hormone receptor 
signaling pathways with relevance to adipocyte biology and the developmental origins 
of health and disease. In this paper assesses the information about a huge puclic 
helath problem that is obesity and its relationship also evaluated that nuclear receptor 
signaling pathways of obesogens.
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PPAR (α, δ, γ) receptors and obesity

The peroxisome proliferator-activated receptors (PPAR α, δ, γ) 
are members of the nuclear receptor superfamily of ligand-activated 
transcription factors that have central roles in the storage and 
catabolism of fatty acids.12 PPAR isotypes (α, β/δ or FAAR, and γ, 
respectively) were identified in the early 1990s in Xenopus laevis and 
in mice.13,14 Since then, PPAR α, β/δ and γ have also been identified 
in humans.15,16 The first PPAR identified that PPAR α.9 PPARα is 
activated by a broad range of compounds among which several are 
qualified as endocrine disrupters. Many synthetic compounds to which 
humans are exposed have peroxisome proliferative properties in 
rodents. These include plasticizers such as di (2-ethylhexyl) phthalate 
(DEHP), surfactants such as perfluorocarboxylic acids, herbicides 
such as 2,4,5-trichlorophenoxyacetic acid, chlorinated solvents such 
as trichloroethylene, and hypolipidemic drugs such as fenofibrate and 
gemfibrozil.9 PPARδ is much less known about the biology of PPARδ 
than either of the other two PPAR subtypes.12 PPARγ is crucial for 
white adipose tissue development and adipogenesis in general.9,17 
Its ability to bind some endocrine disrupters might contribute to fat 
accumulation in mature adipocytes upon exposure to the compounds.9 
In vitro and in vivo studies show that induced PPARγ lead to 
differentiation of adipose tissue.18–20 Obesogens activate PPAR γ thus 
leading to obesity.17

RXR receptors and obesity

In 1987 retinoic acid receptors was discovered that are 
knowns vitamine A metabolite and was found in nuclear receptor 
superfamily.21,22 RXR has got three receptor types (α, β, γ).23

Molecular basis of the obesogen response

Differantion of the fat cells in obesity occurs in two ways. One 
of them hipertrophy that means increase in the volume of fat cell 
or the other hyperplasia that means increase number of fat cell.24 
Adipogenesis became mesenchymal stem cells differantion.25 Adipose 
tissue responsible from metabolism regulation like an endocrine 
tissue.26,27 Obesity relation with adipose tissue endocrine and secretion 
functions (adipokines, adiponectin, tumor necrosis factor-α, IL-1β, IL-
6, monocyte chemotactic protein-1 (MCP-1), macrophage migration 
inhibitory factor, nerve growth factor, vascular endothelial growth 
factor, plasminogen activator inhibitor 1 and haptoglobin) . Leptin is 
a hormone that produced adipocyte and its structure protein. Leptin 
regulate energy balance by influencing hypothalamus.28 Generally 
each of the individual has a “personal threshold of leptin”. Sense 
of energy sufficient goes to brain when leptin exceeds level of the 
threshold and fat storage prevented. When PPAR γ activate, leptin 
expression increased and leptin make decreased PPARγ expression in 
adipocytes.18,29,30 Especially PPARγ has an important role in shaping 
adipose tissue and formation of fat cells.18 According to Bruce 
Blumberg if you activate PPARγ in a preadipocyte, it becomes a fat 
cell. if it already is a fat cell, it puts more fat in the cell.7

Organotins

Organotins are very common pollutants in environment.31,32 
Studies Show that prenatal exposure to TBT effect of preadipocytes 
and it conversion adipocytes.33,34 The persistent TBT represents, the 
first example of an environmental endocrine disrupter that promotes 
adipogenesis through RXR and PPARγ activation. The persistent and 
ubiquitous environmental contaminant, tributyltin chloride (TBT), 
induces the differentiation of adipocytes in vitro and increases adipose 

mass in vivo. TBT is a dual, nanomolar affinity ligand for both the 
retinoid X receptor (RXR) and the peroxisome proliferator-activated 
receptor γ (PPARγ). TBT promotes adipogenesis in the murine 
3T3-L1 cell model and perturbs key regulators of adipogenesis and 
lipogenic pathways in vivo. Also TBT was thus identifie as the first 
“obesogen.35”

Phthalates

DEHP (di-ethyl-hexyl-phthalate) is the most widely used industrial 
plasticizer, and human exposure to this pollutant is high through the 
daily use of polyvinyl chloride products.36 Results demonstrate that 
DEHP exerts species-specific metabolic actions that rely to a large 
extent on PPARα signaling and highlight the metabolic importance of 
the species-specific activation of PPARα by xenobiotic compounds. 
results demonstrate that exposure to the environmental pollutant 
DEHP has far-reaching metabolic consequences that rely on hepatic 
oxidative metabolism via PPARα activation. Furthermore, a species-
specific relationship between exposure to DEHP and diet-induced 
obesity.37 Many of these chemicals may interact with members of 
the nuclear receptor superfamily. Peroxisome proliferator-activated 
receptors (PPARs) are such candidate members, which interact with 
many different endogenous and exogenous lipophilic compounds. 
Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread 
plasticizer DEHP, has been found in exposed organisms and interacts 
with all three PPARs (α, β, γ). A thorough analysis of its interactions 
with PPAR γ identified MEHP as a selective PPAR γ modulator, and 
thus a possible contributor to the obesity epidemic.9 MEHP directly 
activates PPARγ and promotes adipogenesis MEHP induces a 
selective activation of different PPARγ target genes. MEHP induces 
selective transcriptional regulations during adipocyte differentiation.38 
Concentrations of mono-benzyl ve mono-ethyl-hexyl phthalate 
metabolites showed statistically significant correlations with 
abdominal obesity and insulin resistance in men.39,40

Bisphenol-A

Bisphenol-A (BPA) is a monomer in the structure of composite 
resins and polycarbonate plastics. Bisphenol-A is a xenoestrogen and 
an endocrine disrupters. BPA used to make polycarbonate polymers 
and epoxy resins, along with other materials used to make plastics.41 
Epoxy resins are used to make internal surface coatings for food 
cans (sea products, vegetables, beer, soft drinks, powder milk), big 
storage vessels (wine, water) and various types of food containers.42 

Bisphenol-A (BPA) is one of the highest volume chemicals produced 
worldwide, with over 6 billion pounds produced each year and over 
100 tons released into the atmosphere by yearly production. Humans 
are exposed to BPA inadvertently through their food and beverages, 
but they are also likely to be exposed via air, drinking and bathing 
water, dust, and soil.43 The continuous exposure of mice to BPA 
during the perinatal and postnatal periods caused the development of 
obesity and hyperlipidemia.44,45 A recombinant Huh7-PPRE-Luc cell 
line use for analyzing the peroxisome proliferator response element 
(PPRE). Among five environmental chemicals (troglitazone, benzyl 
butyl phthalate (BBP), dipropyl phthalate (DPP), bisphenol A (BPA) 
tested, benzyl butyl phthalate and bisphenol induced PPRE-driven 
luciferase activation in Huh7-PPRE-Luc cells and caused adipogenic 
differentiation of 3T3-L1 cells. BBP and BPA, like the PPARγ agonist 
troglitazone, induced marked formation of oil droplets, whereas DPP 
did not.The results show that a recombinant Huh7-PPRE-Luc cell line 
would be useful for screening potential environmental obesogens with 
PPAR activity.46
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Perfluorooctanoic acid, PAH’s, organochlorine com-
pounds 

PFOA (Perfluorooctanoic Acid),47 DES (Diethylstilbestrol),30,48,49 
PAH’s and smoking,50–52 organochlorine compounds53–55 are associated 
with an increase of BMI and overweight also studies show that have 
been implicated in altering adipocyte distribution and function.

Conclusion
Now that most of the world has adopted an increasingly 

‘‘obesogenic’’ lifestyle of excess caloric intake and decreased physical 
activity and same genes contribute to obesity and poor health. In the 
entire world obesity is well known and USA has the highest ratio of 
obesed people while else where in the world the ratio is gradually 
increasing. Due to the need to fight obesity many nations have come 
up with healthy ideas towards a healthy living. For instance there is 
need to reduce caloric intake, increase physical activities and good 
balanced diet are important for a healthy lifestyle. Researchers 
finding support the ides that environmental estrogens may play role 
in regulating the expression of obesity related genes in development 
but additional studies are needed. Also research with endocrine 
disrupter chemicals only studied in laboratory animals but the genetic 
receptors that control the function of fat cells has not been identified 
yet. It is importantly that nuclear receptorsare sensors of exposure 
to xenobiotics. Because of that reasons the next step for researchers 
begin to investigate the action mechanism of obesogens and learn how 
it affects peoples.
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